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Abstract. Smooth local coordinates have been proposed by Hiyoshi and
Sugihara 2000 to improve the classical Sibson’s and Laplace coordinates.
These smooth local coordinates are computed by integrating geometric
quantities over weights in the power diagram. In this paper we describe
how to efficiently implement the Voronoi based C2 local coordinates. The
globally C2 interpolant that Hiyoshi and Sugihara presented in 2004 is
then compared to Sibson’s and Farin’s C1 interpolants when applied to
scattered data interpolation.

1 Introduction

Scattered data interpolation is the most prominent application for a family of
local coordinates in scattered point sets, which were introduced in 1980 by Sibson
[1] based on the natural neighbors in Voronoi diagrams. Another, simpler and less
smooth set of local coordinates based on natural neighbors has been proposed
as non-Sibsonian or Laplace coordinates [2,3,4]. Hiyoshi et al. [5] generalized
Laplace and Sibson’s coordinates to Ck continuity over the domain except at
the data sites. We will call these coordinates for short Hiyoshi’s Ck coordinates.
Recently, Hiyoshi [6] proposed a stable computation method for his coordinates,
taking a different approach than the one we present in this paper.

For scattered data interpolation the discontinuities of the derivative at the
data sites can be solved by using a polynomial of the local coordinates. Sibson
[7] first proposed a globally C1 interpolant that interpolates least squares fit-
ted gradients at the data sites. A more general solution was given by Farin [8]
who constructed a C1 interpolant with quadratic precision using multivariate
Bézier simplexes. This was extended by Hiyoshi et al. [9] who used higher degree
simplexes to build a globally C2 interpolant based on Hiyoshi’s Ck coordinates.

Generalizations of natural neighbor interpolation exist for transfinite inter-
polation of circles and line segments [10,11,12] and points scattered on manifolds
[13]. Efforts have been made in accelerating the computation of Sibson’s inter-
polant using graphics hardware [14,15].

The main contribution of this paper consists of two parts. First, we give
guidelines for an efficient and robust implementation of Hiyoshi’s C2 coordi-
nates. A comparison to Hiyoshi’s approach [6] is not given for we have only
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recently learned of it. Second, we compare the resulting interpolant to other
smooth scattered data interpolants based on local coordinates, and discuss the
importance of derivative estimation in this context. Specifically, we compare Sib-
son’s, Farin’s and Hiyoshi’s interpolants applied to a downsampled crater lake
data set and to data sampled from an analytic function.

We start in Section 2 with some facts about power diagrams as a foundation
to briefly restate Hiyoshi’s Ck coordinates in Section 3. We then focus on the
actual implementation of Hiyoshi’s C2 coordinates in Section 4. The estimation
of derivatives up to order two for comparison is discussed in Section 5. Finally,
we present a comparison of Sibson’s and Farin’s C1 interpolants and Hiyoshi’s
C2 interpolant in two different settings in Section 6.

2 Voronoi and Power Diagrams

The scattered data interpolation problem for scalars valued functions is stated
as follows. Given a set of data sites X = {xi}i=1,...,m ⊂ R2 and corresponding
data Z = {zi}i=1,...,m ⊂ R, find a function f : R2 → R satisfying f(xi) = zi.
Further constraints can be stated, e.g. interpolation of given derivatives. Texts
on scattered data interpolation in general can be found in [16,17].

Local scattered data schemes compute the interpolated value f(x) by taking
a linear combination of the data values in a neighborhood N(x) and weights
λj(x) such that f(x) =

∑
j∈N(x) λj(x) zj . The following explains the definition

of N(x) in case of natural neighbor interpolation.
Denote by d(·, ·) the Euclidean distance in R2. From the data sites X we

construct the Voronoi diagram V(X) := {Ti}i=1,...,m, which is the partition of
space into convex tiles Ti such that

Ti = {x ∈ R2|d(x, xi) ≤ d(x, xj), i 6= j}.

See [18,19] for a thorough treatment of Voronoi diagrams. Two generators xi

and xj are called natural neighbors if the intersection Ti ∩ Tj of their associated
tiles is not empty. Because generators on the convex hull of X have unbounded
tiles, we restrict our considerations to the interior D of the convex hull of X.
We denote the set of indices of the natural neighbors for a generator xj by Nj .
If at least 3 tiles share a common point, the unique circum-circle through their
generators is called Delaunay circle, which contains no other generator in its
interior.

A power diagram is a Voronoi diagram with weighted generators (xi, wi),
wi ∈ R and the distance measure dp(·, ·),(

dp(x, xi)
)2 =

(
d(x, xi)

)2 − wi.

Then, all notions from the Voronoi diagram carry over: tiles are convex polygons
and for uniformly chosen weights, the power diagram coincides with V(X). For
power diagrams tiles can be empty depending on the weights wi, which does not
happen for the special choice of weights wi in this paper.
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Assume we are interested in the natural neighbors N0 of an arbitrary point
x0 ∈ D . We treat x0 as a variable position that moves around in D . Virtually
inserting x0 into X results in a new Voronoi diagram V ′ with tiles T ′i . Further-
more, we associate with each generator x1, . . . , xm a zero power weight wi := 0,
except for x0 with power weight w0 := −w. This basically means x0 loses influ-
ence with growing w, and its tile becomes smaller until it vanishes. Note that
changing w only affects the shape of T ′0 (w) and T ′i (w) of its natural neighbors,
i ∈ N0. Although strictly speaking, N0 also depends on w, we always take it
to be as in the standard Voronoi diagram, i.e. w = 0. N0 now only depends
on the position of x0. Expressing x0 as a linear combination of its neighbors,
x0 =

∑
i∈N0

λixi, allows the definition of the scattered data interpolant

f(x0) =
∑
i∈N0

λizi. (1)

Where N0 is unique, f(x0) is a C∞-continuous function. Continuity issues arise
whenever N0 changes, i.e.

1. x0 crosses a Delaunay circle, or
2. x0 passes another generator xi.

The first problem is solved by construction of λi, while the second is solved by
construction of the interpolant. In the next section we focus on the first problem.

3 Natural Neighbor Coordinates

Natural neighbor coordinates express a point x0 as a convex combination of its
natural neighbors {xi}i∈N0 , i.e. x0 =

∑
i∈N0

λixi. The weights λi are usually
derived from the geometry of the Voronoi tiles of x0 and its neighbors. Laplace
coordinates λ0

i are defined with respect to the line segments li(w) perpendicular
to the line connecting x0 and xi and bounding T ′0 (w) and the distances ri =
d(x0, xi), i ∈ N0,

λ̃0
i (w) := |li(w)|/ri and λ0

i (w) := λ̃0
i (w)/

∑
j∈N0

λ̃0
j (w).

Laplace coordinates are continuous in D .
Another set of natural neighbor coordinates are Sibson’s coordinates λ1

i which
are C1 in D \X. Based on the area vi(w) of Ti ∩ T ′0 (w) they are defined as

λ̃1
i (w) := |vi(w)| and λ1

i (w) := λ̃1
i (w)/

∑
j∈N0

λ̃1
j (w).

Laplace and Sibson’s coordinates are members of a class of natural neighbor
coordinates generalized by Hiyoshi et al. [5] to Ck continuity in D \ X. The
area covered by T ′0 (w) shrinks with growing w until it vanishes for wmax =
infw(T0(w) = ∅), see Figure 1(left). Using v = wmax − w, k ≥ 1 the recursion

λ̃k
i (u) =

∫ u

0

λ̃k−1
i (v) dv and λ̃k

i = λ̃k
i (wmax) (2)
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Fig. 1. (left) The Voronoi diagram V of X (black dots) and the tile T0(w) of x0

for different values of w ≥ 0. (right) Two examples for |li(w)| and its bounding
constraints Ni,jy ≤ bi,j(w).

yields by normalization a relation between the different natural neighbor coor-
dinates,

λk
i := λ̃k

i /
∑

j∈N0
λ̃k

j . (3)

These coordinates are called Hiyoshi’s coordinates. In D \X they are Ck in x0,
see [5].

4 Computing Hiyoshi’s C2 Coordinates

In [6] Hiyoshi proposed to compute his coordinates by accumulating the con-
tributions of Delaunay triangles and edges to the value of λk. Our approach is
different and based on the direct evaluation of equation (2) which requires to
express λ0(w) as an analytic expression in x0 and {xi}i∈N0 . Therefore, we first
examine how the geometry of T0(w) depends on w.

For w ≥ 0 the distance between li(0) and li(w) is given by w/2ri. Since the
vertices of T0(w) are located on the bisectors of V, the length of the line segment
li(w) is a piecewise linear function on intervals [wj , wj+1), j ≥ 1,

|li(w)|[wj ,wj+1) = αij + wβij ,

see for examples Figure 1(right). The tile T0(w) ⊂ R2 is a convex polygon con-
fined in the intersection of half spaces nix ≤ bi(w), i = 0 . . .m − 1, m = |N0|
with

ni = (xi − x0)/ri and bi(w) = ci + wdi,

with ci = (xi + x0)ni/2 and di = −1/2ri. Thus, T0(w) can be described by the
matrix inequality

T0(w) =
{
x ∈ R2 | N x ≤ b(w)

}
, b(w) ∈ Rm, N ∈ Rm×2. (4)

Now, li is represented by nix = bi(w) which can be used to eliminate xj , j = 1, 2,
from (4). This is equivalent to a projection of li(w) along the j-th coordinate
direction. With a new matrix Ni,j and right-hand side bi,j(w) the projected line
segment is given by

li,j(w) =
{
y ∈ R | Ni,jy ≤ bi,j(w)

}
(5)
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which is an intersection of intervals in R. Thus, the length of li can be computed
as

|li(w)| = |li,j(w)|/|ni,j |, (6)

where ni,j is the j-th component of ni.
In case there is a line segment lk, k 6= i, parallel to li there is an upper bound

w > 0 for w such that li,j(w) is not empty. This upper bound w is given by the
row of Ni,jy ≤ bi,j(w) representing the constraint imposed by lk. Otherwise, we
set w to infinity.

Classifying the inequalities in (5) as upper and lower bounds for the interval
li,j(w), distinguished by superscript + and -,

y ≤ c+
k + wd+

k =: b+
k (w) and y ≥ c−l + wd−l =: b−l (w)

yield for the length of li,j(w)

|li,j(w)| = max
w≤w

{
0,min

k
{b+

k (w)} −max
l
{b−l (w)}

}
.

This can be efficiently computed by appropriate sorting, intersecting and merg-
ing. According to (6) the length of li(w) is now represented by a list (wj , αij , βij).

The integral yielding Hiyoshi’s C2 coordinates can be retrieved by applying
recursion (2),

λ̃2
i =

∫ wmax

0

∫ u

0

λ̃0
i (wmax − v) dv du. (7)

Because λ̃0
i is piecewise linear this integration can be done per interval [wj , wj+1).

Denote by Sj(u) the inner integral of (7) for u ∈ [wj , wj+1), that is of the form

S−1(u) := 0,

Sj(u) = Sj−1(wj) +
(
(u2 − w2

j )dj/2 + (u− wj) cj

)
/ri.

This gives for λ̃2
i the expression

λ̃2
i =

∑
j

(
(w3

j+1 − w3
j ) dj/6ri + (w2

j+1 − w2
j ) cj/2ri+

(wj+1 − wj)
(
Sj−1(wj)− (w2

j dj − 2wjcj)/2ri

))
.

Remark 1. Because |li(w)| is piecewise linear the recursive integral reduction in
[5] is not applicable.

5 Derivative Estimation

The interpolant derived in (1) is as smooth as the coordinate functions. For
natural neighbor coordinates, λk

i (x0) is only C0 continuous at the generators.
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Sibson proposed an involved construction of a polynomial in λ1
i (x0) to also in-

terpolate gradients at the generators, thus constructing a globally C1 continuous
interpolant in [7]. Later, Farin used multivariate Bézier simplexes over local co-
ordinates to interpolate arbitrary higher order derivatives at the generators, and
presented a C1 implementation with quadratic precision in [8]. This approach
can be generalized to arbitrary degrees of smoothness and applies to all regular,
convex barycentric coordinate functions. The C2 implementation of this idea
was used by Hiyoshi to construct a global C2 interpolant based on λ2

i (x0) in [9].
All these interpolants depend on derivative information being available, like

in the truncated Taylor expansion of f at xi,

Zi(x) = zi + gix +
1
2
xT Hix. (8)

In order to estimate first order derivatives, we adopt Sibson’s weighted least
squares (WLS) fit of gradients gi [7]:∑

j∈Ni

si,j |zi + gix− zj |2 → min . (9)

The weights for the neighbors are chosen to be si,j := λ1
j/d(xi, xj) and si,j :=

1/d(xi, xj) where λ1
j is not defined. Since the interpolation property fixes f(xi) =

zi, fitting gi has two degrees of freedom and |Ni| constraints. With an average of
six constraints, gi is overdetermined and the least squares solution well defined
in general.

To estimate derivative information up to order two in a first approach we fit
(8) to {zj}j∈Ni

, finding gi and Hi such that∑
j∈Ni

si,j |Zi(xj)− zj |2 → min . (10)

The five unknowns are only well-defined for |Ni| ≥ 5 and {xj}j∈Ni
in non-

degenerate positions. Even for |Ni| = 5, the averaging nature of the WLS method
is lost and the interpolant becomes very sensitive to the local data configuration,
as can be seen in Figure 3(e).

To stabilize the process a larger neighborhood could be used. As Sibson
pointed out, the choice of weights for the WLS method is important. But si,j

has no obvious extension for generators other than the natural neighbors.
In a second approach, we employed a different method that naturally incor-

porates a larger neighborhood and only depends on si,j . First, we determine g̃i

as in (10). Then, we find gi and Hi such that∑
j∈Ni

si,j(|Zi(xj)− zj |2 + ‖∇Zi(xj)− g̃i‖2) → min . (11)

6 Natural Neighbor Interpolation

The scattered data interpolation methods we are going to compare interpolate
given scalar values Z = {zi}i, gradients G = {gi}i, and Hessians H = {Hi}i at
the data sites:
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(a) (b)

Fig. 2. Input data sets. (a) The original crater lake data set is due to US
Geological Survey with 344 · 463 points. The input to the method is a reduced
version with 1493 scattered points. (b) cos ‖x‖ sampled at 31 positions.

Sibson’s C0 interpolant for Z: This interpolant is C0 at X and C1 in D \X
[7].

Sibson’s C1 interpolant for Z and G: This interpolant is C1 in D and re-
produces spherical quadratics [7].

Farin’s C1 interpolant for Z and G̃: This interpolant is C1 in D , and has
quadratic precision [8].

Hiyoshi’s C2 interpolant for Z, G, and H: This interpolant is C2 in D , and
has cubic precision [9].

We apply the interpolants and derivative estimation to two data sets. The
first is a reduced elevation map of the Crater Lake, see Figure 2(a). The second
data set is randomly sampled from the function cos ‖x‖ with 0 centered to the
shown domain, see Figure 2(b). For both data sets, G in Sibson’s and Farin’s
interpolants has been estimated using equation (9). G and H for Hiyoshi’s in-
terpolant have been estimated using both equation (10) and equation (11) to
illustrate stability issues. For the analytic data set we furthermore considered
the exact values for G and H.

Figure 3(a) shows the Crater Lake data set with piecewise linear interpo-
lation on a Delaunay triangulation for comparison to an established method.
Sibson’s C0 interpolant in Figure 3(b) is well suited to capture rough features
while Sibson’s and Farin’s C1 interpolants in Figure 3(c,d) better deal with
smooth regions, giving the best overall impression. There is no noticeable dif-
ference between these two methods. If the derivative information for Hiyoshi’s
C2 interpolant is aquired from equation (10), strong oscillations occur as in Fig-
ure 3(e). Using equation (11) to estimate G and H stabilizes the interpolant in
Figure 3(f) but still tends to produce more wriggles than necessary.

The computational complexity of the interpolants is directly related to the
order of smoothness they achieve. Sibson’s and Farin’s C1 interpolants perform
very similar both in quality of the interpolant and in running time, because both
interpolate the same gradients and differ only in the polynomial in λ1

i . Serious
performance issues in Hiyoshi’s method were observed for the construction of
the quintic Bézier control net for large neighborhoods, i.e. |Ni| > 20.
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piecewise linear (a) Sibson’s C0 (b)

Sibson’s C1 (c) Farin’s C1 (d)

Hiyoshi’s C2 (e) Hiyoshi’s C2 (f)

Fig. 3. The crater lake data set with 1493 points is approx. 1% of the original
data set. (a) Delaunay tessellation, (b) Sibson’s C0, (c) Sibson’s C1, (d) Farin’s
C1, (e),(f) Hiyoshi’s C2 with G,H estimated based on equation (10) and (11).

Since in our experiments, Sibson’s and Farin’s interpolants show no noticeable
difference, the results for the Cosine data set only show Farin’s interpolant.

The sample data distribution for the Cosine data set is shown in Figure 2(b).
The difference between Farin’s interpolant with exact derivatives and with G
estimated as in equation (9) is clearly visible in Figure 4(a,b). The sample den-
sity in the lower left corner is so low that the gradient could not be reliably
estimated, yielding a badly behaved interpolant. In Figure 4(c) derivatives from
equation (10) again appear very sensitive and result in Hiyoshi’s interpolant
being wriggly. Figure 4(d), in contrast, shows Hiyoshi’s interpolant with the sta-
bilized method from equation (11). Note how well Hiyoshi’s interpolant performs
on exact derivative information in Figure 4(e). Sibson’s C0 interpolant in Fig-
ure 4(f) is unable to reproduce the smooth underlying function, but it does not
oscillate at all.
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Farin (a) Farin (b)

Hiyoshi (c) Hiyoshi (d)

Hiyoshi (e) Sibson (f)

Fig. 4. (a), (b) Farin’s interpolant with exact and estimated derivatives. (c), (d)
Hiyoshi’s interpolant with G, H estimated using (10) resp. (11), (e) Hiyoshi’s
interpolant with exact derivatives, (f) Sibson’s C0 interpolant.

It must be stressed that although for Sibson’s, Farin’s and Hiyoshi’s inter-
polants, C1 and C2 continuity are guaranteed by construction, the quality of the
resulting elevation map very much depends on the given derivative information.
With exact derivative information as in the Cosine data set, all interpolants
produce results close to the input data, with Hiyoshi’s method performing best.
Without derivative information available, the outcome differs depending on the
nature of the represented data and the method used for derivative estimation.

Especially for data stemming from heterogeneous sources like terrains, there
seems to be no best approach, but rather the demand for interpolants with
adaptive smoothness. Furthermore, since most scattered data comes without
derivative information, more sophisticated estimation of the latter could improve
the applicability of the interpolants in practice.
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