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Abstract—In reverse engineering and computer-aided design
(CAD) applications point cloud data is usually manually
scanned, reconstructed, and post-processed in separated steps.
When point cloud data resulting from a scanning process do
not satisfy certain necessary reconstruction requirements, one
must perform scanning again to enable proper reconstruction.
On-line reconstruction of 3d geometry allows one to generate
and update a CAD reconstruction on-line during the scanning
process with an hand-held laser scanner. Thus, regions where
the scanned data is insufficient for the reconstruction are
detected on the fly to allow an immediate correction and
improvement of the scanned data. This enables the operator
to focus on critical regions in the scanned data to improve the
reconstruction quality.

We present an on-line segmentation and on-line reconstruc-
tion of basic geometric primitives. The presented methods allow
for a real-time processing of a point stream. They utilize data
structures that can be updated at any time when additional
data from the stream has to be processed. This data is used
to complete and improve the segmentation and reconstruction
during the scanning process.

Keywords-on-line reconstruction; hand-held laser scanner;
computer-aided design

I. INTRODUCTION

Hand-held laser scanners are used in reverse engineering
to sample the geometry of physical objects. Commercial
software in this area only allows a point based preview
of the scanned data. The geometry is reconstructed in a
separate, post-processing step. Parameters of the geometry
are manually extracted from the point or mesh data. If there
is data missing for a successful reconstruction, the whole
process will fail. The complete scanning and reconstruction
process has to be repeated.

With an on-line reconstruction algorithm, the reconstruc-
tion is computed concurrently with the acquisition of the
point data during the scanning process. Regions where data
is missing for the reconstruction can be detected on the fly.
The human operator of the laser scanner can immediately
re-scan this region to improve the reconstruction. Additional
data is added to all existing data structures to improve
reconstruction constantly.

In this paper the focus is on on-line segmentation and
on-line reconstruction of basic geometric primitives. The
current on-line reconstruction process is fully automated

without user interaction except for the handling of the hand-
held laser scanner. Specifically, the contribution is the de-
velopment and implementation of a geometry reconstruction
method that automatically generates a surface representation
in real time from a stream of scanned point data.

Figure 1 shows an overview of the different steps of
the reconstruction process: the ball tree in Section III,
the segmentation in Section IV, the boundary detection in
Section V, and the primitive reconstruction in Section VI.
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Figure 1: Overview of the on-line reconstruction process.

II. RELATED WORK

Geometric reconstruction from laser scan data is an active
field of research since the development of triangulation laser
scanners. One of the first approaches was developed in [1],
where generalized cylinders are fitted to a point cloud from
a laser scanner.

The reconstruction of the geometry of complex objects
requires a segmentation of the surface. In [2] range and
intensity images are segmented using a classification of
surface types. Polynomials of variable degree are fitted to
the segments and region growing is used to extend the
segments. An application of this method to photogrammetry
is presented in [3]. Here, 3d shapes of buildings are extracted
from multiple types of aerial images.

For segmenting surfaces a large variety of mesh segmenta-
tion algorithms is used. The survey [4] provides an extensive



overview. For CAD reconstruction a segmentation by surface
type is feasible. In [5] clustering based on the Gaussian
sphere is used to filter surfaces by dimensionality. Most
segmentation algorithms use meshes, because they allow a
fast local analysis of the surface. An approach for unmeshed
point sampled surfaces is presented in [6]. A weighted k-
nearest neighbor graph is used to connect and analyze the
point data.

An overview of early reconstruction methods for CAD
geometry is presented in [7]. The segmentation and fitting
of simple surfaces and free form geometry and the creation
of polygonal boundary models are discussed. The recon-
struction of rotational and translational surfaces and blends
is presented in [8]. Even more flexible variational surfaces
are used in [9] to segment a mesh. These segments are then
reconstructed with geometric primitives using an implicit
representation.

Fast stochastic methods like Random Sample Consensus
(RANSAC) fitting can be used for iterative reconstruction
and approximation with geometric primitives [10] or super-
quadrics [11].

Reconstruction of quadrics is often used, because they
allow the representation of most geometric primitives. A
detailed survey of quadric reconstruction methods from
triangle meshes is provided by [12]. In [13] an iterative
segmentation and quadric fitting on an unorganized point
cloud is presented. The fitted quadrics are used to iteratively
improve the segmentation.

Stream processing of large data sets of points is done
by [14], [15]. A set of geometric operators is processed
sequentially on a large point set using a sweep line approach.
Thus the points need to be sorted along one spacial axis.

Hand-held laser scanner devices produce unsorted streams
of point data. An on-line triangulation of such data streams
is done at [16]. After reducing the data to a set of equally
distributed vertices, a surface mesh is generated on-line. An
extension of this approach to a multi-level data structure is
provided by [17], [18]. This allows to adapt the local density
of the mesh to the density of the scanned points in the same
area.

III. BALL TREE DATA STRUCTURE

The basic data structure for the on-line reconstruction is
a ball tree as described in [18]. This data structure stores
and processes the data stream from the laser scanner and
prepares it for all subsequent reconstruction steps.

A. Ball tree generation

The data stream from the laser scanner consists of 3d raw
points and orientation data of the laser probe. The raw points
are assigned to so-called neighborhood balls or n-balls β
which are defined as

β(c, r) = {x ∈ R3 : ‖x− c‖ < r}

with center c and radius r. These n-balls might intersect.
As the raw points are streamed in, each raw point p is
associated to the n-ball β(c, r) that contains p with minimal
distance ‖p− c‖. If no such ball exists a new n-ball β(p, r)
is generated with center p and maximal radius r such that
β(p, r) does not contain any other n-ball center. For details
see [18].

N-balls are organized in an octree data structure, the so-
called ball tree. An n-ball is associated to the octree region
that contains its center. The edge length of this region equals
the radius of its associated n-balls. So, all n-ball radii are
dyadic fractions of the edge length eO of the initial scan
area, i.e., r = eO/2

n for n ∈ N.

B. Local geometry estimation

For each n-ball β estimates for the local normal and prin-
cipal curvatures are computed. The normal nβ is computed
by principal component analysis (PCA) of the raw points
of a neighborhood of n-balls in the ball tree. To compute
the principal curvatures κ1 and κ2 and principal curvature
directions u1 and u2 a cubic polynomial Pβ is fitted to these
raw points based on the local tangent plane defined by nβ .
The Weingarten map of Pβ yields κ1, κ2, u1, and u2. Note,
that these estimates are only used if the ratio of the smaller
eigenvalues of the PCA is less than 1/2.

In [18] every n-ball β corresponds to one vertex vβ of
a triangle mesh. Its position is computed as the arithmetic
mean of raw points of β projected to Pβ . However, for the
on-line reconstruction no triangle mesh is constructed. Still,
vβ is used to represent the geometry of β in subsequent
reconstruction steps. Similar to [6], each n-ball holds a list
of 20 nearest vertices in the ball tree.

IV. SEGMENTATION

For the segmentation of the scan data the n-balls are clas-
sified by their local geometry. Based on this classification,
an on-line region growing algorithm is applied to obtain
segments of the same surface type (Section IV-C). This
region growing is guided by segmentation criteria ensur-
ing geometric consistency within segments (Section IV-B).
Based on the information about global surface segments the
geometric classification is improved (Section IV-D).

A. N-ball classification

In [2] a classification of a surface based on the Gaussian
and mean curvature is introduced. The resulting eight surface
types are shown in Table I. This classification is applied to
each n-ball using the Gaussian K = κ1κ2 and the mean
curvature H = (κ1 + κ2)/2. For numerical reasons all
moduli of K and H below a threshold εK and εH are
considered to be zero.



K > εK |K| ≤ εK K < −εK

H < −εH peak ridge saddle ridge

|H| ≤ εH — plane minimal surface

H > εH pit valley saddle valley

Table I: Eight surface types determined by the Gaussian and
mean curvature [2].

B. Segmentation criteria

N-balls of the same surface type are clustered to surface
segments. Depending on the surface type, different segmen-
tation criteria are used in this clustering step. These different
criteria are explained in the sequel.

The ratio of the two smallest eigenvalues resulting from
PCA allows us to assess the quality of estimated normals
during the estimation process itself. Whenever a certain
quality threshold εq is not satisfied, we do not use the n-
ball for segmentation.

1) Criterion for a planar segment: To cluster n-balls to
a planar segment the n-ball normals nβ are used. Two n-
balls are clustered to the same planar segment, if the angle
between their normals is less than a threshold εn.

Two planar segments with the same normal do not neces-
sarily belong to the same plane. If such planar segments are
close to each other, the normal angle will not be sufficient
to discriminate these segments. If β1 and β2 are two n-balls
with parallel normals, the perpendicular distance

d⊥(β1, β2) = (nβ1
+ nβ2

) · (vβ1
− vβ2

)/‖nβ1
+ nβ2

‖

is used. Thus, β1 and β2 are clustered to the same segment,
if d⊥(β1, β2) is less than εd⊥ .

2) Principal curvature criterion: For spherical and cylin-
drical segments we use principal curvature.

Spheres: All points on a sphere have the same maxi-
mum and minimum curvatures. Due to measurement noise
of the laser scanner, a threshold εs for the curvature of n-
balls on spheres is used. To enhance the robustness of this
criterion, the average maximum κ̄1 and minimum curvature
κ̄2 of all n-balls belonging to one segment is compared to
the principal curvature κ1 and κ2 of a candidate n-ball

|κi − κ̄i| < εs for i = 1, 2.

Cylinders: All points on a cylinder have the same
maximum principal curvature κ1. Again, a candidate n-
ball’s maximum principal curvature κ1 is compared to the

segment’s average maximum curvature κ̄1

|κ1 − κ̄1| < εc.

3) On-line computation of average curvatures: N-balls
might be added and deleted from segments in an arbitrary
order. Simultaneously the average principal curvature of seg-
ments must be updated. If κ̄ni denotes the average principal
curvature of a segment s with n n-balls and a new n-ball
β with principal curvature κi is added, the new average
principal curvature κ̄n+1

i of s is computed as

κ̄n+1
i = (κi + nκ̄ni )/(n+ 1) for i = 1, 2.

If instead β is deleted, the new average principal curvature
κ̄n−1i of s is computed as

κ̄n−1i = (nκ̄ni − κi)/(n− 1) for i = 1, 2.

When the local geometry estimate of an n-ball is updated,
the average principal curvatures of the according segments
are updated by deleting the n-ball with the old geometry and
adding the n-ball with the new geometry.

4) Maximum curvature direction criterion: Two cylindri-
cal segments with the same average principal curvatures
do not necessarily belong to the same cylinder. If such
cylindrical segments are close to each other, the principal
curvature criterion is not sufficient to discriminate these
segments.

The principal curvature direction u1 of the maximum
principal curvature κ1 of a cylinder is perpendicular to the
axis of the cylinder. Thus, the angle between the maximum
principal curvature directions is used to discriminate close
cylindrical segments. Two n-balls β1 and β2 are clustered
to the same cylindrical segment, if the angle between the
projection of their maximum principal curvature directions
to the plane nβ1

+ nβ2
is less than a threshold εcd.

C. On-line region growing

N-balls are clustered into segments based on their surface
type and the segmentation criteria using region growing.
This region growing processes the data stream on-line. This
implies two requirements for region growing:

• The n-balls are received by the region growing in an
arbitrary order, because the raw points are streamed in
in an arbitrary order, the implementation is parallelized,
and the human operator might pause the scan process
and continue at an arbitrary new region of the object.

• The local geometry estimates of an n-ball can change,
because of multiple scans of the same object region.
Thus, segments can merge or split at any time and all
affected n-balls must be re-assigned.

When an n-ball is received by the region growing, it is either
added, deleted or updated.



Adding n-balls: Every new n-ball is initially assigned to
a new segment. Then, the region growing starts from this n-
ball analyzing its immediate neighbors. These are clustered
into a common segment depending on the surface type and
segmentation criteria as shown in Table II. N-balls with
surface types saddle ridge, saddle valley, or minimal surface
are clustered into free-form segments. The analysis of the

Surface type Threshold Minimized
quantity

flat εd⊥ , perpendicular normal angledistance

ridge, valley εcd, curvature principal curvature
direction angle difference

peak, pit mean curvature
difference

other normal angle

Table II: Segmentation according to segmentation criteria.

neighboring n-balls either yields a most similar n-ball or no
similar n-ball. In the latter case, the new n-ball keeps its new
segment. In the former case, the segments of the new and
its most similar n-ball are merged, where the n-balls of the
segment with less n-balls are assigned to the other segment
and the smaller segment is deleted.

Deleting n-balls: To delete an n-ball, it is deleted from
its segment. If it was the last n-ball of this segment, the
segment is also deleted.

Updating n-balls: To update the local geometry of an
n-ball, it is deleted from its actual segment and a new
temporary segment is generated. For this new temporary
segment the region growing is triggered. Thus, the changed
n-ball is assigned to the segment with the most similar
geometry.

D. Segment type detection
Initially, the surface type of a segment is determined by

the surface type of its first n-ball. When the segment contains
at least ten n-balls, the surface type is determined based on
the average principal curvature of all its n-balls. This yields
a more robust classification of the segment, especially for
spherical or cylindrical segments with large radii. Table III
shows the criteria for segment type classification based on
the average principal curvatures κ̄1 and κ̄2. The threshold
εPC is used for numerical reasons. Because the average
curvatures are more stable than n-ball curvatures, εPC is
smaller than εK and εH .

Average curvature criterion Segment type
|κ̄1|, |κ̄2| ≤ εPC planar
|κ̄1| ≤ εPC ⊕ |κ̄2| ≤ εPC cylindrical
|κ̄1|, |κ̄2| > εPC ∧ |κ̄1 − κ̄2| ≤ εPC spherical
|κ̄1|, |κ̄2| > εPC ∧ |κ̄1 − κ̄2| > εPC ellipsoidal
none of the above free-form

Table III: Segment types determined by average principal
curvature, using the exclusive or operator ⊕.

V. SEGMENT BOUNDARIES

Geometric primitives are reconstructed using quadrics.
This requires a definition of the boundary of the segments
to trim the resulting geometric primitives.

Alpha shapes provide a description of the shape of a set
of points. Originally developed for two dimensions [19],
alpha shapes can be extended to 3d point clouds [20]. For
the reconstruction, alpha shapes are used to determine n-
balls that lie on the boundary of a segment. However, for
the reconstruction of the geometric primitives with quadric
surfaces, a spacial boundary polygon for each segment is
required. Therefore, the alpha shapes are restricted to an
approximate tangent plane.

A. Planar alpha shapes

The alpha shapes algorithm is used to classify points of a
point cloud as boundary or inner points. The essential steps
of this algorithm are ([19]):

1) For each points p collect all neighboring points within
a radius 2α.

2) Search for an empty circle with radius α that touches
p and one of its neighbors q.

3) For each such pair p, q store the line segment between
them.

B. Alpha shape test for 3d surface boundaries

The 2d alpha shapes approach can be generalized to
boundaries of surfaces in R3. Instead of circles, spheres
with radius α are used whose center lies in the approximate
boundary tangent plane. The centers of the spheres touching
boundary points are obtained as follows, see Figure 2:

ci

vβ

vβ′

α

dm

Figure 2: Cross-section in the plane spanned by u, v of a
sphere with radius α for an n-ball pair β, β′.

1) For an n-ball β with 2α-neighbor β′ compute the
normal u of the plane spanned by nβ and v = vβ′−vβ
as u = n×v. Note, that an approximate tangent plane
along the edge u is spanned by u and v.

2) Compute midpoint m of vβ and vβ′ as m = vβ +v/2.
3) Compute distance d of m to the circle center as d =√

α2 − ‖v‖2/4.
4) Compute sphere centers ci = m± d · u/‖u‖, i = 1, 2.
5) If one of these spheres is empty, β is at the boundary

and v is a boundary edge.



Whenever an n-ball is added or updated, the alpha shape
test is applied to classify the n-ball as boundary or inner
ball. Note, that only neighboring n-balls belonging to the
n-ball’s segment are considered.

C. Boundary assembly

After the boundary n-balls are detected, a boundary poly-
gon is assembled for each segment. Thus, the boundary n-
balls and boundary edges need to be sorted.

For the construction of the boundary polygon a back-
tracking strategy is used. The algorithm starts at a boundary
n-ball and proceeds with one of its boundary neighbors.
Already visited edges are not visited again. When a dead end
is reached, a back-tracking step is done and the algorithm
proceeds with a different boundary neighbor.

To avoid the detection of small boundary loops that do not
enclose most of the segment, we accept a boundary polygon
only when it contains at least 70% of the boundary n-balls.
The algorithm terminates when it reaches the first n-ball
again and when the 70% condition is met.

VI. PRIMITIVE RECONSTRUCTION

After the n-balls are segmented and a boundary polygon
is extracted for each segment, geometric primitives are
reconstructed for each segment.

In order to reduce the memory consumption and the
complexity of the representation implicit quadrics are used,
similar to [13]. Using this representation the set of n-balls
for a segment can be reduced to a set of ten coefficients
defining a quadric

0 = q(x) = xTQx+ 2PTx+R for x ∈ R3

where

Q =

A D E
D B F
E F C

 and P =

GH
I

 .
After the fitting the quadric surface is trimmed at the
boundary polygon to yield a standard b-rep of the scanned
points.

A. Quadric fitting

In order to fit a quadric surface to a segment an algebraic
approach is used. Due to the classification of the segments
this algebraic fit converges robustly.

A segment consists of n-balls β1, . . . , βn. To fit a quadric
surface to this segment the least square solution of the over-
determined system of equations

q(vβi) = 0, for i = 1, . . . , n (1)

is computed. To improve the robustness of this fit the
additional conditions ∇nq = 1 and ∇2

nq = 0 are used,

where ∇n is the directional derivative with respect to the
normal direction n. This leads to the additional equations

∇nβi q(vβi) = 1, for i = 1, . . . , n and (2)

∇2
nβi

q(vβi) = 0, for i = 1, . . . , n. (3)

These two conditions control the size of the coefficients of
q and ensure that q is positive in direction of the normal.
For the fit a linear combination of (1), (2), and (3) is solved
using singular value decomposition (SVD).

Plane fitting: Using the above quadric fitting for planes
might result in a double plane due to noise in the data.
However, for a plane not the complete set of quadric
parameters is necessary. Using the segment type and setting
Q = 0 in (1) and (2) simplifies the fitting for planes.

B. Parameter estimation

Quadrics are usually represented in normal form. For
this the principal axes of the quadric and characteristic
parameters of the surface (e.g., radii, etc.) are computed.

The canonical system of a quadric is given by the eigen-
vectors e1, e2, e3 of Q. To get the correct translation of the
quadric surface, the equation Qx + P = 0 is solved. The
solution of this equation yields either a center point, a point
on a centerline, or a point on a center plane. This yields a
complete representation of the spatial position of the quadric
surface.

For some degenerated quadrics (e.g., planes) this approach
fails. Furthermore, to compute the characteristic parameters
of a quadric surface special rules apply. Which rules apply
is determined by the segment type. These rules are different
for planes, spheres, cylinders, and cones.

Plane: Since for a plane Q is singular the computation
of the spatial position is different. The translational compo-
nent is determined by the position of a center point, which is
the mean of all boundary points projected onto the surface.
A possible choice for the canonical system is the normal of
the segment and any suitable 2d system in the plane.

Sphere: Since the quadric representation of a sphere
has a single center the translation of the sphere can be
computed directly from its center point. The radius of the
sphere is computed by ray casting the axes of the canonical
system from the center point. To compute the intersections
the ray equation is substituted into q.

Cylinder and cone: The solution of Qx + P = 0 for
the cylinder yields an arbitrary point on the center line of
the cylinder. This center line has direction e3. Projecting
all vertices of boundary n-balls onto e3 yields two extremal
projected points. The planes through these points normal
to e3 are the upper and lower cap of the cylinder. For the
translational component, the intersection of the bottom cap
with the center line gives a center point c of the cylinder.
The distance of the caps is the height h of the cylinder.
To estimate the radius of the cylinder the distance of c +



Figure 3: Scan of a casket. This example shows results of our segmentation and reconstruction methods using high quality
scan data. Processing steps: raw points, n-balls with normals, segment boundaries, quadric surfaces, reconstructed primitives.

he3 to the cylinder surface is computed using ray casting in
direction e1 and e2.

For a cone the computations are the same except that the
radii are computed in the top and bottom cap.

VII. RESULTS AND DISCUSSION

We provide experimental results of the on-line segmen-
tation and reconstruction for different physical models. The
experimental results show the strengths and weaknesses of
the presented on-line approach.

For the experiments recorded scans from two different
hand-held laser scanners were used. The casket in Figure 3
was scanned with a measurement arm based scanner with
high precision and low noise. For all other models we used
a scanner with an optical tracking device, which causes
additional noise and reduces the repetition accuracy.

A. Thresholds

During the experiments different values for the thresh-
olds described in Section IV-B were tested. Because the
algorithms shall be used in automated reverse engineering
processes, an extensive calibration phase before each scan is
not desirable. Thus, for a comparison the thresholds in Table
IV were used for all experiments. The first three thresholds

Symbol Threshold Value
εK Gaussian curvature 0.03
εH Mean curvature 0.07
εPC Principal curvature 0.015
εn Plane normal angle 5◦

εq Plane normal quality 0.5
εd⊥ Perpendicular distance 0.5
εs Principal curvature of spheres 0.2
εc Principal curvature of cylinders 0.2
εcd Maximum curvature direction 8◦

Table IV: The thresholds used for the presented results.

in Table IV are most critical, because they directly influence
the surface type classification of the n-balls and the segment
type classification based on principal curvature.

B. N-ball classification

Different objects were scanned to test the on-line segmen-
tation and reconstruction. The following discussion and the
screen shots illustrate the performance of these algorithms
while focusing on critical aspects.

The surface types of the n-balls determined by the Gaus-
sian and mean curvature are shown in Figure 4. The raw
points are also shown, colored according to their n-ball’s
type. In order to cope with the scan noise, relatively large
values are chosen for εK and εH . This is observable at
places with high noise. This leads to a false classification in
Figure 4 of the cylinders as planes.

(a) (b)

Figure 4: Surface types of the n-balls according to Section
IV-A. Raw points are displayed and colored according to
parent n-ball. Colors: plane, ridge, valley, peak, pit, saddle
ridge, saddle valley, minimal surface.

C. Segment type detection

Figure 5 shows the surface type classification of the
segments. All cylinders are correctly classified.

Figure 5b shows that the classification of elliptical parts
might be unstable. The left part of the cylinder’s top blend is
classified as cylindrical (blue) and not as ellipsoidal (pink)
as on the front part of the cylinder.

The individual segments are shown in Figure 6. Narrow
areas, i.e., the cylindrical blends in Figure 6a, are subdivided



(a) (b)

Figure 5: Segment type according to Section IV-D. Colors:
planar, cylindrical, spherical, ellipsoidal, free-form.

(a) (b)

Figure 6: Resulting segments colored individually.

into multiple segments. They are so narrow, that misclassifi-
cation of single n-balls can disconnect the segments. On the
other hand, the two cylinders in Figure 6b are represented
by a single segment. N-balls of both object regions are
connected by neighborhood links. This is a typical example
where the operator sees that the reconstruction is unsatisfac-
tory and additional scan passes are required.

D. Boundary

Figure 7 shows the boundary polygons of the segments.
It can be observed that narrow segments are problematic
for the boundary detection and assembly. Because many
possible routes through the boundary edges exist, it is not
guaranteed that a surrounding boundary is found.

E. Primitive reconstruction

The plane fitting yields the optimal plane representation,
due to its simplified fitting method. The quadric fitting is not

(a) (b)

Figure 7: Boundaries of the segments.

limited to a single geometric primitive. Thus, for a segment
with noise the quadric surface with the smallest error is
computed. This can have the effect that for segments with
little noise the fitted quadric surface has a smaller error than
the perfect quadratic surface. This is demonstrated in Table
V where the fit of a synthetic cylinder with and without
noise is compared with the theoretical optimal cylinder fit.

with noise without noise
error of optimal cylinder 2.959 0.322

standard deviation 0.072 0.124
error of fitted cylinder 2.664 0.348

standard deviation 0.193 0.223
difference 0.295 0.026

Table V: Mean error and deviation of n-balls to a fitted
surface and an optimal surface in millimeters. A synthetic
cylinder with and without uniformly distributed noise of ten
percent of the radius of the cylinder are used. The values are
the averages for ten runs of the reconstruction algorithm.

The methods proposed for the primitive reconstruction
are able to reconstruct all described geometric primitives
as shown in Figures 3 and 8. The accuracy of the geometric
model depends on the accuracy of the implicit quadric
surface and on the boundary description.

Figure 8: Geometric primitives reconstructed from a scan of
a wooden cylinder with noise and low repetition accuracy.

VIII. CONCLUSION AND POSSIBLE FUTURE WORK

In this paper an on-line segmentation and reconstruction
method is proposed. This method effectively handles points
streams and processes this point data on-line on all levels
of the reconstruction process. This on-line approach has
the significant advantage that the reconstruction process and
quality can be evaluated immediately by the human operator.
To this end, the presented method handles the points stream
efficiently for a real time on-line reconstruction.

For the future there are some aspects to improve, that
do not affect essentially the effectiveness or efficiency of
the presented method. Some minor aspects for improve-
ment of the on-line reconstruction process concern multiple
boundaries, trimming, and SVD computation. Firstly, the
segmentation in Section IV so far supports single segment



boundaries. A typical example of a geometric primitive
with two boundaries is the lateral surface of a cylinder or
cone. The back-tracking algorithms needs to be extended to
support this. Secondly, primitives are currently not trimmed.
The boundary polygons of the segments will be projected to
the geometric primitives and used as trim curves. Thirdly, for
the quadric fitting in Section VI-A a SVD is used, where an
on-line SVD method as [21] could improve the performance.

Furthermore, the presented method is limited to surfaces
that can be reconstructed by quadrics. Blends in CAD mod-
els may contain surface types that can not be reconstructed
by quadrics, e.g., a monkey saddle. For these surfaces
a more general surface representation is required. Instead
of reconstructing geometric primitives, a reconstruction of
rolling ball blends would be useful for many CAD objects.
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