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Abstract—Creating cages that enclose a 3D-model of some
sort is part of many preprocessing pipelines in computational
geometry. Creating a cage of preferably lower resolution than
the original model is of special interest when performing an
operation on the original model might be to costly. The desired
operation can be applied to the cage first and then transferred to
the enclosed model. With this paper the authors present a short
survey of recent and well known methods for cage computation.
The authors would like to give the reader an insight in common
methods and their differences.

I. INTRODUCTION

Due to the ever increasing amount of highly detailed 3D
models algorithms that can handle large scale models and
perform operations in acceptable time are a necessity. Since
these models often consist of meshes with many thousand
vertices, algorithms need to be highly optimized. Aside the
possibility of optimizing each algorithm for speed it is also
possible to simplify the problem itself. Many applications
today use lower resolution versions of the respective models
for evaluation and then apply the result to the high resolution
model. These low resolution approximations that enclose the
original model are called cages or envelopes. Fig. 1 shows an
example model of an elephant and its cage.

Fig. 1: Model of an elephant on the left and the model enclosed
in a cage on the right [1].

There exist many different applications for cages and en-
velopes. The most prominent application is model deforma-
tion. When deforming a model, the deformation functional
has to be applied to the whole model domain. In this case

computational complexity depends on surface complexity as
e.g. number of vertices or faces in a mesh. Applying the defor-
mation to a simpler cage that encloses the original model and
projecting the deformation onto the fine mesh, after applied
to the cage, reduces the computational cost significantly. In
[2] Lipman et al. propose the usage of Green Coordinates for
cage-based space deformation. Debunne et al. [3] use multires-
olution tetrahedral meshes to guarantee a certain framerate for
the deformation of visco-elastic deformable objects. A fine
mesh with physical properties is embedded in a tetrahedral
grid to simplify deformation computation by the finite element
method in [4].

Another important application that is directly related to
deformation is contact and collision detection. A very com-
mon bounding structure for collision detection are spheres.
James and Pai [5] use a Bounded Deformation Tree to per-
form collision detection on large amounts of objects using
spheres. Dingliana and O’Sullivan [6] propose a multiresolu-
tion scheme detecting collisions based on level of detail when
using spherical cages.

Other applications of cages and envelopes include e.g.
projections of complex functions onto bounded models [7]
or fast realistic rendering of objects based on high resolution
texture but low resolution meshes [8].

In each area where cages are applied there exist task-specific
requirements. Aside these task-specific properties there exist
properties that are generally beneficial when applying cages.
Cages should
• not self-intersect,
• not intersect the original model,
• be homeomorphic to the model enclosed,
• follow the model as close as possible while being a

simplified version of the model.
This survey paper of methods for caging and enveloping

will give the reader a quick overview of the topic and recent
methods. The structure of this paper is as follows. In section
two, short summaries of related methods are presented. Section
three will compare the different methods while we conclude
in section four.

II. RELATED METHODS

This section will give short summaries of caging methods
from the areas of ”Simplification and Flow”, ”Voxelization and
Multigrid-Methods” and ”Offset Surfaces”.
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A. Simplification and Flow

An approach for nesting multiresolution meshes is proposed
by Sacht et al. [9]. The proposed algorithm does not present
new results on surface simplification since the approach is
independent of the used simplification. As input a number
of polyhedra with varying resolution and a fitness function
are needed. The polyhedra can be overlapping but need to
be watertight. Taking a mesh of high resolution M̂0 and k
decimated meshes M̂1, . . . , M̂k the method will output a se-
quence M1, . . . ,Mk of nested meshes, where Mi−1 is strictly
contained in Mi. M1, . . . ,Mk will be created minimizing a
user-defined energy function E. Nesting is ensured by only
operating on two meshes at a time starting with the finest and
second finest mesh. In each step a finer mesh F is embedded
inside a mesh C that was derived from an input mesh Ĉ.
The method consists of two main steps: In the first step the
vertices of the finer mesh F are moved along a flow inwards
to minimize the total signed distance to Ĉ and in a second
step this mesh F̄ will then be re-inflated back to F pushing Ĉ
out of the way to become C. See Fig. 2 for a 2D example of
the process. Flowing F̄ inside Ĉ is done by minimization of

Fig. 2: Main steps of the algorithm by Sacht et al. [9]

the unsigned distance function d(p) integrated over all points
p of the deforming surface

Φ(F ) =

∫
F

s(p)d(p) dA (1)

where s(p) is the sign modulation. Minimization is performed
by gradient descent with fictitious time t:

∂ f̄

∂t
= −∇fΦ(F̄ ).

Vertex positions f̄ in F̄ (t) will flow inside the coarse mesh
by taking small steps in the opposite gradient direction. Since
it is not always guaranteed that there will be no intersections,
the possibility of first expanding the coarse mesh is proposed.
The coarse mesh will then flow outwards creating some
distance between the finer mesh and itself. Contact forces are
introduced to prevent self-intersections. The problem of self-
intersection is a common problem in mesh expansion. This is
why inward flow or shrinkage of the fine mesh is preferred.

In a next step F̄ needs to be re-inflated to recover the
original position F . While re-inflating, Ĉ needs to be pushed
outwards so that there are no collisions of F̄ and Ĉ. The

previous steps of flowing F inwards can now be reversed to
gradually inflate back to F . Since each step back to F is a
positional change in some time step ∆t this can be expressed
in terms of velocity. Defining the re-inflation in terms of
velocity makes the use of physical simulations for contact
detection possible. The method [10] can be used out of the
box since it takes mesh vertices as well as desired velocities
and outputs adjusted velocities. By assigning infinite mass to
F̄ one can make sure that the fine mesh will return to its
original position F . If [10] fails the slower but more robust
method [11] can be used.

Much like Sacht et al. [9], Sander et al. [8] use the concept
of simplifying the original model and flowing this simplifica-
tion away from the original to compute cages. Sander et al.
render models as coarse cages to reduce rendering complexity.
Their approach is based on the concept of progressive nested
hulls. They start by first defining the interior volume of the
model. The decision if a point p lies inside the volume V(M)
of some model M is based on the winding number. If one
takes a ray from p to infinity and tracks its intersections with
M one can decide if p lies inside M . For an intersection of
the ray with an inner side of a face the winding number is
increased by one while for intersections with an outer side it
is decreased by one. Points with positive winding number will
lie inside the model.

The progressive hull algorithm is strongly based on the
original progressive mesh by Hoppe [12]. In the context of
simplifying a model to create a cage the original mesh Mi+1

has to be fully enclosed by Mi so that Mi ⊆ Mi+1. This
relation can be ensured by introducing inequality constraints
for the position of the unified vertex in an edge collapse.
This unified vertex V is constrained to lie outside the model
volume V(Mi+1) after an edge collapse (refer to Fig. 3 for
the setup). The position of V after the collapse can be found

Fig. 3: Edge collapse [8].

by using linear programming to solve the resulting inequality
constraints and minimizing the resulting volume enclosed by
Mi+1 and Mi. This ensures that the cage will enclose the
model tightly. Additionally cost metrics can be applied when
collapsing edges to ensure mesh quality.

B. Voxelization and Multigrid-Methods

Xian et al. [13] use an improved Oriented Bounding Box
(OBB) tree [14] to create coarse cages. OBB structures are
often applied to the problem of collision detection. Xian et
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al. start by computing an initial OBB O for the model at
hand. O is then subdivided by voxelization. In a classification
step the voxels are classified as inner voxels, outer voxels and
feature voxels. Voxels that contain part of the model mesh
are feature voxels while inner voxels lie within the model and
outer voxels lie outside of the model. A point set P is created
that contains the mesh vertices as well as the barycenters of
inner voxels. Based on P the initial OBB can be recomputed
by Principal Component Analysis to get a tighter fit on the
model. To further divide the OBB information about the object
shape is considered. The division takes place in regions of
largest change in shape (see figure 4). Xian et al. define the

Fig. 4: Initial OBB on the right, OBB simply split in half in
the middle and OBB split at locations of largest shape change
on the right [13].

change in shape as cross section area function differences.
The cross section area is defined as the area enclosed by the
intersection of the model and a splitting plane parallel to the
OBB faces composed of the smaller two OBB dimensions.
The function of cross section area change is built by moving
the splitting plane through the model. The location of largest
change in shape is then defined as the biggest jump in the
cross section area change function. A split of the initial
OBB at this location results in further sub-OBBs for which
the procedure is repeated until certain termination conditions
are satisfied. The so created OBBs represent a first coarse
cage of the model. This cage is refined by registration and
merging of adjacent OBBs. Two adjacent OBBs are registered
by first projecting the corner points A and B of the two
adjacent faces onto an intermediate plane between them. A
2D-OBB is computed that encloses the resulting projection
points A′ and B′ on the intermediate plane. Projection points
A′ and B′ are then registered onto the corner points of the
2D-OBB. As a final step the two adjacent OBB are linked
considering the registration of A′ and B′ in the intermediate
plane. A triangulation can be created by simply splitting quads
at diagonals. The resulting triangular mesh is then re-meshed
testing for intersections of the coarse cage and the model in
every step.

In [1] Xian et al. propose cage computation by first voxeliz-
ing the model to enclose. Like in [13] voxels are categorized
as outer, inner and feature voxels. The resolution of the voxel
grid will later on define the number of vertices of the coarse
cage. The faces of the feature voxels that coincide with faces of
outer voxels build a first rough approximate coarse cage. This
initial cage might not be 2-manifold. At non-2-manifold edges

voxels are attached while at non-2-manifold vertices a vertex-
split operation is employed. For triangulation the surface quads
are split at their diagonal. For further smoothing of the cage
Xian et al. use an adapted mean curvature flow method [15].
Movement of vertices in the smoothing process is based on
the curvature vector Hn where H is the curvature and n the
normal at a vertex. This vector points outwards on convex
vertices while pointing inwards on concave vertices. Based on
the information of outer and inner voxels Xian et al. computer
an additional vector ∇d that always points away from the
mesh. If the angle θ between −Hn and ∇d lies between 0
and π

2 the vertex is moved along ∇d. If θ lies between π
2 and

π it is moved along the normal n. Additionally, the distance
of each moved vertex to the model is tested at each step. If the
vertex falls inside the model it is moved in the direction of∇d.
To create homeomorphic cages, the resolutions of the initial
voxelization is iteratively increased until homeomorphism is
given.

In [4] a very simple grid based approach is used for de-
formation simulation. The mesh is embedded in a hexahedral
grid. A first, very coarse grid is further decomposed by an
octree structure. The octree depth is defined by the user. Each
of the so created voxels will inherit the mechanical proper-
ties of the enclosed polygons. This fine voxelization is then
transformed back to a coarse approximation. By connecting
eight voxels on each level one receives the next lager voxel of
the octree. Deformation properties of the fine voxelization can
be applied to each coarser level by recursive calculation. By
using this approach deformation properties like e.g. stiffness
of different materials can be merged on a coarser level.

C. Offset Surfaces

Ben-Chen et al. [7] create a bounding cages for the purpose
of deformation transfer. In a first step they create a set of
points along the surface. This can be any kind of surface as
long as it is possible to assign normals to the created surface
points. Next the points will be enveloped by using the Poisson
reconstruction algorithm of Kazhdan et al. [16]. The resulting
mesh or envelope E is simplified. This is done by using
progressive mesh [12]. The surface is simplified until a user
defined threshold is reached. Then for each remaining vertex
a new offset position is computed by flowing each vertex of E
along its normal direction outwards with predefined step size
s. Ben-Chen et al. compute the vertex normal as the area-
weighted average of normals of the vertices adjacent faces.
This process is then repeated until the desired number of faces
is reached. Ben-Chen et al. also state that the same step size
s at all points can lead to self-intersections in regions that are
close to each other like legs of a human model. For this case
multiple user defined step sizes at different locations should
be applied.

In [17] Shen et al. present an algorithm to create envelopes
of polygonal soups based on approximation by moving least-
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squares. For a normal least squares fit one would havebT (p1)
...

bT (pN )

 c =

φ1...
φN

 ,
with points pi, i ∈ [1, . . . , N ], basis functions b(x), the values
φi at points pi and the unknown coefficients c. The authors
introduce a weight function w(x) into the normal equation
of the standard least-squares formulation. w(x) is a distance
function by which one can regulate approximation behavior
up to interpolation. The least-square fit then becomesw(x,p1)

. . .
w(x,pN )


bT (p1)

...
bT (pN )

 c =

w(x,p1)
. . .

w(x,pN )


φ1...
φN

 ,
with w(x, pi) = w(||x− pi||). Since the moving-least squares
method is a point based method one needs to adapt the
concept for polygons. Taking points along the polygons and
performing a point-based approximation (especially very tight
approximations) leads to bumps and dimples along the surface.
This even is the case when using quadrature points. To handle
these problems Shen et al. propose using the least-squares
method not to blend points of each polygon but to blend
functions associated to the polygons. The standard normal
equation can be built based on these functions and becomesw(x,p1)

. . .
w(x,pN )

 c =

w(x,p1)
. . .

w(x,pN )


S1(x)

...
SN (x)

 ,
where Si(x) is the polygonal function. Figure 5 shows some
point-based and function-based approximations. For a more
detailed explanation please consider reading [17].

Fig. 5: The left column shows an exemplar approximation with
polygonal constraints while the examples in the middle and
on the right show results of point constraint examples with
different densities of scattered points [17].

III. METHOD COMPARISON

This section compares the different methods explained in
the previous chapter. The methods will be evaluated based on
the properties influencing quality defined in section one.

A problem of high priority when computing cages is the
prevention of intersections between the model and the cage.
While all caging methods aim to prevent these model-cage-
intersections, ensuring absence of intersections (AOI) results
in significant increases of computational costs. For Sacht et al.
[9] AOI comes built in by the methods for physical simulation
[10] and [11]. For these methods to work Sacht et al. need to
ensure that the finer mesh does not intersect the coarser mesh
after the inward flowing process. The methods [1] and [13]
need to make sure that the cage does not intersect the model at
different steps in the caging process. In [13] AOI is obtained
by accepting a smaller cage resolution while in [1] vertices
are pulled out of the model in the smoothing process which
leads to other problems like larger cage-model-distance and
possible self-intersection. For grid-based methods it is very
easy to ensure AOI since they are based on the bounding box
containing the model. Using the outer surface of a bounding
grid or voxelization makes getting AOI simple but lacks a
close resemblance of the model. The methods of [7] and [17]
for offset surfaces do not include proper handling of model-
cage-intersections. Deciding on intersections of the model and
the cage is left to the user. For [17] it is clear that the focus of
the presented work did not lie on creating cages that strictly
enclose a model which is not the case in [7] where the cage
generation method simply seems sufficient for the task at hand.
In [8] ensuring AOI is a vital part of the method since it is
introduced as a constraint into linear programming.

There exists a multitude of problems arising from cage self-
intersections (SI) like unintended deformations in applications
of contact detection and deformation. Preventing SI in the
process of cage computations is very difficult. Since Sacht
et al. [9] use a collision detection methods from physical
simulation the re-inflation of the fine mesh leads to SI-free
meshes. For the case where they first inflate the coarse mesh
they include contact forces to prevent SI. In [1] the first
approximate coarse cage (the triangulated voxelization) leads
to a SI-free bounding cage. In the smoothing step the cage
is forced to reside strictly outside of the enclosed model.
Since in this step the cage is not checked for SIs this might
lead to non-SI-free bounding cages. In [13] as well as in [1]
there is no explicit SI-test or condition included in the cage
computation process. Since both methods depend on user-
defined thresholds for the resolution of the cages SIs might be
resolved by larger resolution. This of course leads to higher
cage resolution which might not be desired. When using a grid
or voxelization SIs are excluded by the grid-structure itself.
For methods like [4] or [1] (without the smoothing step) the
problem would not be SI but merging of the bounding cage
in regions where the finer model is separated like between the
legs of a humanoid model. This merging can lead to problems
in deformation or collision detection. The same is true for
methods computing offset surfaces like [17] or [7]. Here the
cage merges in areas that are very close rather than creating
self-intersections. Every method that is able to create non-SI-
cages like [9] and [8] needs to introduce a specific step in the
computation process to handle SIs. To the authors knowledge
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there currently exists no method that implicitly creates non-
SI-cages.

Creating cages that are homeomorphic to the enclosed
model is an important feature in cage computation. Nearly all
of the mentioned methods are able to keep homeomorphism.
Since none of the presented methods explicitly ensure home-
omorphism it is intrinsic to the methods themselves. The only
presented method that is unable to create homeomorphic cages
is [4] since it keeps empty voxels in the grid-structure and han-
dles them later in the propagation of deformation information
through the grid. For all other methods homeomorphism is a
question of cage resolution. With smaller cage resolution holes
may be filled and by that topological information about the
enclosed model will be lost. Figure 6 shows an example from
[7] where the homeomorphism is lost. Homeomorphism can

Fig. 6: Top: Initial triangular mesh; middle: Offset surface;
bottom: Simplified offset surface. [8].

only be guaranteed by iteratively decreasing cage resolution
toward the desired threshold and checking for homeomorphism
at each step of the iteration.

Staying as close as possible to the original model while
resembling the models shape is important to many applications
like projection of functionals from cage to model. Sacht et
al. [9] propose using an energy term that penalizes total
volume between cage and model. This way a very tightly
fitting cage can be computed. For methods that depend on
voxelization or a grid the tightness of the fit can be controlled
by selecting a proper resolution. In contrast to [9] the tightness
of the fit and the resolution of the bounding cage are directly

correlated which is an undesirable property. A comparable
method would be [8] where the tightness of the fit and cage
resolution are coupled in terms of that the tightness will vary
between different levels of resolution. In [17] the tightness of
the resulting offset surface can be controlled by a user defined
parameter. In case that the offset surface is then triangulated
like in [7] this control is lost.

IV. CONCLUSION

Which method to use strongly depends on the task at hand.
While voxel- and grid-based methods produce bounding cages
that more loosely enclose a model they may be sufficient
for some collision detection or deformation tasks. The main
advantage of these methods is their small computational com-
plexity. Methods to create offset surfaces like [7] and [17]
are able to produce very tight cages but to the cost of higher
computational complexity resulting from the surface approx-
imation itself. Using them as a preliminary stage to receive
a triangulated cage only seems feasible if the computational
cost is of no concern. Methods that use mesh simplification
and flow like [9] and [8] are able to produce tight cages but
also at the price of high computational cost. For [9] costly step
in the process is the collision detection while for [8] linear
programming seems to be the bottleneck.

Since for many cases cage computation is part of the pre-
processing pipeline the impact of computational cost might be
neglected.
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[15] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr, “Implicit fairing
of irregular meshes using diffusion and curvature flow,” in Proceedings
of the 26th annual conference on Computer graphics and interactive
techniques. ACM Press/Addison-Wesley Publishing Co., 1999, pp.
317–324.

[16] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface recon-
struction,” in Proceedings of the fourth Eurographics symposium on
Geometry processing, vol. 7, 2006.

[17] C. Shen, J. F. O’Brien, and J. R. Shewchuk, “Interpolating and approx-
imating implicit surfaces from polygon soup,” in ACM Siggraph 2005
Courses. ACM, 2005, p. 204.

BW-CAR Symposium on Information and Communication Systems (SInCom) 2016

42

View publication statsView publication stats

https://www.researchgate.net/publication/221316529_Screened_Poisson_Surface_Reconstruction?el=1_x_8&enrichId=rgreq-63b35587d1e58a6f17cbdf108b6fc20f-XXX&enrichSource=Y292ZXJQYWdlOzMxMTQ1MTYyMjtBUzo0NDEyOTc3Nzg1NDg3MzZAMTQ4MjIyNDk5NzYxNg==
https://www.researchgate.net/publication/221316529_Screened_Poisson_Surface_Reconstruction?el=1_x_8&enrichId=rgreq-63b35587d1e58a6f17cbdf108b6fc20f-XXX&enrichSource=Y292ZXJQYWdlOzMxMTQ1MTYyMjtBUzo0NDEyOTc3Nzg1NDg3MzZAMTQ4MjIyNDk5NzYxNg==
https://www.researchgate.net/publication/221316529_Screened_Poisson_Surface_Reconstruction?el=1_x_8&enrichId=rgreq-63b35587d1e58a6f17cbdf108b6fc20f-XXX&enrichSource=Y292ZXJQYWdlOzMxMTQ1MTYyMjtBUzo0NDEyOTc3Nzg1NDg3MzZAMTQ4MjIyNDk5NzYxNg==
https://www.researchgate.net/publication/2640836_OBBTree_A_Hierarchical_Structure_for_Rapid_Interference_Detection?el=1_x_8&enrichId=rgreq-63b35587d1e58a6f17cbdf108b6fc20f-XXX&enrichSource=Y292ZXJQYWdlOzMxMTQ1MTYyMjtBUzo0NDEyOTc3Nzg1NDg3MzZAMTQ4MjIyNDk5NzYxNg==
https://www.researchgate.net/publication/2640836_OBBTree_A_Hierarchical_Structure_for_Rapid_Interference_Detection?el=1_x_8&enrichId=rgreq-63b35587d1e58a6f17cbdf108b6fc20f-XXX&enrichSource=Y292ZXJQYWdlOzMxMTQ1MTYyMjtBUzo0NDEyOTc3Nzg1NDg3MzZAMTQ4MjIyNDk5NzYxNg==
https://www.researchgate.net/publication/2640836_OBBTree_A_Hierarchical_Structure_for_Rapid_Interference_Detection?el=1_x_8&enrichId=rgreq-63b35587d1e58a6f17cbdf108b6fc20f-XXX&enrichSource=Y292ZXJQYWdlOzMxMTQ1MTYyMjtBUzo0NDEyOTc3Nzg1NDg3MzZAMTQ4MjIyNDk5NzYxNg==
https://www.researchgate.net/publication/2640836_OBBTree_A_Hierarchical_Structure_for_Rapid_Interference_Detection?el=1_x_8&enrichId=rgreq-63b35587d1e58a6f17cbdf108b6fc20f-XXX&enrichSource=Y292ZXJQYWdlOzMxMTQ1MTYyMjtBUzo0NDEyOTc3Nzg1NDg3MzZAMTQ4MjIyNDk5NzYxNg==
https://www.researchgate.net/publication/220067720_Automatic_cage_generation_by_improved_OBBS_for_mesh_deformation?el=1_x_8&enrichId=rgreq-63b35587d1e58a6f17cbdf108b6fc20f-XXX&enrichSource=Y292ZXJQYWdlOzMxMTQ1MTYyMjtBUzo0NDEyOTc3Nzg1NDg3MzZAMTQ4MjIyNDk5NzYxNg==
https://www.researchgate.net/publication/220067720_Automatic_cage_generation_by_improved_OBBS_for_mesh_deformation?el=1_x_8&enrichId=rgreq-63b35587d1e58a6f17cbdf108b6fc20f-XXX&enrichSource=Y292ZXJQYWdlOzMxMTQ1MTYyMjtBUzo0NDEyOTc3Nzg1NDg3MzZAMTQ4MjIyNDk5NzYxNg==
https://www.researchgate.net/publication/220067720_Automatic_cage_generation_by_improved_OBBS_for_mesh_deformation?el=1_x_8&enrichId=rgreq-63b35587d1e58a6f17cbdf108b6fc20f-XXX&enrichSource=Y292ZXJQYWdlOzMxMTQ1MTYyMjtBUzo0NDEyOTc3Nzg1NDg3MzZAMTQ4MjIyNDk5NzYxNg==
https://www.researchgate.net/publication/220184216_Interpolating_and_Approximating_Implicit_Surfaces_from_Polygon_Soup?el=1_x_8&enrichId=rgreq-63b35587d1e58a6f17cbdf108b6fc20f-XXX&enrichSource=Y292ZXJQYWdlOzMxMTQ1MTYyMjtBUzo0NDEyOTc3Nzg1NDg3MzZAMTQ4MjIyNDk5NzYxNg==
https://www.researchgate.net/publication/220184216_Interpolating_and_Approximating_Implicit_Surfaces_from_Polygon_Soup?el=1_x_8&enrichId=rgreq-63b35587d1e58a6f17cbdf108b6fc20f-XXX&enrichSource=Y292ZXJQYWdlOzMxMTQ1MTYyMjtBUzo0NDEyOTc3Nzg1NDg3MzZAMTQ4MjIyNDk5NzYxNg==
https://www.researchgate.net/publication/220184216_Interpolating_and_Approximating_Implicit_Surfaces_from_Polygon_Soup?el=1_x_8&enrichId=rgreq-63b35587d1e58a6f17cbdf108b6fc20f-XXX&enrichSource=Y292ZXJQYWdlOzMxMTQ1MTYyMjtBUzo0NDEyOTc3Nzg1NDg3MzZAMTQ4MjIyNDk5NzYxNg==
https://www.researchgate.net/publication/309574404_Implicit_Fairing_of_Irregular_Meshes_using_Diffusion_and_Curvature_Flow?el=1_x_8&enrichId=rgreq-63b35587d1e58a6f17cbdf108b6fc20f-XXX&enrichSource=Y292ZXJQYWdlOzMxMTQ1MTYyMjtBUzo0NDEyOTc3Nzg1NDg3MzZAMTQ4MjIyNDk5NzYxNg==
https://www.researchgate.net/publication/309574404_Implicit_Fairing_of_Irregular_Meshes_using_Diffusion_and_Curvature_Flow?el=1_x_8&enrichId=rgreq-63b35587d1e58a6f17cbdf108b6fc20f-XXX&enrichSource=Y292ZXJQYWdlOzMxMTQ1MTYyMjtBUzo0NDEyOTc3Nzg1NDg3MzZAMTQ4MjIyNDk5NzYxNg==
https://www.researchgate.net/publication/309574404_Implicit_Fairing_of_Irregular_Meshes_using_Diffusion_and_Curvature_Flow?el=1_x_8&enrichId=rgreq-63b35587d1e58a6f17cbdf108b6fc20f-XXX&enrichSource=Y292ZXJQYWdlOzMxMTQ1MTYyMjtBUzo0NDEyOTc3Nzg1NDg3MzZAMTQ4MjIyNDk5NzYxNg==
https://www.researchgate.net/publication/309574404_Implicit_Fairing_of_Irregular_Meshes_using_Diffusion_and_Curvature_Flow?el=1_x_8&enrichId=rgreq-63b35587d1e58a6f17cbdf108b6fc20f-XXX&enrichSource=Y292ZXJQYWdlOzMxMTQ1MTYyMjtBUzo0NDEyOTc3Nzg1NDg3MzZAMTQ4MjIyNDk5NzYxNg==
https://www.researchgate.net/publication/309574404_Implicit_Fairing_of_Irregular_Meshes_using_Diffusion_and_Curvature_Flow?el=1_x_8&enrichId=rgreq-63b35587d1e58a6f17cbdf108b6fc20f-XXX&enrichSource=Y292ZXJQYWdlOzMxMTQ1MTYyMjtBUzo0NDEyOTc3Nzg1NDg3MzZAMTQ4MjIyNDk5NzYxNg==
https://www.researchgate.net/publication/311451622

