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Abstract In this paper we propose an unstructured hybrid
tessellation of a scattered point set that minimally covers the
proximal space around each point. The mesh is automati-
cally obtained in a bounded period of time by transforming
an initial Delaunay tessellation. Novel types of polygonal
interpolants are used for interpolation applications and the
geometric qualities of the elements make them also useful
for discretization schemes. The approach proves to be super-
ior to classical Delaunay one in a finite element context.

Keywords Adaptive Delaunay Tessellation - Polygonal
interpolation - Generalized barycentric coordinates -
Scattered data interpolation - Polygonal finite elements

1 Introduction

Finite elements simulations of static or transient large defor-
mation processes involve remeshing as a necessary step for
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obtaining efficient solutions. Despite several mesh-free alter-
natives developed in the last decade, the issue remains an
open one. Ideally, the period of time needed to generate
an acceptable mesh or to evaluate the nodal connectivities
should be bounded and linear with the number of nodes.
Several mesh-free or mesh-dependent schemes, including the
classical FEM do not satisfy this criterion.

Yet, proximal space partitioning concepts like Voronoi
diagrams allow us to quickly tessellate domains using clouds
of points with no given connectivities between them. Further-
more, due to the advancements in the construction of polygo-
nal interpolants [18] we are nowadays no longer bound to use
simple geometrical elements for finite element meshes. Irre-
gular polygons can provide greater flexibility in dealing with
arbitrary geometries and have less sensitivity to lock under
volume-preserving deformation states, among other benefits
[19].

In this paper we present a novel polygonal meshing tech-
nique for scattered point distributions. The connectivity is
computed in a bounded period of time and the elements are
minimally covering the proximal space around each point.
Recently developed generalized barycentric coordinates can
be used for interpolating inside the ADT polygons and nodal
integration schemes can be conveniently applied over the
Voronoi cells in Galerkin method applications. The propo-
sed scheme shows some pertinent advantages when used as
a polygonal finite element meshing technique.

2 The proximal neighborhood of a point
A favorite concept in todays computational geometry area,
the proximal or nearest-neighborhood has firstly been conte-

mplated by Decartes more than three centuries ago [6]. Sub-
sequently Dirichlet studied it in early 1850 in two and three
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dimensions [7] and Voronoi generalized his work in 1908 into
higher multidimensional space [20]. The intrinsic potential
of Voronoi diagrams lies in their structural properties, in the
existence of efficient algorithms for their construction and in
their adaptability [1].

The dual concept of Delaunay tessellation was introdu-
ced in early 1934 [5] via an empty circumcircle criterion.
Among all possible triangulations of a two-dimensional scat-
tered point set the Delaunay one maximizes the minimum
angle and minimizes the largest circumcircle. These basic
qualities, together with the pioneering algorithms developed
by Lawson in 1977 [11] and Watson in 1981 [22], made
Delaunay meshing one of the most attractive and popular
triangle meshing techniques available today [13].

Based on the concept of second order Voronoi sites,
Sibson presented in 1980 his well known natural neighbour
interpolation [15,16]. In 1995 Sambridge et al. developed a
new weighted residual method for solving PDE’s called the
Natural Element Method (NEM) [12] by deriving analytical
expressions for the spatial derivatives of Sibson’s interpolant
in terms of function values at the nodes. NEM was firstly
applied in solid mechanics in 1998 by the inspiring thesis of
Sukumar [17]. The obvious advantages of natural neighbor
interpolation schemes have boosted their popularity in the
recent years.

2.1 Delaunay meshing issues

Unfortunately, the Delaunay criterion doesn’t necessarily
lead to a tessellation that fits all purposes equally well. Firstly
the tessellation is unique only if adjacent elements are not
made of co-circular points. Secondly there is no guarantee
that all Delaunay simplices have favorable geometrical qua-
lities, especially in 3D where both max-min angle and min-
max circumcircle properties are not valid.

The element quality issue is an ill posed problem which,
depending on specific applications, can have contradictory
solutions. Yet it strongly influences the condition number of
the stiffness matrix and the numerical accuracy of an approxi-
mation scheme [14]. As recently proved, both small and large
angles can have strong negative effects. The non-uniqueness
problem has seen numerous solutions in the last years, among
them deleting or inserting some points, perturbing their posi-
tions or using construction rules like the one based on two
preferred directions proposed very recently by Dyken et al.
[8].

Although an adjustment of the initial nodal distribution
can solve these former issues, there are cases where this
distribution is a priori given and should not be changed. A
pioneering solution was recently proposed by Calvo, Idel-
sohn and Ofiate [3]. Given an arbitrary point distribution, an
Extended Delaunay Tessellation (EDT) is created by merging
each set of almost co-circular points into a single polygon.
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This tessellation is a unique mixture of Delaunay triangles
and polygons defined by points lying on the same or nearby
Delaunay circumcircles. Conveniently, the majority of
elements in an EDT are still Delaunay simplices, allowing
the use of linear shape functions over them. The remaining
n-gons are convex and allow the application of non-Sibsonian
shape functions [2]. The EDT approach solves the degene-
rated cases encountered in a classical Delaunay scheme and
renderes a unique mesh.

Tessellating a scattered nodal distribution in an optimal
way is far from being a closed problem and it is our view that
simplices should not be seen as the single building blocks,
especially in a proximal neighborhood context.

3 The Adaptive Delaunay Tessellation

We build our tessellation with two purposes in mind. First,
the mesh should be unique, computed in a bounded period of
time, with no manual modifications and without any pertur-
bation or deletion of the given nodes. Second, the elements
should have good geometrical qualities as desired in nume-
rical approximation schemes and should minimally cover
the proximal space around the nodes. This later requirement
makes sense if we want the elements to be optimally adapted
to a scattered nodal distribution.

The geometrical entity that perfectly records the proxi-
mity to a set of points is the Voronoi diagram. Contrary to
what is generally assumed, the Delaunay tessellation is not a
“real” dual of the Voronoi diagram for two reasons: first it is
not unique and secondly the Delaunay simplices connected
to one point do not necessary cover its corresponding Voro-
noi tile. In other words, a Delaunay tessellation will better
represent the neighbors of a point than the proximal space
around it. The dual construction that satisfies both previous
requirements are the covering spheres, better known as empty
circumcircles in the literature.

We will show that starting from Delaunay simplices we
can obtain a minimal polygonal covering of the Voronoi cells
by tracing their corresponding circumcenters and merging
them into superior quality polygons. The obtained tessella-
tion is unique and optimally adapted to the initial distribu-
tion. Further benefits will be highlighted in the following
paragraphs.

3.1 Constructing the ADT

We propose the following construction to render a Delau-
nay triangulation into a unique tessellation in R?, although
a similar approach also applies to higher dimensions, as will
be demonstrated in a forthcomming work.
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Definition 1 (Adaptive Delaunay Tessellation) Let DT
(P) = (Epr, Fpr) be a Delaunay triangulation of P C R?
with edges Ept and triangular faces Fpt. The boundary of
the convex hull of P is denoted by 9%’ (P). An angle greater or
equal to 7t /2 is considered obtuse, and so is a triangle having
an obtuse angle. If a triangle f is obtuse, e; € f denotes its
longest edge, which is always opposite to its obtuse angle,
and we call e? an obtuse edge.
Let

E = {e7 | f € For nef ¢ 9C(P))

be the set of all obtuse edges that are not on the boundary of
the convex hull of P, and

Eapt := Epr \ E’

be a set of edges.
The unique tessellation (Eapt, Fapr) is called Adaptive
Delaunay Tessellation (ADT) of P.

The ADT is constructed from the Delaunay triangulation
by iterating over its triangles. Since a 2D Delaunay Triangu-
lation can be constructed in O (n log n) complexity, the linear
overhead from the ADT construction is negligible. This also
holds for dynamic updates coming from local retriangula-
tions like in Delaunay repair approaches.

3.2 Properties of the ADT

The ADT offers some properties distinct from those of the
Delaunay triangulation. The ADT is unique, even if the
Delaunay triangulation is not. As long as the Delaunay tri-
angulation contains no ambiguous cases, this is obvious by
construction. Otherwise, all ambiguous edges are obtuse
edges and will be removed, making the ADT unique again.
In Fig. 1a, consider the triangles formed by { P, N>, N3, N4},
and {P, N5, Ng, N7} with circumcenters V> and V4, respecti-
vely: the ambiguous edges (N3, P)/(N2, N4) and (Ng, P)/
(Ns, N7) are removed, as shown in Fig. 1b. Special care, i.e.
epsilon thresholding, must be taken in case the circumcenter
is located on an ambiguous Delaunay edge. Since both tri-
angles adjacent to that edge are rectangular, round-off errors
might classify both as non-obtuse, thus preventing the remo-
val of the ambiguous edge.

Furthermore, the ADT tessellation is optimal in the sense
that no interior simplex has an angle greater than 7 /2, and
the polygonal elements have as rounded shapes as possible
for the given nodal distribution. Consider Fig. 2a, displaying
the setting from Fig. 1a with deliberately changed positions
for nodes Ay, A and Ng.

As expected, the initial Delaunay triangulation does not
satisfy the goal of having as round elements as possible.
Slightly altering the node positions or merging the co-circular
ones into polygons will not help either. In the ADT, all the

Fig. 1 (a) Part of a Delaunay triangulation, (b) Adaptive Delaunay
Tessellation of (a). The dotted lines denote the Voronoi diagram, P is
the central point, N its natural neighbors, A other points and V' vertices
in the Voronoi diagram around P

skinny, obtuse triangles are merged with others to form poly-
gons with a rounder shape. Note that this does not necessarily
eliminate skinny, isoscele triangles. We consider this alter-
native optimal for the given nodal distribution.

Given the construction, it is very likely that all the men-
tioned properties of an Adaptive Delaunay Tessellation are
valid in higher dimensions, too. In 3D, many badly shaped
elements can appear in a normal Delaunay tetrahedraliza-
tion. Some of them are considered acceptable drawbacks,
others have to be eliminated due to the errors induced. The
fact that most elements are non-obtuse in an ADT makes it
increasingly important in these cases.

The construction of the ADT yields no disconnected ele-
ments, which can be shown based on the fact that it starts
with a Delaunay triangulation.

Finally, a point’s Voronoi cell is completely covered by
its adjacent ADT elements, which is not true for a Delaunay
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Fig. 2 The setting from Fig. 1 with deliberately changed node positions

triangulation. To illustrate this property we look at an ADT
tessellation of a point P in Fig. 3. We mark the midpoints
of the ADT edges adjacent to P by M, ..., Ma, which are
just the intersections of the ADT edges with the Voronoi cell
boundary for P. If we now follow the Voronoi cell boundary,
each segment is either contained in an ADT element or it
perpendicularly intersects an ADT edge adjacent to P.

We need to mention that an ADT can admit non-convex
polygons, which requires extra care to be taken and narrows
the spectrum of available shape functions over ADT ele-
ments. We have dealed with non-convex polygons by using
mean value coordinates [9].

We illustrate the properties of the ADT by comparing it
to the Delaunay triangulation for two slightly different point
sets as shown in a simple example in Fig. 4a. In contrast to
the Delaunay triangles the ADT polygons have been shaded
(Fig. 4c). Note the slightly less uniform distribution in the
right point set, leading to more badly shaped triangles in
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Fig. 3 Intersection with Voronoi cell

Fig. 4b. The ADT, however, copes with the less uniform
point distribution by generating more well-shaped polygons.

4 An element condition number for arbitrary polygons

In mesh-based discretization methods the sizes and shapes
of elements have a direct influence on the accuracy of the
numerical results. Even a small number of badly shaped ele-
ments can already compromise the whole discretization pro-
cess. For the most common types of elements used today,
error bounds and quality measures have been provided. Still,
shape measures for general polygonal elements are almost
inexistent.

In the sequel we will have to compare the shapes of simple!
polygons with different numbers of vertices. Traditional mea-
sures such as maximum or minimum angle are not sufficient
for this task so we will employ an alternate shape measure.
We will assume that all polygons under consideration have
their centroids at the origin.

A measure s (P) for the shape of a polygon P = (P, ...,
P,) should have the following properties:

1. s(P) is lowest for regular polygons.

2. s(P) is a smooth function of P’s vertices.

3. s(P) does not change if P is scaled uniformly in x and y.

4. s(P) does not change if P is rotated around the origin,
i.e., P’s centroid.

‘We now propose a shape measure meeting the above objec-
tives. Let P be a polygon having n vertices P;. Then P may

1 A polygon is simple if no two of its edges intersect.
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Fig. 4 Delaunay triangulation
(DT) and Adaptive Delaunay . .

Tessellation (ADT) of two “ i

slightly different scattered point .

sets . .

(a) Two points sets

(b) DT

be written as a 1 x n matrix

P=[P...., P,
Let
A=PT.p

be the correlation matrix of P. It is used in the Principal
Components Analysis (PCA) of point sets. The PCA finds a
best fitting ellipse to the point set. Its axes are the (normali-
zed) eigenvectors of A; the lengths of the axes are given by the
square roots of its (real and positive) eigenvalues o1 and o5.
The ratio of these lengths (largest value o divided by smal-
lest value o07) is known as P’s condition number cond(P). If
P is a regular polygon, then cond(P) = 1. In all other cases,
cond(P) > 1.

We propose to use cond(P) as the shape measure for the
polygon P. The proposed shape measure is an analytic func-
tion of P’s vertices; this follows since o and o, are analytic
functions of A’s elements.

cond(P) is infinite for degenerate polygons (meaning all of
P’s vertices are on one straight line). A general P
has rank 2, whereas a degenerate one only has rank
1, resulting in A being singular. Thus, cond(P) =
00.

(e) ADT

cond(P) does notchange if P is scaled uniformly in x and y.
If P is scaled by a factor c, then so is A and hence
its eigenvalues. Thus their ratio remains constant.

cond(P) does not change if P is rotated around the origin,
i.e., P’s centroid. If P is rotated by a matrix R,
the matrix A is changed to A’ = PTRTRP, hence
A= A.

A drawback of our shape measure is that it is “blind” to
vertex ordering. But since our polygons are simple, this is
not considered harmful.

5 Quality measures

We have proposed a new polygonal tessellation of a point
cloud, and we claim it performs better than other schemes
since it bears an improved condition number and has a
minimum coverage of the Voronoi cells in comparison to
the Delaunay triangulation. Although polygonal approaches
provide more flexibility, our method can also produce
non-convex polygons. We therefore present the results of
statistical analysis of the ADT’s properties to examine the
development of condition number, number and valence of
polygons, and number of non-convex polygons depending
on several parameters of the point cloud.
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The basic setting consists of aregular grid of 50 x 50 points
distributed over the unit square, which we distort by a normal
distributed random variable in x and y with a variance of 0.2
and a radius of 0.025. The coordinates of points outside the
unit square after the random term was added are clamped. In
order to prevent too degenerate cases, we removed all points
that were closer to another point than the minimum allowed
distance of 30% of the grid size.

The following is a statistical analysis of some of the ADT
properties in the following scenarios:

1. variable resolution of points (ratio boundary vs. interior),
2. variable randomness in the distribution of points,
3. variable linear deformation of an initial point set.

Each of those scenarios has been analyzed in a sequence of
feasible settings, repeating each concrete setup ten times on
different random points to improve statistical significance.
The charts display the arithmetic mean of ten independent
runs for a given setup.

Each time the ADT is generated we extract

1. the mean condition number of the elements,

2. the percentage of non-convex polygons,

3. the histogram of polygon valences (how many 4-gons,
5-gons, etc.).

5.1 Variable resolution

In this scenario we compare the mean condition numbers
at different resolutions in order to examine the influence of
the ratio between boundary and inner elements on the mean
condition number. The results shown in Fig. 5 confirm the
hypothesis that only for very small resolutions the worse
shape of the boundary elements has significant influence
on the mean condition number, yet this effect is far less
visible for the ADT, which comes with better results than
the DT.

5.2 Variable randomness

We want to evaluate the ADT for point sets exposing dif-
ferent levels of randomness. We therefore vary the Gauss
radius r € [0.0, 0.0471], which results in the corresponding
tessellations shown in Fig. 6 from left to right.

As expected, for r = 0, DT(P) consists entirely of ambi-
guous settings that are merged into quadrilaterals in ADT (P).
While r grows, the triangles in DT (P) get closer to equilateral
at first with a moderate distortion, but become increasingly
ill-shaped for larger randomness. This can be verified with
the condition numbers in Fig. 7a. The chart only displays
the condition numbers of inner elements, as the condition
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Fig. 5 Comparison of condition numbers for DT(P) and ADT(P)
considering variable resolutions. This diagram illustrates the influence
of boundary elements, which usually retain a bad condition number. If
the resolution increases, the ratio between inner and boundary elements
changes in favor of the mean condition number

numbers for close-to degenerate Delaunay triangles on the
convex hull are arbitrary close to infinity. Figure 7b displays
the development of non-convex elements, the results of all
10 runs plotted on top of each other to give an impression of
the deviation. We consider all elements, and the contribution
of non-convex elements seen in the range r € [0, 0.4] result
from non-convex boundary elements. Interestingly, the num-
ber of non-convex elements seems to stay constant around 5
to 6%, although with a higher deviation.

‘We compare the mean condition numbers at different reso-
lutions in order to examine the influence of the ratio between
boundary and inner elements on the mean condition num-
ber. The results shown in Fig. 7 confirm the hypothesis that
only for very small resolutions the worse shape of the boun-
dary elements has significant influence on the mean condition
number, yet this effect is far less visible for the ADT, which
again comes with better results than the DT.

5.3 Variable linear deformation

Since ADT(P) and DT(P) are implicitly defined by P, they
are naturally suited to tessellate deforming geometries. We
analyze the development of the condition number under a
continuous deformation of P, which we choose to be a hori-
zontal scaling ranging from s = 1 to 3, the setting for s = 1
and 2 shown in Fig. 8.

‘We have noticed one setting with exceptionally high mean
condition numbers for DT (P), the development of the mean
condition number depicted in Fig. 9. In contrast to the remai-
ning nine test cases, the mean condition number for DT(P)
was constantly increasing, while it remained constantly low
for ADT(P) (Fig. 9).
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Fig. 6 DT(P) (upper row) and ADT(P) (lower row) for a Gauss radius of (a) r = 0.0,(b) r = 0.00119, and(c) r = 0.0471

5.4 Statistics summary

We found that the average condition number of the ADT
is in general significantly lower than that of the Delaunay
triangulation. When looking at point clouds with a different
amount of randomness and different minimum distance for
the nearest points, the ADT exhibits less variation. The mean
condition number of an ADT settles between 1.7 and 2.0
while for a Delaunay triangulation it is usually between 2.5
and 2.7.

While a Delaunay triangulation always consists of tri-
angles, an ADT can contain polygons of higher valence. In
general, the more organized and uniform the point cloud, the
lower the valence of polygons in the ADT. For sufficiently
large point clouds, the element distribution in the ADT in all
our test runs looks as in the table presented in Fig. 10.

The occurence of non-convex elements in the ADT is cer-
tainly a drawback. However, for uniformly ordered point sets
there are no non-convex polygons and for increasingly ran-
dom point distributions they never exceeded seven percent
of the total number of elements.

Last but not least, boundary elements play a special role
in that they can retain the bad shapes of the Delaunay
triangles, since outside the convex hull there are no more

triangles to merge. If boundary triangles are merged into
ADT elements the resulting condition number improves, but
non-convex elements are created more often than in the inter-
ior. Badly shaped triangles are a common problem in Delau-
nay triangulations and a further improved ADT approach can
be a step forward in dealing with it.

6 Polygonal interpolants based on generalized
barycentric coordinates

An ADT tessellation cannot be used in a finite elements
frame without appropriate shape functions over its elements.
Generalized barycentric coordinates for irregular polygons
directly correspond to shape functions and were intensively
studied in the last decade due to their large field of applica-
bility.

For the present work we have used a form of rational bary-
centric coordinates for higher dimensions recently proposed
by Warren et al. [21]. For a d-dimensional polytope P, given
by the convex hull of its n vertices v, (P), each rational coor-
dinate function per vertex {b, /v € v, (P)} satisfies the defi-
ning properties of barycentric coordinates
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Fig. 7 (a) Comparison of the mean condition number of the DT and
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randomness—note the more or less stable behavior after some point,
(b) percentage of non-convex polygons, all ten results for one value of
the gauss radius displayed to show the variance. Again there appears
some stabilization above some point

non-negativityb, (x) > 0 Vx € P,
partition of unity >, p) by (x) =1 Vx € P,
linear precision Zvevn ®) L(w)by(x) = L(x) VxeP,

where L(x) is a linear function.

Furthermore, they satisfy the auxiliary properties of
smoothness, tensor product and face restriction [21]. The
coordinates reduce to bilinear ones for a rectangle and to
linear ones on the edges of a polygon.

For simplicity we describe the planar case of a polygon
P. We note with d = 2 the space dimension, with v, (P)
the polygon’s vertices and with x an inside point. Since each
edge of P is defining a halfplane, the convex n-gon can be
written as the intersection of n-halfplanes. Hence, we can
define it as the solution of a matrix inequality

Nx <ec.

where N € Mat(n xd),x = [x1, x2]7 and¢ = [cyq, ..., cn]T
is a column vector of length n. We assign in clockwise order
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an index to each edge of the polygon, corresponding to the
equation N;x = ¢;, where N; is the ith row of N. Since each
vertex is the intersection of two edges, we build an index set
o for each vertex containing the two corresponding indices.
For each index set a d x d submatrix of N is formed by
the corresponding rows, denoted N, . For every vertex, the
weight functions are defined as:

|Det(No)|

We (X) = 1o (X)

withng, (x) = Hi co L€ — Nix] aproduct of d linear functions.
As geometrical meaning, the numerator corresponds to the
area of the parallelogram formed by the outward normals
associated with the two adjacent edges of the vertex and the
denominator is the product of the distances from x to these
edges. The barycentric coordinates b, (X) are obtained by
normalizing each weight by the sum of all weights defined
in the polygon.

We exemplify for the pentagon case in Fig. 11.

The edges are numbered clockwise and each vertex is
identified by an index set representing the two corresponding
incident edges. The outward normals and the perpendiculars
from an inside point x to the polygon’s edges have been
drawn. For vertex coordinates Vs 1y = (—1,1), V12) =
0,2), Vo33 = (1,2), V3.4 = (1,0.5), Via 5 = (0,0) the
matrix inequality has the form

1 1 2
0 1 2
10 [x‘} 1

051 | L 0

11 0

Corresponding to each vertex the weights are

2

wis, 1y (X) = [2+x1 — x2][x1 + x2]°
1

w(1,2)(X) = 2 —x][2+x —x2]

1

wp3p(x) = 1= x2 - x2]’
1

w34y (X) = [—0.5x1 + x2][1 — x1]’
1.5

w4,5)(X) =

[x1 + x2][—0.5x1 + x2]

As expected, the coordinates are rational and of mini-
mum degree. They are simple to evaluate and they reduce
to conventional barycentric coordinates in the case of sim-
plices. The functions are smooth in any point x inside the
elements and linear on the edges. In Fig. 12 we draw the
barycentric coordinate functions for the point of interest P
from the ADT case presented earlier in Fig. 1.
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Fig. 8 DT(P) (upper row) and
ADT(P) (lower row) for a
horizontal scaling of the random
point cloud by 1 and 2, resp
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Fig. 10 Distribution of element valences in large, random point clouds

The former explicit construction retains its properties in
arbitrary dimensions. Yet, Warren’s coordinates are less
robust against obtuse angles and non-convex n-gons.
Therefore we are considering the use of other generalized
barycentric coordinates as an open choice. A good alter-
native option for both convex and non-convex polygonal
elements are the recently proposed mean value coordinates

[9].
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Fig. 11 Irregular pentagon

These are defined as

w; tan(a;—1/2) + tan(o; /2)

k 9 l =
> j=1Wj

and provide convex local coordinates with linear precision
and infinite smoothness (Fig. 13).

In the following we are applying Warren’s coordinates
over an ADT with only convex elements for function and
image interpolations from scattered values.

A=

)

llvi — voll?
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Fig. 12 Barycentric coordinate
functions over ADT elements

Vi1
Fig. 13 Angles used in the definition of Mean Value Coordinates [9]
7 Interpolation applications
Franke’s function [10] has been used as a benchmark in scat-

tered data interpolation for a long time. We approximate
this function by sampling its values at 40 to 400 arbitrary

Fig. 14 Two ADT tessellations
over a unit square

@ Springer

locations in the unit square. The corresponding ADT tessel-
lations are plotted in Fig. 14, with polygons of valence grea-
ter than three depicted in darker colors. The corresponding
approximations of Franke’s function are shown in Fig. 15.
We remark that the scheme renders good results, even for
low resolutions.

We also apply the ADT interpolation scheme on an 8 bit,
720 x 560 pixels grayscale image of Antonio Canova’s “Eros
and Psyche”, shown in Fig. 16.

We consider as known the values in 4,292 pixels out of
403,200 (respectively 1.06%) and interpolate the values in
the others. Two approaches are compared, namely a Delau-
nay triangulation with a linear interpolation over the sim-
plices and an Adaptive Delaunay Tessellation with Warren’s
generalized barycentric coordinates over the polygons.

While the DT is a triangulation of the initial scattered
point distribution, the ADT is also formed of polygons up to
octagons (Fig. 17). The ADT partition contains 32% less ele-
ments compared to the DT one in this case. The interpolated
pictures are presented in Figs. 18 and 19.

We compare the interpolation error for the two methods
based on the common measures of root mean-square (RMS)
error and relative absolute error. The RMS value was obtained
by computing the average of squared differences between




Comput Mech (2008) 42:655-669 665

Fig. 15 Franke’s function
approximations

The RMS value for the previously interpolated image was
4.5401 for the DT and 4.5619 for the ADT scheme. The
relative absolute errors were 0.1659 and 0.1661 for the DT
and the ADT scheme, respectively.

Despite using significantly fewer elements than a DT
approach, the ADT scheme yields a similar interpolation
error. From a visual point of view the interpolated image will
be smoother, more obvious on tilings with few elements.

8 Galerkin application in two dimensions

8.1 Numerical integration

Gauss integration is largely used in finite elements and in
most of the mesh-free Galerkin methods, where background
integration cells are approximating the shape function’s

Fig. 16 Eight bit grayscale image

computed values ¢; and true values ¢; for all n test cases support. Yet, for non-polynomial coordinates, no Gaussian
quadrature can guarantee an exact result. Moreover, due to the

\/ [t — 1124+ [ty — cn]? nodal character of our approach where representative areas
" around the nodes are computed at the meshing stage, evalua-

ting the weak form via nodal integration becomes a natural
alternative.

Traditionally, direct nodal integration has been altered by
spurious (near-singular) modes and several different tech-
[ti —cil+ -+ |ty — cnl niques have been applied for stabilization. We are using

|t1 —7 | 4+t |tn -7 | ’ a recent stabilized conforming nodal integration approach

We took 7 as the average of the true values and computed the
relative absolute error value as

Fig. 17 Dele.lunay triangulation ;;;g!rfﬁﬁgiﬁ%?ﬂ ;E‘"’;%’a';'t'ﬁiﬁs'gi' HESTSREEY
versus Adaptive Delaunay FEEA RO e T
Tessellation 5 ;
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Fig. 18 DT interpolated image
versus ADT interpolated image

Fig. 19 DT versus ADT
interpolated image (396 x 312
pixels detail)

E.v,t

.

- 48

Fig. 20 Cook’s membrane

which avoids instabilities generated by the vanishing deriva-
tives of the shape functions at the nodes [4].

In this approach, the area integral of the derivative of shape
function is replaced by a line integral of the shape function
along the boundary of the voronoi tile of the nodes. This inte-
gral is represented by a linear combination of the values at

@ Springer

Fig. 21 Linear coordinates on Delaunay simplices

the nodes that govern the underlying shape functions. Since
for arbitrary shape functions, an analytic integration is not
feasible, quadrature is used. It is however necessary to pro-
perly sample the Voronoi boundaries in order to cover all
the shape functions that influence the integral. Depending
on the underlying shape functions and/or tessellation, this
integration requires different minimum step size and there-
fore a different amount of function evaluations. Computing
the stiffness matrix entirely at the nodes proves to be an effi-



Comput Mech (2008) 42:655-669

667

Fig. 22 Generalized barycentric coordinates on ADT elements

cient solution in our case, since the Voronoi cells are a priori
known.

8.2 Cook’s membrane problem

A linear elastic analysis of the classical Cook’s membrane
(Fig. 20) was performed under plane stress conditions
(F=1L,E=1,t=1,v=0.3).

Several samplings (with a different step size) of the Voro-
noi edges have been perfomed for the comparative study of
accuracy of different interpolation schemes on Delaunay and
ADT tessellations. The amount of shape function evalua-
tions needed to properly compute the nodal stiffnesses was
different in each case.

Firstly we have used linear shape functions on Delaunay
simplices (Fig. 21). Since the end points of a Voronoi edge
might be in non-adjacent triangles, extra care should be taken
to include all the triangles that contain the edge. Therefore
we need to evaluate the shape function in every triangle if
we want to avoid singular stiffness matrices. Inside each tri-
angle the shape function is linear, thus the trapezoidal rule
with evaluations at the intersections with triangle edges is
exact.

Secondly we have used generalized barycentric shape
functions on ADT elements (Fig. 22). Since the whole Voro-
noi edge is covered by at most two ADT elements, we can
apply the trapezoidal rule to the whole segment without
missing any contribution. This approximation is faster in
terms of number of evaluations.

We have also compared the two former approaches with
natural neighbor shape functions on point clouds. Like above,
the support of natural neighbor shape functions covers the
Voronoi segments and therefore the same argument applies.

The results for the absolute difference between the vertical
displacement value u, (P) at node P(48, 52) and a reference
value obtained for 32,748 degrees of freedom are summarized
in Fig. 23. Several scattered nodal distributions have been
used ranging from 22 to 300 nodes. For every resolution, the
final values have been averaged from 25 different computa-
tions.

Similar results for the stress values o,(M) at node
M(24, 52) are presented in Fig. 24.

As expected, the results are more consistent for the pri-
mary variables computations. The errors induced by obtai-
ning the secondary variables, in a nodal or element-based
approach, are not the main issue of this comparison.

Fig. 23 Vertical displacement 8
comparison
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Fig. 24 Stress comparison
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We remark that the results obtained with generalized
barycentric coordinates on ADT elements are comparable
with the ones obtained with natural neighbor interpolants on
clouds of points. The superior geometrical qualities of the
ADT elements versus Delaunay simplices and their better
adaptivity to a scattered point distribution prove to be essen-
tial at lower resolutions. The computational convenience of
an ADT mesh is a plus, expected to pay-off in higher
dimensions.

9 Conclusions

A novel hybrid meshing technique has been proposed, and
has been compared with the popular Delaunay tessellation
when applied to scattered nodal distributions. The main
advantages of the new scheme are its uniqueness, the boun-
ded computational time and the improved geometrical quali-
ties of its elements versus Delaunay simplices. The element
condition number introduced is vital to the comparison in that
it characterizes triangles as well as simple polygons. Further-
more, an ADT mesh is optimally adapted to scattered point
distributions in the sense that the Voronoi cell of each point
is entirely covered by its neighboring ADT elements. There
exist easy to compute basis functions for arbitrary convex
polytopes making the ADT an interesting approach both
for scattered data interpolations and for numerical methods
applications.
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