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Abstract

In this article we improve the butterfly and Loop’s al-
gorithm. As a result we obtain subdivision algorithms for
triangular nets which can be used to generate ��� - and ��� -
surfaces, respectively.
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1. Introduction

Subdivision algorithms are popular in CAGD since they
provide simple, efficient tools to generate arbitrary free
form surfaces. For example, the algorithms by Catmull and
Clark [3] and Loop [7] are generalizations of well-known
spline subdivision schemes. Therefore the surfaces pro-
duced by these algorithms are piecewise polynomial and at
ordinary points curvature continuous.

At extraordinary points however, the curvature is zero or
infinite. In general, singularities at extraordinary points is
an inherent phenomenon of subdivision, see [13, 12, 9].

The smoothness of a subdivision surface at its extraordi-
nary points depends on the spectral properties of the associ-
ated subdivision matrix.

Doo and Sabin [4] derived necessary conditions on the
eigenvalues. Ball and Storry [1, 2] made first rigorous in-
vestigations to prove the tangent plane continuity for a class
of Catmull/Clark type algorithms. Then Reif [11] observed
that tangent plane continuous surfaces may have local self-
intersections and introduced the characteristic map defined
by the subdominant eigenvectors. Moreover, for all station-
ary subdivision schemes he derived necessary and sufficient
conditions which guarantee that the limiting surface is regu-
lar, i.e. tangent plane continuous without local penetrations.

Finally, in [8] Reif’s characteristic map is used to para-
metrize the subdivision surface. With this parametrization
�
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it is possible to extent Reif’s result and to obtain for all sta-
tionary subdivision schemes necessary and sufficient condi-
tions which guarantee that the limiting surface is a regular
�
	 -surface.

Doo and Sabin [4], Ball and Storry [2] and Loop [7] used
the smoothness criteria to find among certain variations of
the Catmull/Clark and Loop’s algorithm the best. However,
these best algorithms still produce curvature discontinuous
surfaces, see e.g. [2].

In [10] we took a different approach. Instead of vary-
ing the subdivision rules within some bounds which are set
heuristically, we changed the spectrum of the subdivision
matrix so as to obtain the desired properties. Using the
��� -characterization in [8] we derived a ��� -subdivision al-
gorithm from the Catmull/Clark algorithm (which does not
produce infinite curvatures), see [10].

Here we provide similar improvements, a ��� - and a �� -
algorithm based on the butterfly and Loop’s algorithm.

2. Loop’s algorithm

Loop’s algorithm generalizes the subdivision algorithm
for surfaces expressed in terms of the symmetric quartic box
spline over a regular triangulation of � � � . It generates from
any triangular net ��� a new net � � , whose vertices are clas-
sified as E- and V-vertices.

Computing the weighted averages of the four vertices of
any two triangles in ��� sharing a common edge with the
weights shown in Figure 1 gives the E-vertices. Similarly
computing the weighted averages of all vertices of all tri-
angles in ��� around any vertex with the weights shown in
Figure 1 gives the V-vertices. For ����� Loop chooses��� �������! �" since this corresponds to box spline subdivi-
sion.

The new net � � is obtained by connecting for all tri-
angles of � � the associated three E-vertices and for all
edges of � � the associated E-vertices with both associated
V-vertices. By the same procedure a next net � � is obtained
from � � and so on.
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Figure 1. The masks of the Loop algorithm –
the V-mask is illustrated for ��� �

.

Note that a vertex of any net �����	��
 � � is extraordi-
nary, i.e. an interior vertex with valence �� � , if it is a
V-vertex associated with an extraordinary vertex of ���� � .
Thus the number of extraordinary vertices is constant for
all nets � � �	��
���� and these vertices are separated by more
and more ordinary vertices as � grows.

In particular if ��� is a regular triangular net, i.e. without
extraordinary vertices, Loop’s algorithm coincides with the
subdivision algorithm for quartic box spline surfaces. Thus
also for an arbitrary net � � the sequence � � converges to
a piecewise quartic surface with one extraordinary point for
each extraordinary vertex of � � . The limiting surface is a� � -surface everywhere except at its extraordinary points.

Loop’s analysis shows that the limitingsurface has a con-
tinuous tangent plane at its extraordinary points for a certain
range of � ’s, see [7] .

3. The butterfly algorithm

The butterfly algorithm of Dyn et al. [5] generates a se-
quence of triangular nets � � �	��
���� similar to Loop’s al-
gorithm. Only the masks used to compute the E- and V-
vertices are different. They are given in Figure 2.
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Figure 2. The masks of the butterfly algorithm.

A sequence of nets ��� obtained by the butterfly algo-
rithm with small positive � converges to a surface that is
differentiable everywhere except at its extraordinary points
of valence 3 [5, 6] and ��
 " .

At extraordinary points of valence ��
�" the surface is
tangent plane continuous but it has self-intersections and
therefore is not regular. We checked this for several � .
However, in the sequel we always work with � � �  ���� .

Variations of the butterfly algorithm have been proposed
by Zorin et al. [16]. However, the smoothness of the lim-
iting surfaces obtained by these variations has not yet been
investigated.

4. A smoothness condition

In Sections 5 and 6 we present modifications of Loop’s
and the butterfly algorithm giving ��� - or � � -surfaces in
the limit. The method used to derive these modifications
is based on the � 	 -analysis of subdivision schemes given in
[8] and can also be used for subdivision schemes for quadri-
lateral nets [10].

For more details we need to recall a result from [8]. We
present it in the theorem below for any subdivision scheme�

that is identical with the butterfly or Loop’s algorithm
except that E- and V-masks may be different.

We assume that the limiting surface associated with any
initial triangular net ��� obtained by the subdivision scheme�

has
� 	 -parametrizations around all its ordinary points.

Extraordinary points are isolated as observed in Section
2. Therefore, to analyze the smoothness of the limiting sur-
face at extraordinary points it suffices to consider a sub-
net  �� of � � consisting of one extraordinary vertex sur-
rounded by say ! � rings of ordinary vertices as illustrated in
Figure 3 for ! ����� .

Figure 3. A net with one extraordinary ver-
tex of valence 5 (marked by " ) surrounded by#%$ �'& rings of ordinary vertices.



Further let  � be the largest subnet of � � whose ver-
tices depend only on  � . This net  � also has only one
extraordinary vertex surrounded by say ! � rings of ordinary
vertices.

Note that ! � is roughly twice as lage as ! � . For example
in Loop’s algorithm ! � � � if ! � � � and in the butterfly
algorithm ! � � � if ! � � � .

Let ! � be so large that ! ��� ! � 

�
. Then discard-

ing the ! ��� ! � outer rings of  � gives a net � � with
the same size and connectedness as  � . Let � � ���	��� �
���
and  � ���	�������� denote the vertices of  � and � � , respec-
tively. Since the vertices  � are affine combinations of the
��� , there is an ����� matrix � such that

�  � �	���������� ���
� � � ���	�����������

Let  � denote the limiting surface associated with  �
under the subdivision scheme

�
. Applying

�
to  � gives

the same limiting surface  � , but the surface  � associated
with the subnet � � is smaller and only a part of  � . Taking
 � away from  � gives the here so-called first surface ring
associated with  � .

Now we are able to present the following theorem which
is proven in more general form in [8]:

Theorem 4.1 Let � have the � (possibly complex) eigen-
values

� �"! ��! �
# �	����� ��$ , where
�&%(' ! ' 
 ' # ' 
)���	� 
 ' $ '

and assume two eigenvectors * and + associated with the
double eigenvalue ! . If the first surface ring of the net given
by
� * � ���	�,*-�.� � �

� */+0� is regular without self-intersections
and ' ! ' 	 %1' # ' �32
 � � (4.1)

then the limiting surface is a ��	 -surface for almost all ini-
tial nets  �� . (More precisely, the limiting surface is a
�
	 -surface for all initial nets  � whose expansion by the
eigenvectors of � involves * in one and + in a second coor-
dinate.)

The eigenvalue condition (4.1) goes back to Doo and Sabin
[4]. The first surface ring associated with the eigenvectors
* and + is called the characteristic map of � by Reif who
used it to prove this Theorem for 2�� � [11].

If the limiting surface in Theorem 4.1 is a
� 	 -manifold,

2�
 � , then the extraordinary point is a flat point. This
fact is also true for more general subdivision schemes, see
[11, 9].

5. Modifications of Loop’s algorithm

The subdivision matrix � of Loop’s algorithm associ-
ated with an extraordinary vertex of valence � has a single
dominant eigenvalue

�
and satisfies the ��� -conditions of

Theorem 4.1 [7, 15], but not the ��� -condition [14]. To ob-
tain a subdivision matrix �54 that represents a modification

of Loop’s algorithm satisfying the � � -condition we diago-
nalize the matrix � ,

� �16.786 � � � where 7 � diag � � ��! �"! ��# �����	� �
$ � �
change the modal matrix 7 to

7 4 � diag � � ��! ��! �
# 4 �	����� �
$ 4 � � where
' # 4 ' ���	��� � ' $ 4 ':9 ! � �

and compute the new subdivision matrix as

� 4 �;6�7 4 6 � � �
Lemma 5.1 The matrices � and � 4 have the same charac-
teristic maps.

Proof The eigenvectors associated with ! are the same for
� and � 4 . They define a planar control net � � . Subdividing
� � by Loop’s algorithm and also by the modification results
both times in the same sequence of nets � � . The extraordi-
nary vertex and its three surrounding rings of control points
in ��� are scaled versions of ��� . The other control points of
� � are computed by the subdivision rules for regular nets.
Thus Loop’s algorithm and its modification applied to � �
produce the same surface in the limit. <

The symmetry of Loop’s scheme means that the sub-
division matrix � is block-circulant. Therefore a discrete
Fourier transformation can be used to analyze the spectral
properties of � .

If � � � , the matrix � has the subdominant eigenvalue
! � �  � and exactly six eigenvalues with modulus in the
half-open interval

� ' ! ' � � ' ! ' � . These are the two triple eigen-
values

�  !" and
�  � � . Changing just these triple eigenvalues

to the triple eigenvalues
�  !"5=?> � and

�  � �.=?> � , respec-
tively, such that

�  �"�=@> � and
�  � ��=@> � are less than

' ! ' � ,
results in a matrix � 4 , which represents the same masks as
the original matrix � except for the E- and V-masks shown
in Figure 4, where
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Figure 4. The E- and V-masks of the modified
Loop algorithm near a vertex of valence � ��& .



� � � �� = ������ ��� � �	� ��
� � 
� � � ����� �� � ������ ��� � ��� ��
� � �� =@> � �� 
 � � � � � � � �	� � ���� ��� � ��� �� � � ���� = � ���� � � � 
 �������� �� ��
� � �� � � ����� �� � ���
 � ��� � ��� � � ����� � � � � � �
 � ����� �� � ��
� � ���� =�> � �� 
 � ���� =�> � � > � ���� � ���� = � ��� � ��� � �
 � ��� � ��� = � 
 ��� � � ��� ���
 � ����� �� � �

If � 
 � , the matrix � has 2�� ��� � � � � �  ���� � � dou-
ble eigenvalues besides ! . We denote these eigenvalues by
# � �	�����	�
# 	 and assume

' # �
' 
 ���	� 
 ' # 	

'
. Furthermore,

any eigenvalue of � with modulus in the half-open interval� ' ! ' � � ' ! ' � is one of these double eigenvalues # � but not vice
versa.

Changing just these double eigenvalues # � to the double
eigenvalues # � =�� � results in a matrix � 4 , which represents
the same masks as the original matrix except for the E-mask
illustrated in Figure 5, where

� � � � � = �
�
	!
�#" � � �%$�&�')( ��* � �,+ = � �� - � � ��� �	����� �.� �  ��/�

(5.2)
and � � �102 3 �� !"�  !"

�
if
� � �
� � �
� 
 �

�
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Figure 5. The E-masks of the modified Loop
algorithm near the vertices of valence �5476
illustrated for ���98 .
Note that Loop’s masks, see Figure 1, are obtained if all� ’s and > ’s are zero.
Figure 6 shows an example. The surface at the top is

generated using Loop’s algorithm while the one at the bot-
tom is produced with the above modified masks, where� � � � � ����:!��� and � � � �	������� 	 � � . The surfaces

are shown with the visualization of their Gaussian curva-
ture. This curvature is not a discrete approximation ob-
tained from the subdivided control net. We used the piece-
wise quartic parametrization of the surface to compute the
Gaussian curvature. The common control net of both sur-
faces is given in Figure 7.

-0.8

-0.4

0.0

0.4

Figure 6. Visualization of the Gaussian cur-
vature of the surface generated from the net
shown in Figure 7 by Loop’s algorithm (top)
and our modification (bottom).

Figure 7. Topview of the control net used for
Figure 6. It lies on a parabolic cylinder.



Remark 5.2 The eigenvalues of � with modulus less than' ! ' � need not be changed. However, the masks of the modi-
fied algorithms have negative weights, see (5.2). Therefore
the eigenvalues with modulus

9 ! � can be changed so as to
obtain larger negative weights.

Remark 5.3 In some cases better looking surfaces are ob-
tained if Loop’s algorithm is gradually modified after each
subdivision iteration. For example, the sequence of nets
� ���	� � �����	��� � ��� leading to the surface shown in Figure 8
(bottom left) has been obtained by Loop’s algorithm modi-
fied with > � � � > � ��� �  ���"

�
when applied to the net � � .

The adaptive linear combination of Loop’s and our scheme
produces a surface with a more even curvature distribution
and without infinite curvature.

In further iterations we would chose > � and > � constant
as in step 6. Note that the modified subdivision matrix sat-
isfies the conditions of Theorem 4.1 for � 
�� .

-1.0

-0.5

0.0

0.5

Figure 8. Visualization of the Gaussian cur-
vature of the surface generated from the net
shown in Figure 9 by Loop’s algorithm (top
left), our modified scheme (top right) and an
adaptive linear combination of Loop’s and our
scheme (bottom left).

Figure 9. Topview of the control net used for
Figure 8. It lies on a hyperbolic paraboloid.

6. Modifications of the butterfly algorithm

A limiting surface obtained by the butterfly algorithm is
not differentiable at extraordinary points, in general.

For an extraordinary point of valence 3, this is due to
the fact that the associated subdivision matrix � has a triple
subdominant eigenvalue ! , see [5]. Two of these eigenval-
ues are associated with eigenvectors forming a regular in-
jective characteristic map. As in Section 5 we change the
third eigenvalue ! to ! � � � �

�
.

For an extraordinary point of valence ��
�" the char-
acteristic map of the subdivision matrix � overlaps itself.
Since the matrices are block circulant they have a discrete
Fourier transform, which helps to understand what hap-
pens: The subdominant eigenvalues for ��
�" correspond
to higher frequencies than one. Luckily both eigenvectors
associated with the largest eigenvalue of frequency one (it
is a double real eigenvalue, here denoted by � ) represent the
control net of a regular injective surface ring.

Thus we change the eigenvalues with modulus in � � � ' � ' �
to � � � � �

�
as in Section 5 so that � becomes the subdomi-

nant eigenvalue.
Together these changes lead to a modification of the but-

terfly algorithm for � � �  ���� which is presented by the
same masks except for the masks given in Figure 11, where
the weights � � � � ��� � � are given in Table 10.

Figure 12 shows an example. The surface at the top is
generated using the butterfly scheme while the one at the
bottom is produced with the above modified masks. Note
that the surface at the top has self-intersections while the
surface at the bottom as well as the common control net of
both surfaces, see Figure 13, have no self-intersections.

Remark 6.1 The surface obtained by the modified butter-
fly algorithm does not interpolate all vertices of the initial
control net. However, if we use the butterfly algorithm in the
first iteration and the modification in all further iterations,
all vertices of the initial net are interpolated.
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Table 10. The weights of the masks of the
modified butterfly algorithm for � �'& and
���98�������� ��!#" .
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Figure 11. The E- and V-masks of the modified
butterfly algorithm near a vertex of valence
��� 8 .

Figure 12. The surface generated from the net
shown in Figure 13 by the butterfly scheme
(top) and our modification (bottom).



Figure 13. The control net used for Figure 12.
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