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In this article, we present regularly parametrized Gk free-form spline surfaces that extend box and half-box splines over regular

triangular grids. The polynomial degree of these splines is max{4k + 1, �3k/2 + 1�r}, where r ∈ N can be chosen arbitrarily

and determines the flexibility at extraordinary points. The Gk splines presented in this article depend crucially on low-degree

(re-)parametrizations of piecewise polynomial hole fillings. The explicit construction of such parametrizations forms the core of

this work and we present two classes of singular and regular parametrizations. Also, we show how to build box and half-box

spline surfaces of arbitrarily high smoothness with holes bounded by only n patches, in principle.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Curver, sur-
face, solid, and object representations; splines

General Terms: Algorithms
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1. INTRODUCTION

Smooth free-form surfaces are commonly built from polynomial patches. In particular, subdivision pro-
vides a powerful method to generate free-form surfaces. A subdivision surface is defined as the limiting
surface of a mesh sequence. In general, subdivision surfaces need not be polynomial, as for example, the
butterfly and

√
3-subdivision surfaces [Dyn et al. 1990; Kobbelt 2000], but many well-known subdivision

algorithms are derived from regular box spline subdivision algorithms. Their limiting surfaces consist
of infinitely many polynomial patches. For example, midpoint schemes [Prautzsch 1998; Zorin and
Schröder 2001], which include the Doo-Sabin, Catmull-Clark, and Qu-Algorithm [Doo and Sabin 1978;
Catmull and Clark 1978; Qu 1990], are based on the Lane-Riesenfeld algorithm [Lane and Riesenfeld
1980] for uniform tensor-product splines. Loop’s algorithm [1987] is based on the subdivision algorithm
for quartic box splines [Prautzsch 1984].

Box spline-based subdivision can also be understood as a process by which more and more polynomial
patches are added to an initial box spline surface defined by a mesh being subdivided. The initial surface
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Fig. 1. A regular triangular grid.

consists of finitely many patches and has holes associated with irregularities in the mesh. Under
subdivision, such a hole is filled with infinitely many patches surrounding a so-called extraordinary
point.

While subdivision is elegant and simple, subdivision surfaces typically suffer from shape artifacts
[Karciauskas et al. 2004; Peters and Reif 2004] and it has been shown [Reif 1996; Prautzsch and Reif
1999] that generating smoother subdivision surfaces with second- or higher-order smoothness at the
extraordinary points cannot be as simple and elegant. Therefore, other methods are preferred to fill
n-sided holes in piecewise polynomial spline surfaces.

The construction by Hahn [1989] is one of the oldest. There, the surfaces are piecewise polynomial
of degree O(k2). More recently, Reif presented singularly parametrized Gk surfaces with polynomial
degree 2k + 2 (see Reif [1998]). Simultaneously, the same technique was used to construct regular Gk

surfaces of the same degree 2k + 2 in Prautzsch [1997]. Further improvements were made in Peters
[2002].

So far, the constructions in Prautzsch [1997] and Peters [2002] have been outlined only for k = 2. In
this article, we show that these ideas can be extended to construct hole fillings for three-direction box and
half-box splines of any smoothness-order k. The polynomial degree of our fillings is max{4k + 1, � 3

2
k +

1�r}, where r ∈ N can be chosen arbitrarily. The number r controls the flexibility at extraordinary
point, that is, the filling consists of a reparametrized, split, and modified polynomial of degree r. A
crucial point is the construction of a parametrization for the filling polynomial. We present two different
parametrizations. The first is singular in analogy to the parametrization for quadrilateral patches in
Reif [1998]. We show that this singular parametrization is a special degenerate parametrization from
a class of regular parametrizations we present second.

2. BOX SPLINE SURFACES

The symmetric box splines of order m over the triangular grid spanned by [1 0]t , [0 1]t , [−1 − 1]t are
C2m continuous, and piecewise polynomial of degree 3m + 1 on each triangle of the grid. The grid is
shown in Figure 1. We are using only these box splines, since we need their symmetries.

In particular, let B0(u) be the piecewise linear box spline over this triangular grid defined by

B0(i) =
{

1, if i = 0
0, if i ∈ Z2\{0}

and let

Bm(u) = B0(u)∗ m. . . ∗B0(u)
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Fig. 2. A B-primitive of order two, schematically.

Fig. 3. A box spline surface of order two (right) and its control net (left).

be the m-fold convolution of this. A linear combination of these basis functions Bm(u)

s(u) =
∑
i∈Z2

ci Bm(u − i)

forms a box spline surface of order m. The control net of s(u) is a regular triangular net with the vertices
ci. Any triangle of this net with the next m-rings of surrounding triangles is called a B-primitive of order
m (see Figure 2). Every B-primitive determines one triangular polynomial patch of s(u) (see Prautzsch
and Boehm [2002]).

By definition, a box spline surface has a regular control net. With symmetric box splines Bm(u) it is
possible to extend this definition. In this article, a box spline surface of order m with an arbitrary, that
is, not necessarily regular, triangular net consists of the patches defined by all B-primitives of order
m contained in the net. For simplicity, we only consider nets without boundary. Then, all vertices with
valence n �= 6 are irregular. If all irregular vertices are surrounded by at least 2m-rings of regular
vertices, each of them corresponds bijectively to an n-sided hole in the box spline surface. Figure 3
shows a box spline surface of order two and its control net. Note that it is impossible to define box spline
surfaces with B-primitives which are not symmetric if the control net has irregular vertices.

The “size” of an n-sided hole in a box spline surface s(u) depends on the order m. The hole boundary
is formed by n · m patches of s(u), where we do not count patches with only one corner on the hole
boundary. We wish to fill these holes smoothly and first show how to reduce their size. The k-ring of a
vertex c consists of all vertices that are not further away from c than k edges, that is, it consists of c and
the next k-rings of vertices around it. In particular, the 0-ring of c consists only of c and a (−1)-ring is
empty. Let k ≤ m and let the k-ring of any irregular vertex coalesce into one multiple vertex, as shown in
Figure 4.

Further, we treat irregular vertices specially. To explain how, it suffices to consider a net with one
irregular vertex of valence n �= 6. This net consists of n regular net segments C1, . . . , Cn that are

ACM Transactions on Graphics, Vol. 25, No. 4, October 2006.



1284 • H. Prautzsch and G. Umlauf

Fig. 4. An irregular vertex as a multiple vertex for k = 1.

Fig. 5. A net segment Di (left) and the associated box spline surface di for order m = 2 and k = 1 (right), schematically.

topologically equivalent to a regularly subdivided cone, as shown by heavy lines in the left of Figure 5.
We count periodically, that is, Ci = Ci+n, and assume that Ci is adjacent to Ci+1.

To get to the surface, we momentarily remove the (m − k − 1)-ring of the irregular vertex. What
remains of one segment Ci is equivalent to an obtuse cone. Then, we add to the remains of Ci the next
m layers of control points (and thus also reinsert the points momentarily removed). Finally, we replace
the irregular k-ring by a regular degenerate k-ring at the same position such that we obtain a regular
net Di, as shown schematically in the left of Figure 5. The net Di defines a box spline surface di(u) of
order m, as shown in the right of Figure 5.

Since Di and Di+1 are parts of a regular net, di(u) and di+1(u) have a C2m joint. Consequently,
d1(u), . . . , dn(u) form a C2m surface with a hole whose boundary is formed by n(m − k) patches. We call
it a b-surface of type mk, or shortened, a bmk-surface.

If n < 6, we obtain a kmk-surface in exactly the same fashion. However, the net segments Di have
coalescing vertices in this case and are not just simple subsets of the entire net. Therefore, it is easier
to see what happens if we double the net and view it as a two-sheeted net winding around the irregular
vertex twice. Thus, the valence of the irregular vertex is doubled and as described before, we obtain a
bmk-surface. The surface has two sheets winding around its hole twice. Removing the extra sheet, we
finally obtain a bmk-surface with an n-sided hole.

Note that a bmm-surface has no holes. Its derivatives up to order 2m are zero at extraordinary points,
but, in general, it is not a C2m-manifold. Since a bmm-surface is subdividable, we can conclude from
Prautzsch and Reif [1999] that the vicinities of extraordinary points have regular C2m parametrizations
only if they are planar. Also note that a generic bmk-surface with k < m has no singularities unless the
control net further degenerates.

In the following, we assume that we have a given bmk-surface, where k = m − 1 or k = m − 2. It is
our goal to show that the holes of this surface can be filled smoothly for arbitrary high orders m.
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Fig. 6. The patches xi , schematically.

3. FILLING HOLES IN BOX SPLINE SURFACES

Let r ≥ 2 be an arbitrary integer and consider an n-sided hole of a bmk-surface, where k = m − 1 or
k = m − 2. The hole can be filled smoothly with 4n triangular patches of degree max{(3m + 1)r, 8m +
1} obtained from a best filling polynomial of degree r that we reparametrize, split, and modify. The
construction is based on the ideas introduced in Prautzsch [1997] and Prautzsch and Umlauf [2000].

To describe this construction, we need what we call a pre-Cp joint. Let aijk and bijk be the Bézier
points of two triangular patches a and b, respectively. Let a0jk = b0jk. The patches a and b have a
pre-Cp joint along the corresponding boundary curve if aijk and bijk for i ≤ p and ( j ≤ 2p or k ≤ 2p)
are as if a and b had a Cp joint.

Construction 3.1. First, we construct a planar, piecewise polynomial n-sided macropatch x(u) of
degree 3m + 1 consisting of 4n triangular patches xi(u) with C2m joints, except between the inner
patches x1, . . . , xn (see Figure 6). For symmetry reasons, we construct xi, xi+n, xi+2n and xi+3n to be a
rotation of x1, x1+n, x1+2n and x1+3n by i

n2π , respectively. The details are given in Section 4.
Second, let q(u) be polynomial of degree r and let

pi(u) = q(xi(u)), i = 1, . . . , 4n.

The C2m joints of patches xi(u) are carried over to the patches pi(u). Note that pi is of degree (3m+1)r.
If q(x) is determined appropriately, then the n-sided surface p formed by pi lies “in” the n-sided hole

of the bmk-surface, but we need to modify the boundary of p to obtain a C2m joint with the bmk-surface.
Locally, the bmk-surface is a box spline surface which can be extended into the hole by further patches.
This means that we can change any patch pi, i ≥ n+1 such that it has a C2m joint with the bmk-surface,
and even such that it has a pre-C2m joint with any adjacent patch p j . The Bézier points not involved
in pre-C2m joints can be changed so as to obtain full C2m joints (see, e.g., Prautzsch et al. [2002]).

Thus, for the modified patches pi(u), some Bézier points depend on q(x), some depend on the bmk-
surface, and some are constrained by C2m joints between the pi(u). All other Bézier points can be chosen
arbitrarily. These points, together with q(x), can be determined such that the pi(u) minimize a fairness
functional, such as thin plate energy or other functionals involving higher-order derivatives.

Next, we present two different parametrizations x(u).
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Fig. 7. The control net of a singular parametrization xb for n = 5 and m = 3.

4. A SINGULAR PARAMETRIZATION FOR THE FILLING

First, we present a singular parametrization xb = x of degree 3m + 1. It has similar properties as the
parametrization used in Reif [1998]. The map xb(u) is a bmm-surface controlled by an (m + 2)-ring. The
n(m + 2) boundary control points lie equally spaced on a regular planar n-gon and similarly the next
ring of control points, while all other points lie at the center, as illustrated in Figure 7. The boundary
triangles are isosceles with vertex angle 2π/n.

THEOREM 4.1. The map xb(u) is injective and, except for its center point, regular.

PROOF. It suffices to consider the patch x1(u). We choose the multiple control point as the origin and
the symmetry axis of x1(u) as the v-axis of the coordinate system, as shown in Figure 7. We assume that
the triangle [0 0]t , [1 1]t , [0 1]t is the parameter domain of x1(u) (see Figure 1). The partial derivatives
∂
∂ux1 and

(
∂
∂u + ∂

∂v

)
x1 are controlled by certain edge directions of the control net. We call these the u-

and uv-directions.
Any real interval I of angles defines a pointed cone

Ic =
{

r
[

cos ϕ

sin ϕ

]∣∣∣∣ r ≥ 0, ϕ ∈ I
}

.
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Fig. 8. Boehm’s mask.

The u-direction of all u-edges in the left half-plane u ≤ 0 lie in the cone

A =

⎧⎪⎨⎪⎩
(π

n
− π

2
, 0

]
c

, if n ≥ 6(
π

n
− π

2
,

3π

n
− π

2

)
c

, if n ≤ 5
(1)

and the uv-directions of all uv-edges starting in the half-plane u ≤ 0 lie in the cone

B =

⎧⎪⎪⎨⎪⎪⎩
[

2π

n
,
π

2
+ π

n

)
c

, if n ≥ 4[
π

2
,

5

6
π

)
c

, if n = 3.

Subdividing the control net (with scaling factor two) means that edge directions are halved and
averaged by Boehm’s mask, shown in Figure 8. These operations preserve the aforementioned cone
properties if all directions averaged lie in A or B. Because of symmetry, u-edges crossing the v-axis
are perpendicular to this axis before and after subdivision. This implies that the directions of uv-edges
starting at the v-axis lie in B (and the half-plane u ≤ 0) before and after subdivision. Thus, in summary,
subdivision preserves the cone properties, which implies that the derivatives ∂

∂ux1 and
(

∂
∂u + ∂

∂v

)
x1 lie

in A and B, respectively. Because of the nonzero control edges, the derivatives are nonzero, except at
0. Therefore, we can argue as in Umlauf [2004] and show that the “left” part of x1(u, v), where v ≥ u
and (u, v) �= 0, is injective and regular. Due to symmetry, x1(u) is injective and regular for all u �= 0.

Further, x1(u, v) = x1(0) implies that x1(u, v) = x1(v, u), since x1(0) = 0 lies on the symmetry axis of
x1. Because of injectivity, we obtain u = v. Since the half-open line segment (0, (1/2, 1/2)] is mapped
injectively into the v-axis, the continuous map x1 is also injective on the closure. Hence, 0 is the only
point mapped onto 0 under x1, which concludes the proof.

5. A REGULAR PARAMETRIZATION FOR THE FILLING

Now, we present a regular parametrization x of degree 3m + 1. This is a modification of the singular
parametrization in Section 4.

Let x be as in Section 4 and let xijk, i + j + k = 3m + 1 = d , be the Bézier points of x1(u) such that
xd00 = x1(0) = 0, x0d0 = x1(0, 1), and x00d = x1(1, 1) are the corner points. We change the points xijk

for i < d by

xijk := ε

d
( j x0d0 + k x00d ),

where ε > 0.
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Fig. 9. The control net of the outer patches xn+1, . . . , x4n for m = 2.

LEMMA 5.1. The map x1 is regular and injective for sufficiently small ε.

PROOF. The curve a(v) = x1(αv, v), α ∈ [0, 1/2] has the Bézier points

ai =
{

(1 − α)xd−i,i,0 + αxd−i,0,i , i < d
x1(α, 1) , i = d .

Hence,

�ai ∈
(π

2
− δ,

π

2
+ π

n
+ δ

)
c

with δ, depending on ε, and lim
ε→0

δ = 0. The cross-derivative curve ∂
∂u x1(αv, v) has the Bézier points

bi =
{

ε(x00d − x0d0) , i < d − 1
∂

∂u
x1(α, 1) , i = d − 1.

For α ≤ 1/2, these points lie in cone A (see Eq. (1)). It is straightforward to conclude from these estimates
that x1 is regular and injective for sufficiently small ε.

Changing also x2, . . . , xn in a similar fashion, we obtain a regular and injective map x.

Remark 5.2. In the preceding construction, the outer patches xn+1, . . . , x4n are determined by a con-
trol net, as shown in Figure 7. Instead, we could use a control net, as shown in Figure 9. Then, it
seems possible to construct x1, . . . , xn as regular injective maps with C2m contact to the outer patches
xn+1, . . . , x4n. For m = 1, this is done in Prautzsch and Umlauf [2000]. For m = 2 and n = 5, the Bézier
points are shown in Figure 10.

6. HALF-BOX SPLINE SURFACES

A bmk-surface has even smoothness-order. To obtain similar surfaces with odd smoothness-orders, we
use symmetric half-box splines. In this section, we recall the definition of half-box splines and in the
next section, we show how to fill a hole in a half-box spline surface, in analogy to the construction for
bmk-surfaces.

ACM Transactions on Graphics, Vol. 25, No. 4, October 2006.
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Fig. 10. The Bézier points of the inner patches x1, . . . , xn for m = 2.

The piecewise constant half-box splines over the triangular grid shown in Figure 1 are translates of
the two functions

H �
0 (u) =

{
1, if u ∈ �
0, else

and H �
0 (u) =

{
1, if u ∈ �
0, else

,

where � and � are the two triangles

� := {u | 0 ≤ u ≤ v < 1} and � := {u | 0 ≤ v < u < 1}
which form a partition of the unit square. A convolution with the box spline Bm(u) gives the symmetric
half-box splines

H �
m (u) = H �

0 (u) ∗ Bm(u) and H �
m (u) = H �

0 (u) ∗ Bm(u)

of order m. They are C2m−1 continuous and polynomial of degree 3m on each triangle of the grid. We
use them to build half-box spline surfaces

s(u) =
∑
i∈Z2

(
c�

i H �
m (u − i) + c�

i H �
m (u − i)

)
of order m. The control net of s(u) is a regular hexagonal net with the vertices c�

i and c�
i . Any vertex

of this net with the next m-rings of surrounding hexagons is called an H-primitive of order m (see
Figure 11). Every H-primitive determines one triangular polynomial patch of s(u) (see Prautzsch and
Boehm [2002]).

Half-box spline surfaces can be generalized in analogy to box spline surfaces. For this we are using a
duality. A net N and triangular net T are called dual if there is a one-to-one correspondence between
vertices of N and faces of T such that vertices with a common edge correspond to faces with a common
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Fig. 11. An H-primitive of order two, schematically. It is dual to the dotted B-primitive of order two.

Fig. 12. The control net of a singular parametrization x for n = 5 and m = 2.

edge, and vice versa. If two triangles in T coincide, their dual vertices in N also coincide. Under this
definition, H-primitives of order m are dual to B-primitives of order m. In particular, if the vertices of
N are the centroids of their dual triangles in T , we call N the centroid net of T .

A general half-box spline surface of order mk, or shortened, an hmk-surface, has a control net N that
is dual to the control net of a bmk-surface. It consists of all patches determined by the H-primitives in
N that are dual to the B-primitives in T . Thus, an hmk-surface is piecewise polynomial of degree 3m
and 2m − 1 times continuously differentiable.
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Fig. 13. The control net of the outer patches xn+1, . . . , x4n for m = 2.

Fig. 14. The Bézier points of the inner patches x1, . . . , xn for m = 2.

As in Section 2, an hmm-surface has no holes. Its derivatives up to order 2m−1 are zero at extraordinary
points, but, in general, it is not a C2m−1-manifold.

7. FILLING HOLES IN HALF-BOX SPLINE SURFACES

Let r be an arbitrary integer and consider an n-sided hole of an hm,k-surface, where k = m − 1 or
k = m − 2. The hole can be filled smoothly with 4n triangular patches of degree max{3mr, 8m − 3} in

ACM Transactions on Graphics, Vol. 25, No. 4, October 2006.
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complete analogy to Section 3. Next, we show how to “dualize” the singular and regular parametrizations
x(u) given in Sections 4 and 5.

7.1 A Singular Parametrization for the Filling

Let map xh(u) be the hmm-surface controlled by the centroid net of the control net of xb(u) given in
Section 4 (see Figure 12). This is a singular parametrization as that to fill the hole of a hmk-surface by
Construction 3.1.

THEOREM 7.1. The map xh(u) is injective and, except for its center point, regular.

PROOF. The control vectors of the derivative ∂
∂uxh form the centroid net of the control net of ∂

∂uxb, and

similarly for the derivative
(

∂
∂u + ∂

∂v

)
xh. This hexagonal centroid net can be split into two triangular

nets (see Prautzsch and Boehm [2002]). Subdividing the hexagonal net means to duplicate its vertices
and average each triangular net using Boehm’s mask, shown in Figure 8. Therefore, we can continue
exactly as in the proof of Theorem 4.1. This will prove this theorem also.

7.2 A Regular Parametrization for the Filling

As shown in Section 5, we can change the preceding singular parametrization xh into a regular and in-
jective parametrization of the same degree. Again, it is possible to define the outer patches xn+1, . . . , x4n

by a less degenerate control net, as seen in Figure 13. The Bézier net of x1, . . . , xn for m = 2 and n = 5
is shown in Figure 14.

8. CONCLUSION

We have introduced box and half-box spline surfaces with multiple extraordinary points to minimize
the holes of general box and half-box spline surfaces with arbitrary triangular control nets. Second,
we have proved that the holes can be filled smoothly with a small number of polynomial patches of
low degree. In this article we did not address the important issue of energy minimization for shape
optimization.

We have presented two solutions for both box and half-box spline surfaces. The first solution consists
of a singularly and the second of a regularly parametrized piecewise polynomial filling. It is simple to
prove the correctness of the first solution, but it has the disadvantage of being singular. Therefore, the
second solution should be preferred in practical applications.
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PRAUTZSCH, H., BOEHM, W., AND PALUSZNY, M. 2002. Bézier and B-Spline Techniques. Springer-Verlag, New York.

PRAUTZSCH, H. AND REIF, U. 1999. Degree estimates for Ck-piecewise polynomial subdivision surfaces. Adv. Comput. Math. 10, 2,

209–217.

PRAUTZSCH, H. AND UMLAUF, G. 2000. Triangular G2-splines. In Curve and Surface Design—Saint-Malo 1999. P.-L. Laurent

et al. Eds. Vanderbilt University, Nashville, TN. 335–342.

QU, R. 1990. Recursive subdivision algorithms for curve and surface design. Ph.D. thesis, Department of Mathematics and

Statistics, Burnel University, Uxbridge, Middlesex, UK.

REIF, U. 1996. A degree estimate for subdivision surfaces of higher regularity. Proc. Amer. Math. Soc. 124, 7, 2167–2174.

REIF, U. 1998. TURBS—Topologically unrestricted rational B-splines. Constr. Approx. 14, 1, 57–78.

UMLAUF, G. 2004. A technique for verifying the smoothness of subdivison schemes. In Geometric Modeling and Computing—
Seattle 2003. M. Lucian and M. Neamtu, Eds. Nashboro Press, 513–521.
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