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Abstract. In recent years, subdivision schemes for surfaces of ar-

bitrary topology were developed that do not generalize box-splines

subdivision schemes. Examples for this kind of subdivision schemes

are the
√

3-scheme and certain averaging schemes for triangular and

hexahedral nets. In order to analyze the smoothness of the limit

surface, it is necessary to know if its characteristic map is regular

and injective. For box-spline based schemes this can be done based

on the explicit piecewise polynomial representation.

In this paper, a general approach is introduced that allows ana-

lyzing the characteristic map even if no explicit representation is

available. The proposed technique requires that the first divided

difference schemes are scalar and use convex combinations. Then

simple geometric properties of the sub-dominant eigenvectors of the

subdivision matrix can be used to prove regularity and injectivity

of the characteristic map for any valence. This is demonstrated for

a midpoint scheme for triangular nets.

§1. Introduction

Subdivision algorithms have become a popular technique in computer
graphics for the modeling of free-form curves and surfaces. A vast va-
riety of subdivision algorithms designed for different needs in computer
graphics has evolved over the last decades. These subdivision algorithms
can coarsely be classified into two categories. First there are subdivision
algorithms that have been developed by generalizing the subdivision rules
for spline surfaces in tensor-product B-spline or box-spline representation,
for example [3, 5, 8, 11, 12, 15, 17, 21, 24]. For subdivision algorithms in
this category it is well known that the limit surfaces can be represented
in B-spline or box-spline form almost everywhere. The second category
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contains all those subdivision algorithms that have been developed as in-
terpolatory schemes [7, 9] or from geometric considerations [10, 19]. For
subdivision algorithms in this category no basis functions are known ex-
plicitly for the representation of the limit surface.

The analysis of the smoothness of the limit surface of a subdivision
algorithm depends on the eigenvalues and -vectors of the subdivision ma-
trix [1, 2, 5]. If its second-largest eigenvalue has algebraic and geometric
multiplicity two, the two corresponding linear independent eigenvectors
determine the characteristic map [18]. For a regular and injective char-
acteristic map the limit surfaces are for (almost) all control nets regular
surfaces with continuous normal everywhere [18, 22]. There are basically
three techniques to check if the characteristic map satisfies these condi-
tions:

1. Polynomial representation: The B-spline or box-spline representa-
tion of the characteristic map can be used to prove regularity and
injectivity [8, 12, 13, 20].

2. Linear approximation: A linear approximation to the Jacobian of
the characteristic map with error control is computed to prove reg-
ularity and injectivity [21, 22, 24].

3. Visual inspection: The control net of the characteristic map for some
valences is drawn to judge its behavior visually [10].

The first and second techniques are more complicated to compute but
can prove smoothness while the third is easy to compute but may lead to
mistakes for higher valences.

It is the purpose of this paper to establish a set of simple geometric
criteria for a certain class of subdivision algorithms that are as easy to
compute as the information needed for the visual inspection. These criteria
can be used to prove regularity and injectivity of the characteristic map
for any valence.

The proposed technique will be demonstrated by the midpoint scheme
of order 2 on triangular nets described in Section 2. Its subdivision matrix
is analyzed in Section 3. In Section 4 the geometric criteria to prove
regularity and injectivity of its characteristic map are discussed in detail.

§2. The Midpoint Scheme on Triangular Nets

One subdivision of a regular quadrilateral control net C with the algorithm
of Lane and Riesenfeld for uniform tensor-product B-spline surfaces can
conveniently be formulated in two steps (cf. [16]):

Refinement: Refine the net C by adding edge midpoints and face mid-
points (for quadrilateral nets only) to the net.
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Midpoints: Repeat m-times: Compute the net of face midpoints.

Because of the computation of midpoints this scheme is called the mid-
point scheme of order m. It is well known that it generates for regular
quadrilateral nets piecewise polynomial Cm−1-surfaces of bi-degree m.
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Fig. 1. The stencils of the midpoint scheme of order 2 on triangular nets,
where n denotes the valence of the central vertex.

Using the above formulation of the midpoint scheme of order m it is
obvious that it can be applied to arbitrary nets. In case of a net with
triangular faces the midpoint schemes with even order do not agree with
the respective algorithms for box-splines [24]. This can be seen for example
by comparing the stencils of the midpoint scheme of order 2 on triangular
nets shown in Figure 1 with the stencils of the subdivision scheme for
quartic box-splines over the three-directional grid [11]. Nevertheless, the
limit surfaces of the midpoint scheme of order 2 on regular triangular nets
can be regarded as surfaces over the three-directional grid spanned by
e1 = [1 0]t, e2 = [0 1]t and e3 = [1 1]t, see Figure 2.
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Fig. 2. The three-directional grid.

Let C0 be a regular triangular net and (Cl)l≥0 the sequence of control
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nets generated by a subdivision scheme from C0. Then the directional
difference ∇k of the points cl

i
∈ Cl, i ∈ Z

2, is defined as

∇kc
l
i = cl

i+ek
− cl

i, k = 1, 2, 3.

In general, there exists a matrix subdivision scheme relating the directional
differences of different refinement levels, see [4, 6].

In the sequel we will focus on the midpoint scheme of order 2 on trian-
gular nets. For this scheme there exists a scalar subdivision scheme that
maps ∇k-differences of Cl to ∇k-differences of Cl+1, l ≥ 0. This subdivi-
sion scheme is the so-called ∇k-difference scheme. For k = 1 this scheme
is given by

∇1c
l+1

2i+v
= (6∇1c

l
i−v

+ ∇1c
l
i+v−e1

+ ∇1c
l
i+e2

+ ∇1c
l
i−e3

)/18

for v ∈ {[0 0]t, e1} and

∇1c
l+1

2i+v
= (5∇1c

l
i+v

+ 2∇1c
l
i
+ 2∇1c

l
i−e1

)/18

for v ∈ {e2,−e3}. For k = 2, 3 the ∇k-difference scheme is represented
by similar rules. Using the standard technique of [4, 6] it can been seen
that this scheme generates C1-surfaces for regular triangular nets. The
divided ∇k-differences of Cl converge towards the directional derivatives
of the limit surface with respect to ek for all k. Note that the divided
∇k-difference schemes use only convex combinations.

§3. Analyzing the Subdivision Matrix

The midpoint scheme of order 2 on triangular nets uses only convex com-
binations. Thus there is a square subdivision matrix S mapping the 3-ring
neighborhood of an n-valent vertex in C l to the 3-ring neighborhood of the
corresponding vertex in Cl+1, l ≥ 0. In order to analyze the smoothness
of the limit surface of a subdivision scheme all three techniques described
in §1. Introduction use the spectral analysis of the subdivision matrix.

Because S can be arranged in a block-cyclic form, the discrete Fourier
transform Ŝ = diag(Ŝ0, . . . , Ŝn−1) can be used to compute the eigenvalues
and eigenvectors of S. The Fourier blocks Ŝi, i = 0, . . . , n − 1, are given
by

Ŝi =
1

18




12δi,0 6δi,0

7δi,0 7 + 4ci

δi,0 12 + 2ci 1 1 + ω−i

2δi,0 7 + 7ωi 0 2

0 7 7 2 + 2ω−i 0 0 0
0 7 + 2ωi 2 7 0 0 0
0 2 + 7ωi 2ωi 7 0 0 0
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with ci = cos(2πi/n), si = sin(2πi/n), ωi = ci + si

√
−1 and δ0,0 = 1

and δi,0 = 0 for i 6= 0. Furthermore, the midpoint scheme of order 2 on
triangular nets is a symmetric subdivision algorithm, i.e. it is invariant
under rotations and reflections of the labeling of the control points of the
3-ring neighborhood (see [13]). This condition restricts the set of feasible
eigenvalue distributions.

The subdivision matrix S has the single eigenvalues 1 and 5/18, the
n-fold eigenvalues 1/9 and 1/18, the (4n − 1)-fold eigenvalue 0 and the
eigenvalues λi = (7+4ci)/18, i = 1, . . . , n−1. Since the largest eigenvalue
of S is the single eigenvalue 1 with corresponding eigenvector v1 = [1 . . . 1]t

the subdivision scheme is guaranteed to converge towards a uniquely de-
fined limit point.

If the second largest (so-called sub-dominant) eigenvalue of S has al-
gebraic and geometric multiplicity 2, the characteristic map c is defined
by the two real, linear independent eigenvectors corresponding to the sub-
dominant eigenvalue. For this particular scheme λ1 = λn−1 is the sub-
dominant eigenvalue for n ≥ 4. It originates from the Fourier blocks Ŝ1

and Ŝn−1, respectively. This is a necessary condition for the characteristic
map c of a symmetric subdivision scheme to be injective, see [13]. An ex-
ample control net for the characteristic map is shown for n = 5 in Figure
3.

X

1-axis

�
�

�

Fig. 3. The control net of the characteristic map of the midpoint scheme
of order 2 on triangular nets for n = 5.
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§4. Analyzing the Characteristic Map

For a symmetric subdivision scheme the characteristic map c is made up
of n rotationally symmetric so-called segments. A segment c0 is defined
by a subset of control points X of the control points of c. In case of the
midpoint scheme of order 2 on triangular nets these points are arranged
as in the net drawn with heavy lines in Figure 3. A necessary condition
for the characteristic map to be regular and injective is that c0 is regular
and injective [13, 20]. Note that X depends on n and can be normalized
such that it is symmetric with respect to the 1-axis.

The divided ∇k-differences of X converge towards directional deriva-
tives of c0 with respect to ek for k = 1, 2, 3. The ∇k-differences of X lie
within cones Bk. These can be characterized by the angles between the
∇k-differences and the 1-axis

Bk := [ inf
c
i
∈X

all n

(∠(∇kci, 1-axis), sup
c
i
∈X

all n

(∠(∇kci, 1-axis)].

For the midpoint scheme of order 2 on triangular nets and for n ≥ 4
the net X defining the segment c0 is given by

X=
c0,1

c0,0

c0,−1

c1,2

c1,1

c1,0

c1,−1

c2,3

c2,2

c2,1

c2,0

c2,−1

c3,3

c3,2

c3,1

c3,0

=

»
αβγδ(−1 + 2c1)
bαβγ(9 + 14c1 + 4c2)

–

»
0
0

–

»
αβγδ(−1 + 2c1)

−bαβγ(9 + 14c1 + 4c2)

–

»
14αβγc1
14 bαβγ(1 + c1)

–

»
αβγδ

bαβγδ

–

»
αβγδ

−bαβγδ

–

»
14αβγc1

−14bαβγ(1 + c1)

–

»
α(315 + 560c1 + 166c2 + 8c3)
bα(685 + 844c1 + 182c2 + 8c3)

–

»
αγ(39 + 36c1 + 2c2)
bαγ(39 + 36c1 + 2c2)

–

»
14αβγ

0

–

»
αγ(39 + 36c1 + 2c2)

−bαγ(39 + 36c1 + 2c2)

–

»
α(315 + 560c1 + 166c2 + 8c3)

−bα(685 + 844c1 + 182c2 + 8c3)

–

»
14α(37 + 39c1 + 5c2)
14 bα(37 + 39c1 + 5c2)

–

»
α(543 + 466c1 + 40c2)
bα(173 + 182c1 + 24c2)

–

»
α(543 + 466c1 + 40c2)

−bα(173 + 182c1 + 24c2)

–

»
14α(37 + 39c1 + 5c2)

−14bα(37 + 39c1 + 5c2)

–

with α = c1/2, α̂ = s1/2, β = (3 + 2c1), γ = (7 + 4c1), δ = (5 + 4c1).
Note that up to this point all techniques to analyze a subdivision

scheme agree.
The first coordinates of the points of X increase in direction e1 while

the second coordinates decrease in direction e1 and increase in direction e2.
Thus the first coordinates of the ∇1-differences and the second coordinates
of the ∇2-differences are positive while the second coordinates of the ∇1-
differences are negative for n ≥ 4. This yields for the cones Bk for n ≥ 4

B1 ⊆ (−π/2, 0), (1)

B2 ⊆ (0, π), (2)

B3 ⊆ (0, π/2). (3)
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Denote by |Bk| the “length” of the interval Bk. The cones Bk provide
a criterion for the characteristic map c to be regular and injective:

Theorem 1. For a symmetric subdivision scheme the characteristic map
is regular and injective, if

1. the divided ∇1- and ∇3-difference schemes are scalar and use only
convex combinations,

2. none of the ∇1- and ∇3-differences of X vanish and

3. the cones B1 and B3 satisfy the conditions

|B1 ∪ B3| < π (4)

and
B1 ∩ B3 = ∅. (5)

Proof: We prove first regularity and then injectivity of c0. Let k = 1 or
k = 3.

Condition (4) implies |Bk| < π. Thus all directional derivatives of
c0 with respect to ek are computed as convex combinations of divided
∇k-differences and do not vanish because of 2.

Denote by B̂k the cone of the (−∇k)-differences. Because the divided
∇k-difference schemes use only convex combinations the respective direc-
tional derivatives lie within Bk or within B̂k. Condition (4) implies that

B̂k does not lie in the half-space of B1 ∪ B3. Therefore condition (5)
implies that the set

(B1 ∩ B3) ∪ (B1 ∩ B̂3) ∪ (B̂1 ∩ B3) = ∅
is empty. Thus there are always two linear independent, non-vanishing
directional derivatives of c0, so that c0 is regular.

Assume that there are two different points p 6= q in the domain Ω of
c0 with c0(p) = c0(q). Then c0(tp + (1 − t)q) for t ∈ [0, 1] is a closed
curve on c0. Therefore its tangent t(t) covers an angle of at least π. If
p−q = αe1+βe3 with α, β ≥ 0, then the angle between t(t) and the 1-axis
lies within B1 ∪ B3. (The other cases for p − q are treated analogously.)
Because of condition (4) this angle is smaller than π, so that t(t) can cover
only an angle smaller than π. Thus p and q with the assumed properties
cannot exist and c0 is injective.

Remark 1. Note that only the last condition in Theorem 1 depends on
the valence of the irregularity.

For the midpoint scheme of order 2 on triangular nets both conditions
(4) and (5) are fulfilled for n ≥ 4, see (1) and (3). Because the divided ∇k-
difference schemes of this particular scheme use only convex combinations
and the points of X are pairwise distinct, Theorem 1 implies:
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Theorem 2. The midpoint scheme of order 2 on triangular nets generates
for (almost) all initial control nets regular surfaces with continuous normal
everywhere.

Because the analysis technique in Theorem 1 makes assumptions on
the subdivision scheme and on the control points of the characteristic map,
it should apply to other schemes that lack a rigorous proof of regularity
and injectivity of the characteristic map. For example, this technique
applies to the subdivision schemes of [3, 5, 11] and makes the respective
smoothness proofs much simpler. Furthermore, already in [14] it is used
to prove the smoothness of the limit surface for a 4-3 scheme.

Acknowledgements: The author thanks H. Prautzsch, M. Sabin and
the anonymous referee for their helpful comments during the work
and revision on this paper.
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