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Abstract—We present a 3d-laser-scan simulation in virtual
reality for creating synthetic scans of CAD models. Consisting of
the virtual reality head-mounted display Oculus Rift and the
motion controller Razer Hydra our system can be used like
common hand-held 3d laser scanners. It supports scanning of
triangular meshes as well as b-spline tensor product surfaces
based on high performance ray-casting algorithms. While point
clouds of known scanning simulations are missing the man-made
structure, our approach overcomes this problem by imitating
real scanning scenarios. Calculation speed, interactivity and the
resulting realistic point clouds are the benefits of this system.

I. INTRODUCTION

In science and industry 3d laser scanners are widely used
to acquire 3d point data of real world objects. The result
of a scanning process is a 3d point cloud. Often a CAD
representation of these point clouds needs to be recovered
for the subsequent processing. This task is performed by the
reverse engineering process. Thus, the quality of the CAD
representation depends on the chosen reverse engineering
process.

Evaluating reverse engineering algorithms is only possible
if a large set of point clouds is available. To acquire these
points clouds CAD models are scanned virtually. There are
two reasons for this approach. First, we often lack enough
suitable physical objects to scan and, second, point clouds of
hand-scanned physical objects often lack corresponding CAD
information. However, point clouds of hand-scanned physical
objects and synthetically generated point clouds differ heavily
in their structure in terms of scan-strategy and scan-path.

Fig. 1: FARO
Edge ScanArm
(www.faro.com,
09/25/2015)

Since each human operator has a dif-
ferent scan-strategy and scan-path, the
resulting point clouds differ much in
structure, even if the same object was
scanned. On the one hand this structure
is not completely random, on the other
hand there is no good model for the
human scanning procedure. For a fair
evaluation of reverse engineering algo-
rithms with realistic data this man-made
structure must be incorporated into the
data. To generate scans of CAD models
that capture this man-made structure we
propose a virtual reality (VR) scanner
setup. We present a method to generate
3d point clouds from CAD models consisting of triangle
meshes and b-spline tensor product surfaces with a simulated
hand-held laser scanner in a VR environment. Our goal is to
create a realistic simulation of the scanning process with a

hand-held laser scanner like the FARO Edge ScanArm (Fig.
1). Using this approach we can compute 3d point clouds of
CAD models using a virtual laser scanner with a man-made
scan structure.

This paper is laid out as follows: First we describe our
experimental setup and the used peripherals in Chapter II.
Chapter III outlines parameters of the scanning simulation and
the used data structures. We then explain the process of ray-
casting for triangle meshes in Chapter IV and for b-spline
surfaces in Chapter V. Results are presented in Chapter VI.

A. Related Work

The two most commonly used methods for high accuracy
3d scanning are laser scanners and structured light scanners.
While hand-held laser scanners project a laser line onto the
object surface structured light laser scanners project a pattern
of light. Especially since the Michelangelo Project [1] laser
scanning systems have received increasing attention. Resulting
point clouds are used in numerous research fields. Ip and
Gupta [2] are retrieving matching CAD models by using
partial 3d point clouds. They use real and synthetic point
clouds. To generate the synthetic point clouds CAD surfaces
are evaluated at random parameters. Mitra et al. [3] register
two point clouds by minimization of the squared distance
between the underlying surfaces. They use synthetic point
clouds from random evaluation with an unspecified noise.
Bernardini and Bajaj [4] use synthetic point clouds generated
by sampling a surface uniformly for an automatic reconstruc-
tion process. In [5] Tagliasacchi et al. extract curve skeletons
from incomplete point clouds. They use a bounding sphere
around a CAD model at its center to get different viewpoints.
These viewpoints are used for orthographic ray casting from a
uniform grid. A very similar approach is used in [6] where a
fan of rays with origin on a bounding sphere is swept along the
model surface from different viewpoints. However, all these
approaches do not capture a realistic scan structure.

The application of VR is widespread in various scientific
areas. Especially in medical research VR has a huge potential
using it for surgery trainings [7] or the medication in occupa-
tional therapy [8]. In the future, there will be many different
applications of virtual or augmented reality simulations. A
collaborative approach to develop those applications is given
by [9] which also contains a collection of motion control tech-
niques. Numerous different tools are available and individual
techniques should be selected according to a concrete target
application at hand.
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II. EXPERIMENTAL SETUP

For the simulation of a hand-held 3d laser scanner we
propose a VR environment. The structure of the synthetic point
clouds generated in this VR is similar to man-made scans of
physical objects due to the manual scanning process (Figure
2). The virtual scene consists of a workshop with a table, that
carries the CAD model, and a virtual model of the scanner,
see Figure 3.

Fig. 2: VR setup.

The user can move freely in the scene, change the perspec-
tive and field of view in terms of the CAD model and operate
the laser scanner.

For the VR setup two essential peripherals are used (Figure
4): the VR headset Oculus Rift [10] for visual immersion and
the motion controller Razer Hydra [11] for scanner control
and scene navigation.

The Oculus Rift provides a 3d view of the VR scene
and allows to freely explore the 3d scene. Integrated sensors
provide data about the user’s head position and orientation.
Due to its large field of view the degree of immersion in the
scene is very high.

The Razer Hydra consists of two wired controllers and a
base station, which creates a magnetic field to determine the
controllers’ spatial positions. It can capture hand movements
and orientations accurately and provides joysticks and buttons
for control tasks.

Both devices are integrated using the manufacturer’ APIs:
Oculus Rift SDK [10] and Sixense Core API [11].

III. SIMULATION PARAMETERS AND DATA STRUCTURE

A. Laser line probe

The simulation is based on ray-casting computing intersec-
tions of a ray and a triangle mesh or b-spline tensor product
surface. The ray is emitted by a virtual laser line probe. The
virtual scanner simulates a real laser scanner by sweeping a
planar cone of n + 1 rays R0, . . . , Rn over the surface, see
Figure 5. The rays originate from scanner position O and lie

Fig. 3: The virtual scene.

Fig. 4: Left: Oculus Rift (www.giga.de, 09/25/2015), Right:
Razer Hydra (www.roadtovr.com, 09/25/2015)

within a cone with axis D and aperture angle ϕ. Two rays
Ri−1 and Ri have angle ϕ/n for i = 1, . . . , n.

The orientation of the operator’s hand controls the view
direction D. The number of rays n and the aperture angle ϕ
are adjustable. The scan line S is the set of intersection points
of the rays R0, . . . , Rn with the surface.

Fig. 5: The setup of the simulation of a laser scanner.

The laser line probe model contains two types of noise.
The first noise affects the scanner position O, where a random
offset is added. This noise affects all intersection points of one
cone equally. The second noise affects the distance of each
intersection point from O by modifying the direction of each
ray slightly. Both noises are defined by a normally distributed
offset with zero mean and user defined variance.
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B. Data structure

An octree with axis aligned bounding boxes (AABBs) as
nodes is used to partition the bounding box of the CAD model
recursively. For a triangle mesh, the triangles are directly
inserted into the octree using a triangle-box overlap algorithm
[12]. For a b-spline surface, the surface is segmented to
determine the parametric interval where the ray intersects the
surface. Each segment is bounded by its segment bounding box
(SBB). The axis aligned SBBs are inserted into the octree’s
AABBs by checking their corner coordinates. The octree’s
leaf nodes contain the triangles or SBBs. To eliminate non-
intersecting geometry, ray-box-intersections are tested as in
[13, p. 741-744]. If the ray-box-intersection test is positive,
the octree is recursively traversed to a leaf node. This process
yields a set of leaf nodes possibly containing the actual surface
intersection. The geometry inside each of these leaf nodes is
tested for intersections (see Chapters IV and V). Finally, the
intersection point closest to the scanner position O is selected
as the correct ray-surface intersection.

IV. RAY-CASTING FOR TRIANGLE MESHES

Intersection testing for an arbitrary ray with a triangle in
3d is one of the most important non-trivial operations in ray-
tracing oriented rendering. The presented solution [14] first
checks if a given ray R from P0 to P1 intersects a plane P
spanned by triangle T with normal n. If P is intersected, the
intersection point P (rI) is checked to be inside T .

First, the intersection point P (rI) of the ray R = P0 +
r(P1 − P0), r ∈ R, with P is computed. P (rI) has the
parameter

rI =
n · (V0 − P0)

n · (P1 − P0)
(1)

on R. A valid intersection between R and P occurs only if
the denominator of (1) is nonzero and rI is real with rI ≥ 0.

Second, the coordinates PI of P (rI) in the plane are
computed. A parametrisation of P is given by

V (s, t) = V0 + s(V1 − V0︸ ︷︷ ︸
u

) + t(V2 − V0︸ ︷︷ ︸
v

)

where V1, V2, V3 are the corners of T and s, t ∈ R. PI =
V (sI , tI) is inside the triangle T if

sI ≥ 0, tI ≥ 0 and sI + tI ≤ 1.

PI is on an edge of T if one of the conditions

sI = 0, tI = 0 or sI + tI = 1

is true. Each condition corresponds to one of T ’s edges, see
Figure 6. In order to compute sI and tI , we use barycentric
coordinate computation using a 3D generalized perp operator
on P as in [15]. With w = P1 − V0, which is a vector in P ,
we solve the equation

w = su+ tv.

Fig. 6: Ray-triangle intersection

The final result uses five dot products

sI =
(u · v)(w · v)− (v · v)(w · u)

(u · v)2 − (u · u)(v · v)
,

tI =
(u · v)(w · u)− (u · u)(w · v)

(u · v)2 − (u · u)(v · v)
.

V. RAY-CASTING FOR B-SPLINE SURFACES

A non-uniform b-spline tensor product surface is defined as

s(u, v) =

n∑
i=1

m∑
j=1

ci,jN
p
i (u)N

q
j (v).

Np
i (u) and Nq

j (v) are the b-spline basis functions of degree p
and q while ci,j are the surface control points. The following
ray-casting approach is based on [16]. To find the exact ray-
surface intersection point, Newton’s method is used. This
method requires a good initial guess for parameters u and v of
the intersection point. Therefore, we first subdivide the surface
into simpler, close to linear, surface segments. These segments
are enclosed in SBBs. Testing the ray for intersections with the
SBBs, we can eliminate segments that will not be intersected.
If a box is intersected, the median of the parametric interval
in which the ray possibly intersects the surface, is used as
initial guess. Convergence of Newton’s method is tested for
each intersected SBB.

A. Surface refinement

Each SBB encloses a surfaces segment defined over one
knot interval, see Figure 7. In order for Newton’s method to
converge fast and robustly, it is necessary that the initial guess
(u∗, v∗) is already close to the root. To achieve this, the control
point mesh, respectively the knot vector, is refined such that
each segment fulfills a curvature-based flatness criterion. The
extent of refining a segment defined over knot-span [ti, ti+1) is
given by the product of its maximum curvature κ and its arc
length δ. Regions with high curvature should be subdivided
to avoid multiple roots. Long curve segments should be
subdivided to ensure that the initial guess is reasonably close
to the root. The heuristic for the number of knots n which
will be added to a given knot-span is therefore

n = C · max
[ti,ti+1)

(κ) · δ3/2, (2)
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where C allows to control the extent of the refinement. δ is
estimated by the sum of distances of sampled segment points.
Since a rough guess of maximum curvature is sufficient, a
simplified calculation

max
[ti,ti+1)

(κ) ≈
max[ti,ti+1) (|c′′(t)|)
avg[ti,ti+1)

(|c′(t)|2)

can be used. This heuristic is applied to each row of the knot
grid. The maximum number of knots over all rows determines
the number of knots that will be inserted into each u interval.
This process is repeated for all columns.

Fig. 7: A b-spline’s segments bounded by SBBs in between
knot intervals and intersected by ray R.

B. Segment bounding boxes

To acquire tight bounding boxes which completely enclose
the part of the surface between two knots, the multiplicity
of each knot is increased to the degree of the surface. This
yields the Bézier representation of the segments. Using the
convex hull property of the Bézier representation coordinate-
wise yields axis aligned SBBs, which are inserted into the
octree data structure.

C. Root finding

For root finding the ray is described as the intersection of
two planes P1 = (N1, d1) and P2 = (N2, d2) in Hessian
form. N1 and N2 are the orthogonal vectors of unit length,
perpendicular to the ray. The roots (u∗, v∗) of

F (u, v) =

(
N1 · S(u, v) + d1
N2 · S(u, v) + d2

)
yield the intersection points. F measures the distance of the
evaluated point (u, v) on the surface to both planes. These
roots are computed using Newton’s method. It converges
quadratically if the initial guess is close to the root and the
root is simple, which is ensured by the preceding refinement.
Newton’s iteration for the two parameters u and v is described
as (

un+1

vn+1

)
=

(
un
vn

)
− J−1(un, vn)F (un, vn), (3)

where the Jacobian matrix J of F has the form

J = (Fu, Fv) =

(
N1 · S∂u(u, v) N1 · S∂v(u, v)
N2 · S∂u(u, v) N2 · S∂v(u, v)

)
.

Using the initial guess for u and v the iteration is started.
This process is iterated until the stopping criterion is met.

The iteration is stopped when the difference of the parametric
values of successive iterations is smaller than pre-defined ε

|un − un−1|+ |vn − vn−1| < ε.

The resulting parameters provide the intersection point PI .
There are cases, when the iteration will not converge within

the given knot intervals. Thus, iteration is cancelled if one of
following criteria is met:
• The iteration diverges after converging.

• u or v lie outside the parameter domain of the segment.

• The number of iterations exceeds a pre-defined maxi-
mum.

In our application we observed that the algorithm usually
converges after three to four iterations. We set the maximum
number of iterations to ten, to ensure convergence for almost
all cases.

The implementation of this surface intersection algorithm is
based on the OpenNURBS library [17].

VI. RESULTS

A. B-spline refinement factor

The chosen value C in the surface refinement process (2)
influences the size of the parametric intervals and therefore the
number of SBBs. This affects how well Newton’s method is
converging. If it is chosen too large performance decreases,
if it is chosen too small reliable convergence cannot be
guaranteed. In practice a value between 30 and 40 provides
good results, meaning that there were no performance issues
and high convergence rates.

B. Performance analysis

There are certain requirements to achieve interactive feed-
back of the scan simulation. First, the frame rate is fixed to 60
frames per second (FPS). This is achieved by using multi-
threading where the main thread is responsible for rendering
only. All remaining threads perform ray-casting jobs. Those
are available for each new frame with the current orientation
of the scanner. To avoid an overflow of ray-casting jobs a
thread will only start a new job after finishing its previous
job. Therefore, we set a target number of rays per frame. If
a job is not finished within 1/FPS seconds, additional jobs
may be discarded. This technique yields both the maximum
throughput and maximum interactivity. The application was
tested on two systems one with a i7-4770k processor (Machine
1) and one with a Core2Quad Q9300 processor (Machine 2).

Target rays per frame Machine 1 Machine 2
1000 Rays ∼60’000 Rays/s ∼60’000 Rays/s
3000 Rays ∼180’000 Rays/s ∼90’000 Rays/s

10000 Rays ∼415’000 Rays/s ∼145’00 Rays/s

TABLE I: B-spline surface results with C = 30.

Different targets of rays per frame have been evaluated to
discover the upper bound of possible ray-surface intersections
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Target rays per frame Machine 1 Machine 2
3000 Rays ∼180’000 Rays/s ∼180’000 Rays/s
4000 Rays ∼240’000 Rays/s ∼190’000 Rays/s

10000 Rays ∼600’000 Rays/s ∼190’000 Rays/s

TABLE II: Triangle mesh results.

per second for each system. The results are presented in
Tables I and II. In both cases, either triangle meshes or b-
spline surfaces the processing speed is high enough to produce
accurate point clouds of the scanned geometry. It is beneficial
to keep the number of rays per second small in order to avoid
a rapidly increasing size of generated points.

C. Point clouds

Fig. 8: Wishbone point cloud of a scanned B-Spline surface.
The color scheme is created by interpolating colors over
the scanning object and only serves a comfortable visual
perception.

Each resulting point cloud has a unique scan structure. Each
operator has a different scanning approach and generates a
personal point cloud structure. Figure 8 shows a synthetic point
cloud from a b-spline surface representing a wishbone model
scanned with the presented system. On the left half of the
figure the different angled scan lines are clearly visible. The
right half of the point cloud has higher density, but the human
factor is still visible. Figure 9 shows a point cloud result of
scanning a triangular mesh rocker arm model. In the upper
half of the figure, a cylinder can be seen. Especially on curved
geometry with cutouts the human scanning approach cannot
be predicted and will generate unique point clouds for each
individual scan.

VII. CONCLUSION

In this paper we presented a virtual-reality 3d-Laser-Scan
Simulation. Our solution makes scanning of CAD models
inside a VR environment possible. Interaction with our sys-
tem matches the process of operating a real hand-held laser
scanner. The resulting point clouds cannot be differentiated
from non-synthetic scans. Interactivity and execution speed
of our application meet the expectations. The scan process

Fig. 9: Rocker arm point cloud of a scanned mesh.

is realistic and easy to perform. Nevertheless there are a few
drawbacks. The Razer Hydra is not connected to a leading arm
like some real laser scanners which leads to difficulties moving
the scanner calm and precise. This could be compensated by
an adjustable factor which decreases the sensitivity of the
Hydra. Since the Oculus Rift is still in development there are
a few points which will certainly improve with later versions.
Especially the resolution causes the problem of a visible pixel
grid and a blurry perception of concrete shapes on looking
around in a scene. This problem will hopefully get fixed with
newer versions which should have a higher pixel density.
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