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Abstract: the reference evapotranspiration ET0 is an important meteorological quan-
tity in agriculture and water resource management. It is usually estimated from other
meteorological quantities measured at weather stations. To estimate ET0 at an ar-
bitrary geographical position these quantities must be interpolated. The Center for
Spatial Technologies And Remote Sensing (CSTARS) at UC Davis uses the DayMet
approach for this task.

We discuss some inconsistencies within the DayMet approach and suggest im-
provements. One significant problem of DayMet is the lack of consideration of terrain
topography. We define new distance functions that are elevation-dependent and show
preliminary results of the comparison of the classic and the improved DayMet ap-
proach.

1 Introduction

To set up near-optimal irrigation schedules the amount of water that has evaporated or tran-
spired into the atmosphere during the day must be known. This information is important
to farmers that have to replace this amount of water to maintain appropriate availibility
for crop growth and to administrators of water management systems so they can provide
adequate water supplies for agricultural and urban needs. Also this information can be
used for setting up a land use plan as a basis for decisions.

One important quantity is the evapotranspiration that is the combination of evaporation,
i.e., the loss of water from the surface of the plants and the soil and transpiration, i.e., the
loss of water from inside the plants to the atmosphere. This quantity depends on several
factors, such as weather variables, soil conditions, and the type of vegetation.

For determining evapotranspiration ET for a certain region, a reference evapotranspira-
tion ET0 is defined as the evapotranspiration above a defined reference vegetation (uni-
form closely-cropped grass), and therefore only depends on the weather conditions. The
evapotranspiration ETc for a specific vegetation or surface type is

ETc = Kc · ET0, (1)



where Kc is the crop coefficient and can be determined from a look up table.

To estimate a spatially distributed ET0 for the state of California, the California Depart-
ment of Water Resource and the University of California, Davis developed the CIMIS
project (California Irrigation Management Information System). They established about
120 automated weather stations all over California, each of which measures several cli-
mate values (such as solar radiation, relative humidity, wind speed, temperature) under
defined reference conditions (2m above a dense grass surface). This data is collected and
stored in a database. From these measured values ET0 can be estimated.

This approach leads to estimated values for ET0 only for the locations of the CIMIS
weather stations. For all other places, the weather values have to be estimated by com-
bining the measured values of nearby weather stations (interpolation), and then ET0 can
be estimated from these.

In the CIMIS project, a map is created that contains the estimated value for every point
on a dense grid with grid distance of 2km ([HBT+06]). To find estimates for each grid
point, two different methods are used: Some of the weather values are interpolated using
regularized splines with tension ([MM93], [MH93], [HPMM02]), for others the DayMet
interpolation method ([TRW97]) is used.

We focus on the DayMet interpolation approach. In Section 2, we give a formal definition
of this approach and show some of its deficits. In Section 3, we suggest some improve-
ments and present some first results in Section 4. Section 5 contains a list of further
research that can be done in this field.

2 The DayMet interpolation method

We provide an overview of the DayMet approach in Section 2.1, give a short overview
of its implementation within the CIMIS project in Section 2.2, and point out some weak-
nesses of the approach and the implementation in Section 2.3.

2.1 Definition

As input to the DayMet interpolation we have n weather stations Wi (i = 1, . . . , n) cor-
responding to two-dimensional observation points pi ∈ R2 on a planar map, elevation
zi ∈ R and the associated weather data fi ∈ R. Examples for possible weather data are
temperature, solar radiation, precipitation, humidity, or wind speed, as measured at Wi.

To interpolate the value at an arbitrary query point Q with two-dimensional coordinates
q ∈ R2, we define a weight function as a truncated Gaussian filter,

w(q, r) =
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, (2)



where r is the radial distance arround q, R(q) is the truncation distance of q, and α is a
unitless shape parameter.

We define the weights of the weather station Wi at a query point Q as

wq,i = w(q, ‖q − pi‖2). (3)

If the truncation distance were constant, there would be a large number of observation
points with non-zero weights in dense regions, whereas in regions with a sparse number of
observation points all weights could be zero. Therefore R(q) depends on the local density
of weather stations arround q, and an iterative approach is used to find a value for R(q):

1. Start with R(q) = R with R a user-specified value.

2. Use R(q) to calculate the weights wq,i of all Wi (i = 1, . . . , n) using Equation (2),
and calculate the local station density D(q) (number of stations / area) as

D(q) =

n∑
i=1

wq,i

w

πR(q)2
, (4)

where w is the average weight over the untruncated region of the kernel, defined as

w =

R(q)∫
0

w(q, r)dr

πR(q)2
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)
− e−α. (5)

3. With a user-specified desired average number of observations N and the calculated
value of D(q), we can calculate a new value for R(q) as

R(q) =

√
N̂

D(q)π
, (6)

where N̂ = 2N is chosen for every iteration except the last one, for which N̂ = N .

4. Perform I (I being user-specified) iterations of step 2. and 3. to get the final value
of R(q).

The value f(q) at the arbitrary query point Q at two-dimensional coordinates q ∈ R2 is
now estimated as

f(q) =

n∑
i=1

wq,ifi

n∑
i=1

wq,i

. (7)

For temperature data there exists a relationship between elevation and temperature. In
[TRW97] the use of a correction term to take elevation into account is suggested. First, one



estimates regression coefficients β0 and β1 that describe the correlation between elevation
z and temperature t in absence of any other meteorological effect

t = β0 + β1z. (8)

To calculate the values for β0 and β1, a weighted least squares regression is used on every
pair of observation points (Wi,Wj), weighted by the product of the interpolation weights
w(pi, ‖pi − pj‖2)w(pj , ‖pi − pj‖2) of one to the other. But instead of calculating the
regression directly as in Equation (8), it was suggested to do this regression for the differ-
ences of temperature (ti − tj) and elevation (zi − zj)

(ti − tj) = β0 + β1(zi − zj). (9)

With temperatures ti = fi (i = 1, . . . , n) and the estimated values of β0 and β1, the
temperature t(q) = f(q) for a query point Q at two-dimenisional coordinates q ∈ R2 with
elevation z ∈ R is now calculated as

t(q) =

n∑
i=1

wq,i [ti + β0 + β1(z − zi)]

n∑
i=1

wq,i

. (10)

2.2 Implementation of DayMet within the CIMIS project

Within the CIMIS project, the DayMet interpolation method is implemented as a GRASS
module. For temperature interpolation, an elevation map of California is used. The module
reads a site file with the values of the weather stations, including exact positions, and
interpolates the value for every point on a regular grid of 500 × 550 points. The grid
distance is 2km. The resulting interpolated values are written to the GRASS database as a
raster file.

To find suitable values for the free parameters I (number of iterations for calculating R(q)),
N (desired average number of observation points) and α (shape parameter for weight
w(q, r)), a range for each of the three parameters is specified and every combination of val-
ues is checked via cross validation: For every observation point pi the interpolation f(pi)
is calculated, using only the (n − 1) other observation points p1, . . . , pi−1, pi+1, . . . , pn.
The cross validation root-mean-square error (RMSE) is

ERMSE =

√√√√ n∑
i=1

(f(pi)− fi)2. (11)

The combination of values for I , N and α that produces the least error ERMSE is used for
the interpolation procedure.



2.3 Deficits of the CIMIS DayMet implementation

In the CIMIS implementation the valid ranges for I and N were interchanged: The ranges
were set to I ∈ {3, . . . , 5} and N ∈ {30, . . . , 50}. With these ranges the maximum
number of iterations I to calculate R(q) was five, too few iterations to make the calcula-
tions converge. On the other hand, the minimum number of average observations N that
are taken into account was 30 and therefore too high. Figure 1(a) shows the correspon-
dence between the measured and the interpolated values at the positions of the observation
points. They are nearly unrelated. After interchanging the ranges to I ∈ {30, . . . , 50} and
N ∈ {3, . . . , 5} the results were better, see Figure 1(b).
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(a) Original CIMIS implementation.
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(b) Corrected ranges of I and N .

Figure 1: Measured value (horizontal axis) against interpolated value (vertical axis) at observation
points.

Although being called an “interpolation method” in [TRW97] the DayMet approach is not
an interpolation, but only an approximation of scattered data. Calculating the value f(pi)
at an observation point pi results in a value close to fi, but in general does not reproduce
fi exactly. This can be seen in Equation (7), since there are in general several non-zero
weights wj , so that f(pi) not only depends on fi but also on other observation values. If
it were an interpolation method, the points of Figure 1(b) would all lie on the line y = x.

There is another shortcoming of the method in [TRW97] related to using the regression
Equation (9) for calculating the values of β0 and β1. When substracting two instances of
the original Equation (8) ti = β0+β1zi and tj = β0+β1zj , the absolute term β0 vanishes,
resulting in ti − tj = β1(zi − zj). From this equation only β1 can be estimated by a least
squares regression. With the argument of symmetry one can also conclude that β0 = 0,
because the indices of the weather stations are artificial. Having two weather stations,
either of them can be (zi, ti) or (zj , tj). Only β0 = 0 can then fulfill Equation (9).

Another drawback of the DayMet approach is the way the weights in Equation (2) are cal-
culated: The distance r only takes the x- and y-coordinate of the query position q and the
weather station position pi into account. For temperature interpolation, also the elevation
of z and zi influences the result, see Equation (10). But the topographic structure of the
terrain between q and pi does not play any role. (Think of a terrain with a cross section



as in Figure 2(a), built of a plane adjacent to a mountain. To interpolate the value at the
query point Q with two-dimensional coordinates q the weights for the weather stations W1

and W2 have to be calculated. Since their radial distances r = ‖q − p1‖2 = ‖q − p2‖2

from Q are the same, they have the same weight w1 = w(q, r) = w2 from Equation (2).
Obviously the influence of W2 is less than the influence of W1 since the mountain divides
the terrain into two different regions that inhibits air exchange across the mountain. There-
fore, the interpolation weight w1 should be bigger than w2. Since California has a diverse
topographic structure containing high mountains and large flat valleys, see Figure 2(b),
these conditions are common.)

(a) A plane adjacent to a mountain. (b) Map of California.

Figure 2: DayMet neglects the topographic structure of the terrain.

In the following, we introduce a way to take the topographic structure of the terrain into
account to improve interpolation quality.

3 Improvement of DayMet

To take the topographic structure of the terrain into account we keep the general concept of
the DayMet interpolation, but change the way the distance r in Equation (2) is calculated,
so that the terrain elevation influences the weights. If along the path from the weather
station W to the query point Q a mountain has to be crossed, the distance should be larger,
resulting in a smaller weight and therefore in a smaller influence on the overall result.

We only take the direct path from W to Q into account, i.e., we calculate the intersection
of the terrain surface with a plane that contains W and Q and contains the ray from W
to the center of the Earth as illustrated in Figure 3(a). This intersection is a planar curve
representing the profile of the direct path from W to Q as illustrated in Figure 3(b). This
profile is a function P : [0, S] → R, returning for every (horizontal) position s on the path
from W to Q the elevation at that point. The distance r from W to Q is calculated by



(a) Intersection of terrain and plane. (b) Terrain profile between W and Q.

Figure 3: Direct path from W to Q.

using a function d : ([0, S] → R) → R+ that uses the profile as input and returns r. We
call such a function a distance function.

One can think of the original DayMet definition as the distance function dxy with the
property that for an arbitrary profile P : [0, S] → R we have dxy(P ) = S. Thus, dxy does
not take the profile into account, but just returns the horizontal distance S between W and
Q. We now define two different distance functions that do take the profile into account.

A mountain ridge with a height of 1000m has a larger impact on the influence of a weather
station than a horizontal distance of 1000m has. Thus, the distance in vertical direction
must be amplified to make it comparable to horizontal distances. For this reason, we
introduce an exaggeration factor zexag. We define the exaggerated profile P̂ as

P̂ (s) = zexagP (s). (12)

3.1 Arc length of convex hull: dch

The first distance function returns as the distance of a profile the length of the shortest path
through the air from the start to the end point. More formally speaking, this shortest path
is the upper convex hull of the profile and the distance is its arc length.

Let P̂ (s) : [0, S] → R be an exeggerated profile as defined above. Its upper convex hull is
the function P̂ch(s) : [0, S] → R that fulfills the following three conditions:

1. ∀s ∈ [0, S] : P̂ch(s) ≥ P̂ (s).

2. ∀s1, s2 ∈ [0, S], s1 < s2 : P̂ ′
ch(s1) ≥ P̂ ′

ch(s2).

3. ∀P̃ : [0, S] → R fulfilling condition 1 and 2, s ∈ [0, S] : P̂ch(s) ≤ P̃ (s).



While the first condition ensures that our path is always above ground, the second (mono-
tonic decreasing derivative) ensures that the path does not have unnecessary waves, and
the third ensures that the path is as low above ground as possible. The three conditions
together ensure that P̂ch is the shortest path through the air from one end to the other.

The distance dch(P ) is now the arc length of that shortest path,

dch(P ) =

T∫
0

√
1 + (P̂ ′

ch)2.

Figure 4(a) demonstrates how the distance dch for a profile is calculated.

The application of these equations results that while crossing a mountain the distance
reported is increased by dch, while crossing a canyon has no effect.

3.2 Radial distance plus highest peak: dp

The second distance function dp we define determines the highest peak that has to be
crossed and adds this height to the radial distance between start and end point.

We define two slightly different functions dp1 and dp2, differing in the base to which the
height of the peak is measured. Let P (s) : [0, S] → R be a profile, then

dp1(P ) =S + max
s∈[0,S]

(P̂ (s)−max{P̂ (0), P̂ (S)})

=S + zexag max
s∈[0,S]

(P (s)−max{P (0), P (S)}), (13)

and

dp2(p) =S + max
s∈[0,S]

(
P̂ (s)−

(
s

S
P̂ (0) +

S − s

S
P̂ (S)

))
=S + zexag max

s∈[0,S]

(
P (s)−

(
s

S
P (0) +

S − s

S
P (S)

))
. (14)

While dp1 takes the height of the highest peak relative to the hight of the start or the end
point (whichever is higher), dp2 takes the hight relative to the linear interpolation between
the start and the end point. Figures 4(b) and 4(c) show examples of how the distance with
these two distance functions is calculated.

It can be seen that ∀P : [0, S] → R : dxy(P ) ≤ dp1(P ) ≤ dp2(P ) and dxy(P ) ≤ dch(P ).
It depends on the actual profile how dch(P ) compares to dp1(P ) and dp2(P ).



(a) dch (b) dp1 (c) dp2

Figure 4: Three new distance functions. The black line is the profile, the (sum of the) length of thick
gray line(s) is its distance. The dashed line is the base for measuring the height of the peaks for dp1

and dp2.

4 Preliminary results

To compare the results of our distance functions with that used in the original DayMet
implementation of CIMIS, we used a data set of relative humidity (values in the range
from zero to 100) of the 108 weather stations that measured data that day. We used cross-
validation as described in Section 2.2.

Table 1 shows the overall results for ERMSE as defined in Equation (11) for the different
distance functions and different values of zexag. These results do not show an advantage of
the new distance functions when compared to the original implementation dxy . Only dp2

with zexag = 50 shows a slightly improved result, but this might be random.

zexag dxy dch dp1 dp2

5 12.98 12.95 12.99
50 12.96 13.09 13.32 12.64

500 13.03 13.21 12.88

Table 1: ERMSE values for the different distance functions.

To understand in more detail the errors for specific structures, we searched each distance
function for what weather station had the maximal improvement over the original imple-
mentation and for what weather station it had the most degradation. These experiments
were done with zexag = 50. Figure 5(a) provides an overview of the positions of the three
weather stations W88, W113, and W35 we studied in detail.

The first weather station we considered was W88. Figure 5(b) shows its neighbourhood,
Table 2 lists the relative interpolation weights. While dxy and dp1 produced poor results,
dch and dp2 had reasonable values. This is the situation we wanted to improve: a mountain
ridge divides the terrain into two parts, the dry northern part (W54, W146, W5, W138, and
W125) and the humid southern part (W64, W94, and W107). W88 belongs to the northern
part, and therefore the southern weather stations should not have any influence on it. Note
that dp1 produced the same result as dxy since W88 is near a mountain top, so any pro-



file ending in W88 has W88 as highest peak. Therefore, dxy and dp1 produce the same
distances.

Weather station W5 W64 W94 W107 W125 W138 W146 W88

measured rel. hum. 55.0 69.0 86.0 87.0 35.0 45.0 46.0 32.0
dxy .05 .24 .27 .28 .16 74.1
dch .28 .22 .15 .35 45.9
dp1 .05 .25 .27 .27 .16 74.1
dp2 .29 .13 .17 .13 .28 49.5

Table 2: Weights used for interpolation at weather station W88 (dch and dp2 have the best results).
The last column contains the measured value and the predicted values using the different distance
functions at position of W88.

dp1 has its best result for W113, see Figure 5(c) for the neighbourhood and Table 3 for the
interpolation weights. At first sight it seems we achived the opposite of what we wanted
to do: dp1 used W124 and W190 that are hidden behind a mountain. But it also used W163

with a higher weight than the other functions, which is the station at the other end of the
long, small valley, which resulted in better results.

Weather station W89 W105 W114 W116 W126 W143 W163 W190 others W113

measured rel. hum. 83.0 32.0 80.0 91.0 61.0 72.0 51.0 32.0 65.0
dxy .18 .77 .02 .03 78.7
dch .25 .64 .07 .04 80.3
dp1 .16 .05 .45 .05 .05 .05 .06 .07 .06 70.0
dp2 .26 .66 .06 .02 80.8

Table 3: Weights used for interpolation at weather station W113 (dp1 has its best result). The last
column contains the measured value and the predicted values using the different distance functions
at the position of W113.

W35 is now the station, where dch, dp1, and dp2 produced worse results than the original
dxy . Table 4 reveals that our new distance functions have heigher weights on W183 and
W189, exactly following what we wanted: The stations to the west (W80, W39, W142, W33,
and W86) are completely out of sight, since they are behind a tall mountain. The results
are bad as a consequence of the fact that W183 and W189, which share the same valley
with W35, show very dry weather (only 15 and 17, respectively), while the weather station
W35 reports rain with a relative humidity of 100. Possibly, W35 suffered from a very local
weather phenomenon (like a local thunderstorm), or the reported value was wrong; dxy is
the winner by mere chance.

As a first result, we can state that the interpolation quality for selected areas can be in-
creased with the new distance functions. On the other hand, significant improvements do
not occur in every case. The reason might be the placement of weather stations: The den-
sity is high in valleys and low on mountains. Therefore, dxy prefers stations within the
same valley, since the others are too far away, and so the crossvalidation does not show
improvement when using the new distance functions. Presumably, the interpolation result
in the mountain regions is better using the new distance functions.



(a) Overview of CIMIS weather stations.

(b) Neighbourhood of weather sta-
tion W88.

(c) Neighbourhood of weather sta-
tion W113.

(d) Neighbourhood of weather sta-
tion W35.

Figure 5: Neighbourhoods of interesting weather stations.



Weather stations W33 W39 W80 W86 W142 W183 W189 others W35

measured rel. hum. 47.0 48.0 34.0 37.0 31.0 15.0 17.0 100.0
dxy .03 .09 .06 .12 .23 .30 .17 26.6
dch .54 .46 16.1
dp1 .23 .77 19.7
dp2 .05 .04 .05 .05 .06 .39 .34 .02 23.3

Table 4: Weights used for interpolation at weather station W35. (All new distance functions are bad
there.) The last column contains the measured value and the predicted values using the different
distance functions at the position of W35.

5 Future work

We list a few possibilities for future work:

• The tests can be processed on other data sets. The CIMIS database contains many
data sets from other dates, and other weather variables different from relative humid-
ity, e.g., temperature, precipitation, wind speed. Such other tests would also reveal
whether W35 has just the wrong value, or if it is a local weather phaenomenon.

• zexag must be optimized. zexag = 50 seems to be a good initial value.

• Determine under what topographic situations which distance function produces the
best results.

• Our results should be compared to other interpolation methods, e.g., Hardy’s multi-
quadric, interpolating splines, or kridging.

• The program structure can be improved to allow more efficient processing. Espe-
cially the distances and the truncation distances R(q) for every grid point can be
calculated in advance. These have to be recalculated every time a weather station is
added or eliminated, or when a weather station has a technical problem transmitting
values.

• The CIMIS project interpolates the different weather variables and afterwards cal-
culates ET0 for every point (interpolate first, then calculate: IC). This is rather time-
and space-consuming. A more efficient approach calculates ET0 at the weather sta-
tions and interpolates only this (calculate first, then interpolate: CI), see [MKK05],
where these two approaches are compared, finding out that the results are similar.
At least there is no significant difference between IC and CI.
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