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Abstract. In this paper a method is presented to fair the limit surface
of a subdivision algorithm around an extraordinary point. The eigen-
values and eigenvectors of the subdivision matrix determine the con-
tinuity and shape of the limit surface. The dominant, sub-dominant
and subsub-dominant eigenvalues should satisfy linear and quadratic
equality- and inequality-constraints to guarantee continuous normal and
bounded curvature globally. The remaining eigenvalues need only satisfy
linear inequality-constraints. In general, except for the dominant eigen-
value, all eigenvalues can be used to optimize the shape of the limit
surface with our method.

1 Introduction

Subdivision algorithms are a well established tool in computer graphics to model
objects with free-form geometry. Nevertheless, the shape of the resulting subdi-
vision surfaces have artifacts [24, 10]. This is one reason why subdivision surfaces
are not widely used in CAD applications. Hence, there are various approaches
to tune the subdivision algorithms to reduce these artifacts. Many approaches
were taken that modify the differential geometric properties but not the fairness
of the resulting subdivision surfaces [12, 3, 23, 8, 20, 21, 13, 6].

To further improve the fairness of the surfaces optimization techniques have
been used to construct optimized stationary schemes. In [2] also the eigenvectors
are modified by computing the stencils in an optimization process. The resulting
subdivision algorithms approximate the desired eigenvector behavior. Based on
the analysis in [10, 16] a different approach is presented in [1]. Here, the eigen-
values are determined such that the necessary conditions for bounded Gauss
curvature are satisfied and the variation of curvature of the central surfaces in
the shape chart is minimized. This is a non-linear optimization process which
can only be approximated. It leads to subdivision algorithms with an eigenvalue
distribution that approximately minimizes variation of Gauss curvature and the
probability for a so-called hybrid shape. Nevertheless, in both approaches the
immediate influence of the optimization on the fairness of the subdivision surface
cannot be controlled directly.



The approaches taken in [7, 11] aim at fairing the limit surface. Instead to
tune the respective subdivision algorithms they integrate optimization to the
subdivision rules. The points of the fine control nets are computed such that a
local or global energy functional is minimized. For both approaches this requires
the solution of a global system of linear equations.

The principle of the tuning method presented here is based on a diagonal-
ization of the subdivision matrix S. The eigenvalues of any stationary, linear
and symmetric subdivision algorithm can be changed to satisfy the necessary
conditions for bounded Gauss curvature using the technique described in [21].
This can be generalized to calculate the eigenvalue changes in an optimization
process incorporating the necessary conditions as constraints imposing equality-
and inequality-constraints on the dominant, sub-dominant and subsub-dominant
eigenvalues of the subdivision matrix. The remaining eigenvalues must stay
within certain intervals. Because the stencils depend linearly on the eigenvalues
and a quadratic energy functional like the thin-plate energy depends quadrat-
ically on the control points, stencils can be computed that generate surfaces
minimizing the respective functional. This means the scheme is no longer sta-
tionary, but it does not require the solution of a global system of equations.

The rest of the paper is structured into three sections. First the general con-
cept of energy minimization for tuning subdivision surfaces is presented (Section
2). In Section 3 the constraints for the optimization process are derived from the
Fourier analysis of subdivision schemes. These constraints include regularity,
bounded curvature and changes that only affect the local neighborhood of the
extraordinary point. The results of this method used to tune the algorithm of
Catmull-Clark are shown in Section 4.

2 Energy minimization concept

A linear subdivision algorithm computes from a coarse initial net of control
points N0 a refined net of control points N1 by taking finite affine combinations
of control points of N0 to compute the control points of N1. This process is
iterated to generate a sequence of control nets (Nr)r≥0 which converges to the
subdivision surface.

For a primal subdivision algorithm the subdivision matrix S maps the k-
ring neighborhood Cr, r ≥ 0, of an n-valent vertex cr in Nr net to the k-ring
neighborhood Cr+1 of an n-valent vertex cr+1 in Nr+1. Note that S is a square
matrix and k depends on the size of the stencils. Each control net Cr defines a
surface ring xr which is represented as a linear combination of bi-variate, real
valued, piecewise smooth functions f = [f1, . . . , fl] forming a partition of unity
corresponding to the column vector of control points Cr of Cr

xr = f · Cr, r ≥ 0.

Example surface rings are shown in Figure 1 for the algorithm of Catmull-Clark.
The goal of this paper is to construct a sequence of spline rings by a modified

subdivision matrix S̃, where each spline ring xr has minimal energy F (xr).



x0

S⇒
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Fig. 1. Two consecutive surface rings x0 and x1 for the algorithm of Catmull-Clark at
a 7-valent vertex.

If we take an energy functional like the thin-plate energy of a spline surface
x : R

2 → R
3 with control points p1, . . . ,pL ∈ R

3, it can be written as quadratic
form, see e.g. [9]
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where pc
j denotes the c-th coordinate of control point pj . The matrix E contains

the energies of the spline basis functions. If f consists of b-spline or box-spline
functions, the surface rings xr consist of s polynomial pieces as shown schemat-
ically in Figure 1 with s = 3 · 7. The energy F (xr) can then be computed as
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where Cc
r denotes the column vector of c-th coordinates of the control points of

Cr. The matrices Pj select those points from Cr that define the j-th patch of
xr. Thus, the energy of xr+1 is given by

F (xr+1) =

3∑

c=1

(Cc
r )tS̃tGS̃Cc

r .

Since the optimization should be local, only a few stencils are modified, for
example only the stencils for the extraordinary point and the control points in
its one-ring neighborhood. If the control points are labeled circular around the
extraordinary vertex as shown for the algorithm of Catmull-Clark in Figure 2(a),



the modified subdivision matrix S̃ has the following structure

S̃ =

[
S̃1 0
S2 S3

]
,

where S̃1 is the sub-matrix which contains the stencils that will be modified.
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(a) Circular labeling of the control
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(b) Segmentwise labeling of the con-
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points per segment.

Fig. 2. Labeling of the control points around a vertex of valence n.

This structure is due to the fact that the stencils for the new positions of the
extraordinary vertex and the one-ring are local. For the standard algorithms like
the algorithms of Catmull-Clark or Loop S1 is square. Thus, the energy F (xr)
can be written as

F (xr+1) =

3∑

c=1
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r)t
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If S̃1 is diagonalizable, the eigenvalues of S̃1 can be used for optimization without
affecting S2 and S3. To prepare the equations for the optimization we take a
closer look at the matrix A, which contains the stencils that will be modified

ACc
r =

[
S̃1 0
0 0

] [
Cc

1,r

Cc
2,r

]
=

[
S̃1C

c
1,r

0

]
.

Denote by R the Matrix of eigenvectors of S̃1, by L its inverse with rows
w1, . . . ,wl1 and by D the diagonal matrix of the corresponding eigenvalues



λ1, . . . , λl1 of S̃1. Then,
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where dc
i is the c-th coordinate of the so-called eigencoefficient di = wiC

c
1,r, and

ACc
r =

[
M c

1 0
0 0

] [
λ1

0

]
=: M c

λ.

Keeping R and L fixed, the energy F (xr+1) is quadratic in λi, since M c and B
do not depend on λ, i.e.

F (xr+1) =

3∑

c=1

(Cc
r)t(A + B)tG(A + B)Cc

r

=

3∑

c=1

(
λ

t(M c)tGM c
λ + 2(Cc

r)
tBtGM c
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)
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Using this representation of F (xr+1) the eigenvalues λ can be used for optimiza-
tion with a prescribed number of stencils that will be modified.

3 Constrained energy minimization

To make the algorithm well-behaved we need certain constraints such as affine
invariance or constraints that guarantee C1 regularity of the limit surface. Many
of these constraints become visible in the discrete Fourier analysis of the subdi-
vision matrix.

Assume that the subdivision matrix S has only real eigenvalues λ1, . . . , λl

ordered by modulus
|λ1| ≥ · · · ≥ |λl| ≥ 0

corresponding to the eigenvectors v1, . . . ,vl, i.e. Svi = λivi for i = 1, . . . , l. If
the subdivision algorithm uses only affine combinations, the dominant eigenvalue
λ1 is one and simple [19], i.e.

λ1 = 1, (2)

λ1 > |λ2|. (3)

Then, the sequence of surface rings (xr)r≥0 converges to the so-called extraor-
dinary point s on the subdivision surface corresponding to c0.

If the subdivision algorithm is rotationally symmetric, the subdivision matrix
S is block-circulant and similar to a block-diagonal matrix Ŝ using the labeling
of control points as in Figure 2(a)

S = circ(S0, . . . , Sn−1) ∼ Ŝ = diag(Ŝ0, . . . , Ŝn−1)



with the same eigenvalues, i.e. spec(S) =
⋃

i spec(Ŝi). Because Ŝ is computed
by a discrete Fourier transform as

Ŝi =

n−1∑

ℓ=0

ω−iℓ
n Sℓ, ωn := exp(2π

√
−1/n), i = 0, . . . , n − 1,

an eigenvalue ν of S is said to have Fourier index F(ν) if ν ∈ spec(ŜF(ν)). For
subdivision surface to be regular and normal-continuous with bounded Gauss
curvature of arbitrary sign at s the following conditions are sufficient ([22, 17]):

(i) The sub-dominant eigenvalue λ2 =: λ is a double, real eigenvalue and v2,v3

are linearly independent, i.e.

λ2 = λ3, (4)

|λ2| > |λ4|, . . . , |λl|.

(ii) The so-called characteristic map f · [v2v3] is regular and injective.
(iii) The subsub-dominant eigenvalue λ4 =: µ is real and satisfies

µ = λ2. (5)

(iv) The subsub-dominant eigenvalue µ is a triple eigenvalue and v4,v5,v6 are
linearly independent, i.e.

λ4 = λ5 = λ6, (6)

λ4 > |λ7|, . . . , |λl|. (7)

(v) The subsub-dominant eigenvalue µ has Fourier indices 0, 2 and n − 2.

The constraints (2)–(6) impose quadratic and linear equality- and inequality-
constraints on the eigenvalues λ1, . . . , λ6. The remaining eigenvalues λi, i ≥ 7,
can be chosen arbitrarily as long as (7) and Conditions (ii) and (v) are not vi-
olated. Combining the constraints with Equation (1) a quadratic equation with
quadratic equality-constraints and linear inequality- and equality-constraints
must be solved. Note that leaving the sub-dominant eigenvalues unchanged, the
quadratic equality constraints disappear leading to a quadratic program.

4 Constrained energy minimization for the algorithm of

Catmull-Clark

Using the labeling of control points as in Figure 2(b), the Fourier blocks Ŝi, i =
0, . . . , n − 1, of S of the algorithm of Catmull-Clark are given by
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,

where ω := exp(2π
√
−1/n), ci := cos(2πi/n) and the Kronecker symbol δi,0.

From Ŝi the eigenvalues of S can be computed as:

– the eigenvalue λ0 = 1 from Ŝ0,
– the eigenvalues µ±

α := (4α − 1 ±
√

(4α − 1)2 + 8β − 4)/8 from Ŝ0,

– the eigenvalues µ±
i := (5+ci±

√
(ci + 9)(ci + 1))/16 from Ŝi, i = 1, . . . , n−1,

– the n-fold eigenvalues 1
8 , 1

16 , 1
32 , 1

64 from Ŝi, i = 0, . . . , n − 1,

– the (7n − 1)-fold eigenvalue 0 from Ŝi, i = 0, . . . , n − 1.

The upper left 3× 3 block of Ŝi corresponds to the extraordinary vertex and its
one-ring neighborhood. Diagonalizing this block, its eigenvalues can be used for
optimization subject to the following constraints:

λ0 = 1, (8)

1/
√

8 < µ+
1 < 1, (9)

µ+
α = µ+

2 = (µ+
1 )2, (10)

µ+
i = µ+

n−i and µ−
i = µ−

n−i for i = 1, . . . , ⌊n/2⌋, (11)

|µ−
α |, |µ±

i |, |µ−
1 |, |µ−

2 | < µ+
2 for i = 3, . . . , ⌊n/2⌋. (12)

The results of an optimization with these contraints using the libraray [14] are
shown in Figures 5 . The control nets shown in Figure 3 contain irregular vertices
of valence 7 and 11. It does not seem necessary to hold up the triple subsub-
dominant eigenvalue, since hybrid shapes can still occur (see Figure 5 bottom
left). Instead we replace the constraints µ+

2 = (µ+
1 )2 by |µ+

2 | < (µ+
1 )2 for elliptic

and µ+
α = (µ+

1 )2 by |µ+
α | < (µ+

1 )2 for hyperbolic shapes. We leave the decision
whether the shape is going to be elliptic or hyperbolic to the optimization by
calculating both variants and taking the one that produces lower energy for the
spline rings, see Figure 4 and Figure 5 bottom right.

The functional that has been used for the optimization is

F (x) =

∫

[0,1]2

(
x2

uuu + 3x2
uuv + 3x2

uvv + x2
vvv

)
du dv, (13)



(a) Control net with an irregu-

lar vertex of valence 7.
(b) Control net with an irreg-

ular vertex of valence 11.

Fig. 3. Two different control nets for the algorithm of Catmull-Clark.

where xu and xv denote the partial derivatives of x with respect to u and v.
We chose a parameterization dependent third order measure as a reasonable ap-
proximation to the variation of curvature. Since second order measures may lead
to flat surfaces, minimizing the variation of curvature rather than its magnitude
leads to fairer and more pleasing surfaces [15].

The influence of the optimization is visible in the visualization of the Gauss
curvature. For the surface in Figure 4, we additionally document the tendency
towards a hyperbolic configuration in Table 1. It shows the optimized values for
µ+

α , µ+
2 and µ+

n−2 for the first 8 subdivision steps and compares the energies of
the innermost two spline rings at the corresponding subdivision level with and
without optimization.

r µ+
α µ+

2 , µ+

n−2 F (x) without F (x) with

optimization optimization

1 0.365611 0.365768 28.08448 25.96919

2 0.354541 0.355186 7.112990 6.828013

3 0.347269 0.350177 2.246211 2.192127

4 0.345149 0.348187 0.751045 0.736397

5 0.341162 0.347430 0.256974 0.252283

6 0.337389 0.347161 0.088712 0.087122

7 0.324970 0.347065 0.030727 0.030179

8 0.203355 0.347033 0.010656 0.010466

Table 1. Optimized values for µ+
α ,µ+

2 , µ+

n−2 and comparision of the energies of the
innermost two spline rings at the corresponding subdivision level r with and without
optimization for the algorithm of Catmull-Clark for the surfaces in Figure 4.



elliptic parabolic hyperbolic

Fig. 4. Comparison of two different subdivision surfaces corresponding to the control
net in Figure 3(a) after 8 subdivision steps. Top: Modified Catmull-Clark algorithm
([20]) with bounded curvature of arbitrary sign. Bottom: Optimized Catmull-Clark
algorithm with double subsub-dominant eigenvalue for hyperbolic shape. The right
column shows the corresponding zoom at the extraordinary point. For color images
please refer to our website.

Remark 1. Changes in the stencils for the one-ring around the extraordinary
vertex by the optimization influence the spline rings xr+1 and xr. Therefore, the
optimization has to take both rings into account by choosing the size of Cr, S
and G such that four rings of control points are used in the optimization.

Remark 2. Since the optimization changes µ+
1 , the proof for regularity and in-

jectivity of the characteristic map is no longer valid. It needs to be re-done using
the technique in [25] for the new choice of µ+

1 .

5 Conclusion

We have presented a technique to tune subdivision algorithms using constrained
energy optimization. This allows to obtain bounded curvature for the limit be-
havior in combination with a fair shape around the extraordinary point.



As future work we will determine an interval of valid values for µ+
1 , for which

the characteristic map is regular and injective. This interval would be included
into the optimization as further constraint.

elliptic parabolic hyperbolic

Fig. 5. Comparison of three different subdivision surfaces corresponding to the control
net in Figure 3(b) after 12 subdivision steps. Left: Modified Catmull-Clark algorithm
([20]) with bounded curvature of arbitrary sign. Middle: Optimized Catmull-Clark al-
gorithm with triple subsub-dominant eigenvalue. Right: Optimized Catmull-Clark al-
gorithm with single subsub-dominant eigenvalue for elliptic shape. The top row shows
the surface and the bottom row shows the corresponding zoom at the extraordinary
point. For color images please refer to our website.
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A. Le Méhauté and L.L. Schumaker eds., Curves and Surfaces (Academic Press,
1991) pp. 411–414.

24. M.A. Sabin and L. Barthe, Artifacts in recursive subdivision surfaces, in Curve and

Surface Fitting – Saint-Malo 2002, A. Cohen, J.-L. Merrien, and L.L. Schumaker
eds. (Nashboro Press, 2003) pp. 353–362.

25. G. Umlauf, A technique for verifying the smoothness of subdivision schemes, in
Geometric Modeling and Computing, M.L. Lucian and M. Neamtu eds. (Nashboro
Press, 2004), 513–521.


