SoPC for 3D Point Rendering

Lars Middendorf, Felix Muhlbauer, Christophe Bobda, GeOrglauf
Department of Computer Science
University of Kaiserslautern
Gottlieb-Daimler-Str. 48
67653 Kaiserslautern, Germany
muehl bauer, bobda, unm auf @ nf or mati k. uni - kl . de

Abstract—Real-time 3D visualization of objects or information main program accomplishes further computations in pdralle
becomes increasingly important in everyday life e.g. in cellar yntil the results can be read back.
phones or mobile systems. Care should be taken in the designa It is important to minimize the resource usage of the

implementation of 3D rendering in such embedded devices l&k - . .
haﬁdhelds devices in order to rr?eet the performance requireent, .hardwar.e,.because the number.of available slices in a FGPA
while maintaining power consumption low. In this work, the is very limited. The clock speed is also very low and we have
design and implementation of a vertex shader on a reconfigutde to maximize the utilization of sub-components in all cycles
hardware is presented. The main focus is placed on the efficie The scheduling of the threads is therefore pre-calculated a
hardware/software partitioning of the vertex shader compuation, g0 a5 part of the shader code. Hence, the control-logic
in order to maximize the performance while maintaining a hich . .
flexibility. The resulting solution must be compatible to exsting consists only of the program counter and "’! few multlplexer§,
vertex shaders in oder to allow the large amount of existing that route the data flow, thus enough space is left on the éevic
program to be easylly ported to our platform. A prototype to implement floating point calculations. The multiplexene
consting of a PowerPC, peripherals and some custom hardware figuration is stored in a table with one row for each cycle.
modules is realized a on an FPGA-board. The implementation " s \work a shader converter that generates the control
of a point rendering shows considerable speed up compared to .
a pure software solution. table from a Direct3D9[1] vertex shade.r was developeq. The
shader converter performs the scheduling of all operation o
the generated hardware unit, analyzes and optimizes tlae dat
flow and maps the calculations to operations of our ALU.
Currently we can execute four threads on the ALU in parallel.
Rendering of three-dimensional objects in real-time reii This allows a speed-up of factor four compare to the software
much arithmetic performance. This is a problem for embeddgplementation of the shader.
systems that are running at low clock speed and often lacksThe rest of the work is organized as follows: Section
dedicated hardware processing modules like a floating pointprovides the basics of vertex shader while section IlI
unit (FPU). In desktop computers, the expensive arithmetifiroduces some work related to custom implementation of
computations related to the rendering of 3D objects are dowgrtex shaders. Section IV-B explain our implementation. A
by specialized stream processing hardware in video car@laive co-design approach is first explained, followed by a
Those cards are programmable using small programs callgre efficient one. Also the design decisions for the hardwar
shaders. The execution of shaders is the main difference toftware partitioning are explained. The results obtainad
the CPU. A new instance of the program is invoked for every prototype implemented on a Xilinx Virtex 4 evaluation
primitive, vertex or pixel. There are three slightly di#@t platform are given in VI. Finally section VII concludes the
types of shaders for these elements. Each instance canwegk and provides some indication on the future directions.
executed independently of the others because there is no
communication possible between instances of the same type.
This is advantageous when designing the hardware, because
it allows the execution of an arbitrary number of instances In a rendering process, each 3D-point, also calledex
in parallel, in order to gain the maximum computation speerhust traversed a set of computing stations,rdmeler pipeline
Also, pipeline technique can be used to allow some threagistil the final step when it can be drawn on the display.
to feed parameters to other threads waiting for them in tfide stations consist of a coordinate transformation (dabjec
pipeline. As a result the available hardware can be used meverld, world — camera) stage, an illumination, a clipping,
efficiently. a projection, a scaling to screen resolution step, and yinall
We developed a hardware accelerator for executing vertise step to approximate the float values to integer values is
shaders that is in particular useful for embedded systerpgrformed.
because it uses very few hardware resources, in this cas&o simplify spatial calculations in computer graphiesno-
FPGA slices. It is a kind of coprocessor that is directlgeneouscoordinates (z, y, z, w) are used. Transformations like
connected to the CPU by a fast bus. The main program runningnslations, rotations, scalings, shearings, projections, etc.
on the CPU loads the shader code and all inputs into thdan be mapped té x 4 matrices and can be combined to only
coprocessor. While the coprocessor is running the shaaer, bne matrix by multiplying the corresponding matrices. Thas

|I. INTRODUCTION

Il. VERTEX SHADER

Instruction Description

transformation of a vertex by a certain list of transforroas 244 =ddition

can be realized by one matrix-vector-multiplication. sub subtraction

For illumination calculations the dot product (scalar prod dp3 3D dot product
uct) is very important, because the light intensity depeoris dpd fnzlggﬁc‘gggﬁcé addition
the angle between surface normals and light sources. Nsrmal mul multiplication
can be transformed similar to vertices which is advantageou rcp reciprocal
when filling the surface normals together with the vertices o rq Inverse square root
the scene into the render pipeline to speed up processing. # Vertex Shader 1.1

In conclusion, each stage of the render pipeline executes ;Saigil o vertex
mainly matrix and vector operations using all values which a del _pogi tion vo
involved like coordinates, surface normals, surface lattds, # vector-matrix nultipl.
lightning parameters, etc. dp4 oPos. x, v0, c0

. . dp4 oPos.y, vO0, cl

There are several vertex shader versions for different-hard dp4 oPos.z, VO, c2
ware. We focus on implementing a subset of the smallest dp4 oPos.w, vO, c3
version 1.1 [1]. All versions use a RISC instruction set. lEac
instruction can read from up to three registers and write to Table |
one result register. Almost every register is 128 bits wide SOME VERTEX SHADER COMMANDS AND AN EXAMPLE

and stores four 32 bit floating point numbers. Hence most
of the commands operate on vectors with four components.

The individual components of a vector can be reordered and . - .
. . . .) .controllers and allow a PLB (printed circuit board) indepen
duplicated while reading from a register and there is a wri

mask for every component of the result register. This impsovaeent redesign or update of applications which is an importan

flexibility and allows optimizing calculations. It is for arple ad;iﬂ;agfél introduced a multimedia co-processor for mobile
possible to get a cross product with two instructions. Beeau) P

applications using an ARM-10 processor and fixed-poinharit

our hardware is scalar-based, all write and swizzle-masks a etic [5]. The company Bitboys developed an vector graphics
free and should be used to improve performance. The shaH]er X pany y P grap

converter analyzes the data flow for each individual Compbneoro_ces_sor tafge“”g for high-end mult|me_d|a ceII_uIar faon
which is available as IP core for SoCs integration and can

and if a result is not used, the calculation is removed on a p%rrocess SVG and OpenVG object data [6].
component basis. . ; . . .
There are alobal and local redisters. Each instan We are particular interested in a system in which custom
ere are global a ocal registers. tac stance Iﬁ)érdware can cohabit with software. Also, the system should

:he shader h;ls ':S f[)wn_stet ofltl_ocaltre;?lste(rjst con§|st|r|19 Eovide enough flexibility to ease the redesign and alsonallo
emporary and output registers. Itis not allowed to writsbg a run-time adaptation, while maintaining the performariga h

registers Wh'.Ch makes p‘_e\rallehzmg possmle_, be.causeetlse and the power consumption low. The next sections explain our
no synchronization required and no operation in one thregglution to this problem

depends on results calculated in another thread.
Vertex Shader 1.1 does not support jumps or subroutines. IV. | MPLEMENTATION
A detailed description of the instruction set can be found . . . -)
P Our target platform in this project was a Xilinx Virtex

in the DirectX SDK [1]. Table | shows some vertex shade . . .)
commands and a minimal shader that reads the vertex posit{wﬂevaluat'on board featuring a Virtex4-FX12 FPGA. This

and performs a vector-matrix multiplication to calculake t GA contains an embedded_ PowerPC 405 processor, on-chip
projective position of the vertex. memory (BlockRAM) and mlscellar_neous DSP functions[7].
We use the external DDR-RAM as video frame buffer to store
3D object data. A simple system on chip with DDR-RAM
I1l. RELATED WORK controller, VGA out module and system bus needs already

Lots of work has been done already in the domain dlf of the available slices of the FPGA. Because, floating
accelerating graphics applications utilizing FPGAs inejeh point hardware modules are expensive, we trled_ tp avoid or
Some of them are listed in [2], [3]. Often a combination of £US€ them as much as possible. Thus, an efficient design
desktop computer and a FPGA builds the computing unit. TR@NSidering speed and chip area has to be found.
need of 3D graphics visualization in embedded systemsliis sti
growing with the increasing spreading of mobile multimedi@- Basic Design
systems in everyday life like cellular phones and PDAs. Evenin a first design a field of 32 registers combined with an
the MPEG H.264 standard which is the video coding faidder and a multiplier unit and an instruction memory was
next-generation multimedia involves rendering of 2D and 3Brawn up. Thisco-processor is directly connected to the main
deformable mesh geometry [4]. processor via the FCM bus, which allows to extend the native

The still continuing miniaturization has led to highly inte PowerPC instruction set with custom instructions that are
grated chips and finally to so-called SoCs (system on chigxecuted by a user-defined configurable hardware accelerato
Here all components and peripherals are placed on a singl§fhe data words read from the BlockRAM (see Figure
chip like processors, hardware accelerators, bus andiegep 1) specify which registers supply the input values for the

Block

s

ALU 5‘” —» FCM Controller <¢—»{ PowerPC

(output)

FCM Bus [}
¥ v v v
data
RI[R||R||R||R[IR|IR||R —
A 4 »A||A||A|[A|[A[[A|[A||A
M M M M M M M < controll

16 [17 | 18 | 19 [20 | 21 | 22 | 23

AA AL AL A A

24 12512627 2829|3031 A A
'y y T RAM (Instructions) ‘4—
Program : ; ;
I e Counter Figure 2. Final design
o 3
Figure 1. First design: Field of registers The final result of the shader is stored in a special output

RAM that is written by the ALU and read by the CPU
and the FCM control module. The output RAM is addressed
arithmetic units and to which register each result should lp@ependenﬂy from the register array which allows copying
written back. the shader results to an arbitrary position. The additie#eV
The implementation of this design is very straight forwargliso saves one multiplexer that, otherwise, would be needed
and also expandable for further operations like division eit the address lines of the register array to switch between t
square root. So the two(or more) operations are execulgdU and the control module.
simultaneously. Unfortunately, the design needed huge mul) . . _ .
tiplexers and address decoders leading to very high ressurc 2) ALU: The ALU has eight floating-point input variables,

consumption. The complete chip area was filled by this firgﬂte l;rt]pu()trtp\?vrr:ict:ﬂact:a:i gzegs;% fgleg‘t :Eg f:aqslfjlittlgrs]’s?]rxvr??r?
version of the design. putp g

Figure 3.

In every cycle there are nine different outputs availablee O
B. Final Design of them is selected by the output multiplexer and controlled

bg the current instruction code. Some results are interatedi

In order to improve the first design, the idea was to exchanlge .
the expensive registers. previously realize using the fop-c sult of longer calculations and have therefore a shorter
P g ' P y 9 p-C, tency. Table Il lists the instruction set of the ALU. The

available logic (LUTSs) to on chip memory, namely dual porte rithmetic units use pipelining to save hardware resources
BlockRAM. These can hold up to 512 values each (compargﬁd cause delays which are also shown in the table. When

to 32 for the reglste_r f|eld_) but only two read respectivelyter enerating instructions for the ALU this behavior has to be
accesses are possible simultaneously. Because the dmtcpmc?

needs 8 i :) aléen into account. Still, the ALU can accept one set of \&lue
s 8 input values and since only one value can be provi ed” lock cvele

by a BlockRAM, we duplicated data to 8 BlockRAMs in ordef’ _ ycle. _ o _
to be able to read eight values simultaneously. In order toEVery input variable can be pre-multiplied by -1 before it
keep the consistency in all 8 BlockRAMS all write request afé réad into the ALU. This is implemented as an exclusive-
dispatched to all 8 BlockRAMs (Figure 2). In the followingo! Petween the sign bit of the floating-point number and
this BlockRAM unit is calledregister array. This new design the corresponding instruction bit. Because of delayssthe
consumes very few slices and also provides much space Httruction that is used for comparisons, minimum, maximum
provisional results. Compared to registers a memory re@fld absolute value, the parameterg, g, h must be provided
access takes one clock cycle and could cause additiongisdefdvice. Ther sq command returns a rough approximation for
in the computation. However, due to the saving of slices, dhe inverse of square root which is much more likely to be
efficient design of the ALU will compensate the lost in thaised as the square root itself, e.g. for normalization oforsc

BlockRAM usage (Figure 3). Usually for a more precise result one step of the Newton
oo : T) -
We next explain the components of the final design (FCiifration (formulaiz, 11 = 32,(3 — zox,?)) is sufficient [8].
Controller and ALU) in more detail. 3) Instruction Format: All instructions have a fixed length

1) FCM Controller: The control module implements theof 128 Bit, because of the eight input registers. The whole
interface to the FCM bus. The CPU is able to write to thimstruction can be divided into four words with the layout
register array, which can hold up to 128 4D vectors, and sown in Table Ill. The input values are read from memory
the instruction memory with a maximum of 512 opcodes. That positionsr c* and inverted according tonv+. The ALU
FCM controller is also able to read back the results fromesult is stored at indedst , if we (write enable) is set and
the output memory. Because the FCM instructions to handtethe extra output RAM ibe (output enable) is set. To avoid
double words provide only 5 address bits an additional 2 kih extra function de-multiplexer for each ALU command a
register is used to access all 512 possible memory locatiorselection bit was arranged (see remaining entries in Table |

command result delay notes

dot4 a-b+c-d+e-f+g-h 19 4D dot product

dot2 a-b+c-d 14 2D dot product

mult4 a-b-c-d 18 multiplication

mult2 a-b 9 multiplication

div a/b 27 division

rsq 0x5F3759DF—(a > 1) 2 start value for newton

iteration of =

slt if (a-b+c-d<0)then 14 input values are needed
(e- f) else(g-h) after 5 clock ticks again

int2float float(a) 6 converts integer to float

float2int int(a) 6 converts float to integer

Table Il
ALU COMMANDS

Word 0:8 917 1826 27 28 29 30 31

been only insignificant more complex to generate it from a

cmd0 srcO srcl dst we inv0 invl inv2 inv3 . ; .
cmdl src2 src3 out oe invd invs inve inv7 Simple C-style language. But by using a standard format, it
cmd2 src4 src5 - div rsq slt multz dot2 s possible to develop and test shaders with Direct3D and to
omd3 src6 ste7 - f2i i2f mult4 dot4 execute already existing shaders.

Table 1l

INSTRUCTION FORMAT

B. Compiling the Shader

The shader is originally written in HLSL(High Level Shad-
ing Language), which is very similar to C, except that it has
build in support for special types like vectors and texture

To generate the ALU opcodes a given vertex shader progrgﬁ{nplers' The. HITS!‘ Comp'le.r of the DirectX SDK IS thep
sed to compile it into its binary format. The compiler is

is compiled with DirectX SDK[L]. Using the syntax anaIySIéjvailable both as a standalone command line tool and as

for the resulting code a data flow graph is build up, whicfl . ;

points out the dependencies between input, provisional a _LL(Qynamlc _I|nk Ilprary), that can be used from other
output values. Now, vector operations are mapped to Scay}phcatlons. Using this approach, the shader converter ca
(ALU) operations and long processing chains are move 6rect|y process HLSL source code.

the program start, while considering the delays caused by

the arithmetic sub-units. Multiplications by -1 can be hadd C. Creating the Graph

directly by the ALU input stage. Diversions which are not pjiot the binary Direct3D vertex shader code is read and
available inVertex Shader 1.1 and therefore are realized bYgyecyted symbolically. The instructions are interpretet,
multiplication with the inverse, can be processed direb{y he cajculations are performed on variables instead of real

the ALU. Sometimes algebraic conversions can help 10 Mgpiyes. Each register stores a node of data flow graph that
calculations to the optimized dot product (€@.+ b)c — gescribes the calculations that were applied to this regist
ac+be. Also the usage of thel t command is more practical. o beginning there is usually only one node in every registe
that is labeled with the register’'s type and index. When two
registers are added, a new "+"-node is created with both
registers as inputs. It represents the result of the cdionla
and is assigned to the result register for this instructidter
Writing the shader instructions is time-consuming andrerrorepeaﬁng this step for every instruction, each registetaios
prone, because the format is optimized for simple decoding, expression tree for its value at the end of the shader
Even when using an assembler that translates mnemonics @@cuting. There are of course node that belong to more than
their corresponding binary format, it would be necessary fhe tree, because of common sub-expressions. The union of
pay attention to the latency of the opcodes and the depeadegg these trees is the data flow graph of the shader. It catain
between them. Therefore we developed a shader convefik information than the original instruction list, besaut
that reads a binary compiled Direct3D9[1] vertex shader apfdscribes only the dependencies and not the exact order of
optimizes it for the ALU. Unfortunately it has not beemyperations. So one data flow graph is usually equivalent to a

possible to support all instructions, because of the liti0itd |3rge number of programs which allows the shader converter
of the FPGA. The Direct3D9 vertex shader format has begd select the program most suitable for the ALU.

chosen, because is well documented[9] and there are several

tools like compilers, assembler and linker available[1heT L

display driver gets the shader also in this format. Anoth&}: Optimizations

possibility would have been to compile the shader directly Except eliminating common subexpression, the shader con-
from source code. The shader converter actually decompilester does mainly architecture-dependent optimizatites

the input shader into a data flow graph and so it would haeause the Direct3D shader compiler already outputs code, th

C. Vertex Shader Converter

V. GENERATING OPCODES
A. Overview

Code

+ le—
+ l— o
+ [— o
+ l— o
+ le— ©
H le— —
+ l— @
[

+ l— =
T—\

NN e

* *
mux » slt
[1 l -
m "t J—‘ 1
., l] + |—| dot4
[> *
dot2
! » mult2
O—-> * —»| mult4
0 i)
B > / » div
:)
E » 1N » IS
[T > int » int
[» float » float
v
result

Figure 3. ALU

is very optimized, but written for a more abstract execution_2_| [o |
model. It is preferable to merge several simple command into
one node, because almost every instruction takes one cycle.
The ALU can multiply the inputs of every calculation by (-1) |:>
for free and so these nodes are pushed against the flow direc- -]

tion of the graph. This means that for an addition instead of
only the output both inputs are multiplied by (-1). Althouttjle
number of nodgs increases, the ng_mber of cycles re_mains dHS&re 4. Optimizing an expression tree.
not and there is a higher probability that the resulting sode

can be combined into a larger calculation. There is a greedy

algorithm starting at the output nodes that collects adlditi shader uses only reciprocals. So multiplication and recigis

and multiplications as much as it is possible and creates @ also combined. Also the distributive law is used to canve

smallest equivalent dot2, dot4, mult2 or mult4 node (sedeTalihe expressiora + b)c into ac + be which seems to be more

I1). Up to four additions are converted into a dot product. léxpensive, but takes one instead of two instructions, keecau

a summand is the result of a product, the multiplication i§ s implemented as the dot2 instruction.

also included, otherwise it is simply multiplied by 1, which

does not create additional costs, because the multigicadi . .

always done as part of the dot product (see Figure 4). TFre Generating the Instruction Table

ALU has got a very expensive full divider, but the vertex The instruction table is generated recursively. Eachuiestr
tion is assigned to start at the first free cycle after all sf it

inputs are calculated. Because the instruction bits aré uggves the ability to multiply four floating-point numbersame
directly to control the multiplexers, one logical instriact is cycle. This is important for calculating multi-linear fuians
distributed over multiply rows in the table and the paramgetethat could otherwise only be achieved by a large number of
are delayed according to the internal pipeline of the ALUe Thcumbersome repeated high latency dot products.
eight input addresses are written in the line the instractio This design cannot be enhanced any further. Adding another
starts, the (-1) inversion bits are written into the nexéland instruction type extends the multiplexer at the output & th
the opcode selecting the correct output is inserted after tALU and leads to increased complexity. The timing constsin
corresponding number of cycles (see Table Il). The minimalill not be met and the required clock speed of 100MHz
count of cycles required to calculate the shader is bound bgnnot be achieved.
the length of longest path in the data flow graph. A simple The new hardware component has been tested with a mesh
optimization is to generate this path first so that optimallyiewer. The viewer is running on the PowerPC CPU, but the
the first and the last instruction belongs to this path and tliertex shader can be calculated either in software or haswa
others can fill the gaps between caused by long latencits.compare the performance. The triangles are not filled and
Unfortunately this decreases the total length only by vewy f the mesh is rendered as a point model (bunny model from
cycles. Because of the high latency there are still oftegelar[10]). We want to measure the speed of the vertex calculgition
gaps of empty rows in the table where no new operations cand in a real application the expensive triangle filling vebul
be started and the ALU simply waits for intermediate resultalso be done in hardware. For each configuration 100 frames
To further reduce these gaps, there are always four instanbave been rendered several times with different point cunt
of the shader executed in parallel. This is achieved by simprhe time spans are very precisely measured directly on the
duplicating the nodes two times after creating the graptw Ndoard with a special 64 bit register that counts the CPU sycle
even the large latency of the dot product(16 cycles) does ridte vertex shader consists of six instructions that caleutse
lead to empty rows in the table if there are at least fowoordinates and the lighting from a directional light s@urc
independent dot products per instance which is very commonComparing the results both for software and hardware it is
for matrix-vector multiplication. The hardware does nobkn obvious that the hardware accelerated version is muchrfaste
about multiple threads but its simplicity allows to imprabe see Table IV and Figure 5. The last column of Table 1V con-
performance significantly by generating optimal instroics. tains the ratio between software and hardware performance.
The ratio is higher when rendering more vertices, because
there is a fixed overhead per frame for clearing the color and
depth buffers.

The most important disadvantage of this implementation
is the limitation to one result per cycle. This means that a

VI. RESULTS

Vertex Count Hardware Software Software/Hardware

. tiplicafi K | ; loch 5000 3.607s 1332s 3.693
matrix-vector multiplication takes at least four cycleseT 10000 4.8325 24255 5019
high latency of certain operations is not really a problent, b 15000 6.104s 35.22s 5.770

it is different for almost every instruction, so that it cae b 20000 7.409s 46.26s _ 6.244
difficult or impossible to fully load the ALU. Because of the Table IV

strict requirements, not all commands could be directly im- PERFORMANCE RESULTS FORLOOFRAMES[SEC].

plemented in hardware. For example a singlg instruction
that multiplies two vectors component wise can take up to fou
cycles. But usually the instruction is part of a more complex
calculation and the shader converter can merge the previous
and following calculations so that the whole block may be
mapped to four larger instructions that also take four cgcle

On the other hand the ALU can calculate a 4D dot product | 5,
every cycle. It has been chosen to be specially optimized, :
because it is a very important and often used operation. Even i
the most simple but useful shader does a vector-matrix multi
plication that can be calculated using four 4D dot produéts.
large number of other instructions using only multiplioais -
and additions can be reordered and mapped to dot products [| . .
But the most important reason for the dot product is the fact wo wew e o
that it has only one scalar result and fits perfectly to thétéich
re_glster array that can only write one result_ value. !t_lg) alsFigure 5. Performance results: Time in seconds for 100 fsaamel varying
slightly cheaper than a parallel component wise multipl@t®a vertex counts
and addition because it only needs three addition modules.

There is the possibility to output directly the intermediat
2D dot product and to skip the last addition for a lower VII. CONCLUSION
latency. This can be useful when interpolating between twoWe have introduced a hardware accelerator for a vertex
vectors. The additional multiplier outside of the dot produ shader. Our design consumes few resources (slices) on FPGA,

Figure 6. This bunny consist of approximately 20.000 vegid10].

while supporting almost all functions of the common langeiag
for such data processingertex Shader 1.1. Compared to a

software only version a significant speed advantage could
be achieved. This application is suitable for the domain of

embedded systems.

(1]
(2]

(3]

(4]
(5]
(6]
(7]
(8]
El
(20]

REFERENCES

Microsoft Corporation, “DirectX SDK,” 09/12/2006. [Qine]. Available:
http://www.microsoft.com/directx

D. Thomas and W. Lukimplementing Graphics Shaders Using FPGAs,
ser. Lecture Notes in Computer Science. Springer Berlinidéleerg,
2004, p. 1173.

H. Styles and W. Luk, “Customising graphics applicatonTech-
nigues and programming interface,” MEEE Symposium on Field-
Programmable Custom Computing Machines 2000, 2000.

I. Richardson,H.264 and MPEG-4 - video compression. Wiley, 2003.
J. Y. Ju-Ho Sohn, Jeong-Ho Woo and H.-J. Yoo, “Design aest bf
fixed-point multimedia co-processor for mobile applicag@ in DATE
2006, 2006.

symbian.com, “Bitboys introduces vector graphics j@ssor for mobile
devices at game developers conferengayiv.symbian.com, 2005.
Xilinx Inc., “Virtex-4 documentation,” 09/12/2006. [@ine]. Available:
http://www.xilinx.com/virtex4

C. Lomont, “Fast inverse square root,” 2003. [Online]vafable:
http://www.math.purdue.edu/~clomont/Math/PapersBBRSqrt.pdf
Microsoft Corporation, “Windows Vista Display Driver &tel
Reference,” 09/12/2006. [Online]. Available: http://msaiicrosoft.com
L. Kobbelt, “Hauptpraktikum: Special effects SS05,9/02/2006.
[Online]. Available: http://www-i8.informatik.rwth-adnen.de/old-site/
teaching/ss05/praktikum_sfx/

