
SoPC for 3D Point Rendering
Lars Middendorf, Felix Mühlbauer, Christophe Bobda, GeorgUmlauf

Department of Computer Science
University of Kaiserslautern

Gottlieb-Daimler-Str. 48
67653 Kaiserslautern, Germany

muehlbauer,bobda,umlauf@informatik.uni-kl.de

Abstract—Real-time 3D visualization of objects or information
becomes increasingly important in everyday life e.g. in cellular
phones or mobile systems. Care should be taken in the design and
implementation of 3D rendering in such embedded devices like
handhelds devices in order to meet the performance requirement,
while maintaining power consumption low. In this work, the
design and implementation of a vertex shader on a reconfigurable
hardware is presented. The main focus is placed on the efficient
hardware/software partitioning of the vertex shader computation,
in order to maximize the performance while maintaining a high
flexibility. The resulting solution must be compatible to existing
vertex shaders in oder to allow the large amount of existing
program to be easylly ported to our platform. A prototype
consting of a PowerPC, peripherals and some custom hardware
modules is realized a on an FPGA-board. The implementation
of a point rendering shows considerable speed up compared to
a pure software solution.

I. I NTRODUCTION

Rendering of three-dimensional objects in real-time requires
much arithmetic performance. This is a problem for embedded
systems that are running at low clock speed and often lacks
dedicated hardware processing modules like a floating point
unit (FPU). In desktop computers, the expensive arithmetic
computations related to the rendering of 3D objects are done
by specialized stream processing hardware in video cards.
Those cards are programmable using small programs called
shaders. The execution of shaders is the main difference to
the CPU. A new instance of the program is invoked for every
primitive, vertex or pixel. There are three slightly different
types of shaders for these elements. Each instance can be
executed independently of the others because there is no
communication possible between instances of the same type.
This is advantageous when designing the hardware, because
it allows the execution of an arbitrary number of instances
in parallel, in order to gain the maximum computation speed.
Also, pipeline technique can be used to allow some threads
to feed parameters to other threads waiting for them in the
pipeline. As a result the available hardware can be used more
efficiently.

We developed a hardware accelerator for executing vertex
shaders that is in particular useful for embedded systems,
because it uses very few hardware resources, in this case
FPGA slices. It is a kind of coprocessor that is directly
connected to the CPU by a fast bus. The main program running
on the CPU loads the shader code and all inputs into this
coprocessor. While the coprocessor is running the shader, the

main program accomplishes further computations in parallel
until the results can be read back.

It is important to minimize the resource usage of the
hardware, because the number of available slices in a FGPA
is very limited. The clock speed is also very low and we have
to maximize the utilization of sub-components in all cycles.
The scheduling of the threads is therefore pre-calculated and
stored as part of the shader code. Hence, the control-logic
consists only of the program counter and a few multiplexers,
that route the data flow, thus enough space is left on the device
to implement floating point calculations. The multiplexer con-
figuration is stored in a table with one row for each cycle.
In this work a shader converter that generates the control
table from a Direct3D9[1] vertex shader was developed. The
shader converter performs the scheduling of all operation on
the generated hardware unit, analyzes and optimizes the data
flow and maps the calculations to operations of our ALU.
Currently we can execute four threads on the ALU in parallel.
This allows a speed-up of factor four compare to the software
implementation of the shader.

The rest of the work is organized as follows: Section
II provides the basics of vertex shader while section III
introduces some work related to custom implementation of
vertex shaders. Section IV-B explain our implementation. A
naive co-design approach is first explained, followed by a
more efficient one. Also the design decisions for the hardware
software partitioning are explained. The results obtainedon
a prototype implemented on a Xilinx Virtex 4 evaluation
platform are given in VI. Finally section VII concludes the
work and provides some indication on the future directions.

II. V ERTEX SHADER

In a rendering process, each 3D-point, also calledvertex
must traversed a set of computing stations, therender pipeline
until the final step when it can be drawn on the display.
The stations consist of a coordinate transformation (object →
world, world → camera) stage, an illumination, a clipping,
a projection, a scaling to screen resolution step, and finally
the step to approximate the float values to integer values is
performed.

To simplify spatial calculations in computer graphicshomo-
geneous coordinates (x, y, z, w) are used. Transformations like
translations, rotations, scalings, shearings, projections, etc.
can be mapped to4×4 matrices and can be combined to only
one matrix by multiplying the corresponding matrices. Thus, a

transformation of a vertex by a certain list of transformations
can be realized by one matrix-vector-multiplication.

For illumination calculations the dot product (scalar prod-
uct) is very important, because the light intensity dependson
the angle between surface normals and light sources. Normals
can be transformed similar to vertices which is advantageous
when filling the surface normals together with the vertices of
the scene into the render pipeline to speed up processing.

In conclusion, each stage of the render pipeline executes
mainly matrix and vector operations using all values which are
involved like coordinates, surface normals, surface attributes,
lightning parameters, etc.

There are several vertex shader versions for different hard-
ware. We focus on implementing a subset of the smallest
version 1.1 [1]. All versions use a RISC instruction set. Each
instruction can read from up to three registers and write to
one result register. Almost every register is 128 bits wide
and stores four 32 bit floating point numbers. Hence most
of the commands operate on vectors with four components.
The individual components of a vector can be reordered and
duplicated while reading from a register and there is a write
mask for every component of the result register. This improves
flexibility and allows optimizing calculations. It is for example
possible to get a cross product with two instructions. Because
our hardware is scalar-based, all write and swizzle-masks are
free and should be used to improve performance. The shader
converter analyzes the data flow for each individual component
and if a result is not used, the calculation is removed on a per-
component basis.

There are global and local registers. Each instance of
the shader has its own set of local registers consisting of
temporary and output registers. It is not allowed to write global
registers which makes parallelizing possible, because there is
no synchronization required and no operation in one thread
depends on results calculated in another thread.

Vertex Shader 1.1 does not support jumps or subroutines.
A detailed description of the instruction set can be found
in the DirectX SDK [1]. Table I shows some vertex shader
commands and a minimal shader that reads the vertex position
and performs a vector-matrix multiplication to calculate the
projective position of the vertex.

III. R ELATED WORK

Lots of work has been done already in the domain of
accelerating graphics applications utilizing FPGAs in general.
Some of them are listed in [2], [3]. Often a combination of a
desktop computer and a FPGA builds the computing unit. The
need of 3D graphics visualization in embedded systems is still
growing with the increasing spreading of mobile multimedia
systems in everyday life like cellular phones and PDAs. Even
the MPEG H.264 standard which is the video coding for
next-generation multimedia involves rendering of 2D and 3D
deformable mesh geometry [4].

The still continuing miniaturization has led to highly inte-
grated chips and finally to so-called SoCs (system on chip).
Here all components and peripherals are placed on a single
chip like processors, hardware accelerators, bus and peripheral

Instruction Description
add addition
sub subtraction
dp3 3D dot product
dp4 4D dot product
mad multiplication & addition
mul multiplication
rcp reciprocal
rsq inverse square root

Vertex Shader 1.1
vs_1_1
assign vertex
dcl_position v0
vector-matrix multipl.
dp4 oPos.x, v0, c0
dp4 oPos.y, v0, c1
dp4 oPos.z, v0, c2
dp4 oPos.w, v0, c3

Table I
SOME VERTEX SHADER COMMANDS AND AN EXAMPLE

controllers and allow a PLB (printed circuit board) indepen-
dent redesign or update of applications which is an important
advantage.

Sohn et al. introduced a multimedia co-processor for mobile
applications using an ARM-10 processor and fixed-point arith-
metic [5]. The company Bitboys developed an vector graphics
processor targeting for high-end multimedia cellular phones
which is available as IP core for SoCs integration and can
process SVG and OpenVG object data [6].

We are particular interested in a system in which custom
hardware can cohabit with software. Also, the system should
provide enough flexibility to ease the redesign and also allow
a run-time adaptation, while maintaining the performance high
and the power consumption low. The next sections explain our
solution to this problem.

IV. I MPLEMENTATION

Our target platform in this project was a Xilinx Virtex
4 evaluation board featuring a Virtex4-FX12 FPGA. This
FPGA contains an embedded PowerPC 405 processor, on-chip
memory (BlockRAM) and miscellaneous DSP functions[7].
We use the external DDR-RAM as video frame buffer to store
3D object data. A simple system on chip with DDR-RAM
controller, VGA out module and system bus needs already
half of the available slices of the FPGA. Because, floating
point hardware modules are expensive, we tried to avoid or
reuse them as much as possible. Thus, an efficient design
considering speed and chip area has to be found.

A. Basic Design

In a first design a field of 32 registers combined with an
adder and a multiplier unit and an instruction memory was
drawn up. Thisco-processor is directly connected to the main
processor via the FCM bus, which allows to extend the native
PowerPC instruction set with custom instructions that are
executed by a user-defined configurable hardware accelerator.

The data words read from the BlockRAM (see Figure
1) specify which registers supply the input values for the

Figure 1. First design: Field of registers

arithmetic units and to which register each result should be
written back.

The implementation of this design is very straight forward
and also expandable for further operations like division or
square root. So the two(or more) operations are executed
simultaneously. Unfortunately, the design needed huge mul-
tiplexers and address decoders leading to very high resources
consumption. The complete chip area was filled by this first
version of the design.

B. Final Design

In order to improve the first design, the idea was to exchange
the expensive registers, previously realize using the on-chip
available logic (LUTs) to on chip memory, namely dual ported
BlockRAM. These can hold up to 512 values each (compared
to 32 for the register field) but only two read respectively write
accesses are possible simultaneously. Because the dot product
needs 8 input values and since only one value can be provided
by a BlockRAM, we duplicated data to 8 BlockRAMs in order
to be able to read eight values simultaneously. In order to
keep the consistency in all 8 BlockRAMs all write request are
dispatched to all 8 BlockRAMs (Figure 2). In the following
this BlockRAM unit is calledregister array. This new design
consumes very few slices and also provides much space for
provisional results. Compared to registers a memory read
access takes one clock cycle and could cause additional delays
in the computation. However, due to the saving of slices, an
efficient design of the ALU will compensate the lost in the
BlockRAM usage (Figure 3).

We next explain the components of the final design (FCM
Controller and ALU) in more detail.

1) FCM Controller: The control module implements the
interface to the FCM bus. The CPU is able to write to the
register array, which can hold up to 128 4D vectors, and to
the instruction memory with a maximum of 512 opcodes. The
FCM controller is also able to read back the results from
the output memory. Because the FCM instructions to handle
double words provide only 5 address bits an additional 2 bit
register is used to access all 512 possible memory locations.

Figure 2. Final design

The final result of the shader is stored in a special output
RAM that is written by the ALU and read by the CPU
and the FCM control module. The output RAM is addressed
independently from the register array which allows copying
the shader results to an arbitrary position. The additionalRAM
also saves one multiplexer that, otherwise, would be needed
at the address lines of the register array to switch between the
ALU and the control module.

2) ALU: The ALU has eight floating-point input variables,
one input port that is used to select the equation, and one
output port which can be used to get the result as shown in
Figure 3.

In every cycle there are nine different outputs available. One
of them is selected by the output multiplexer and controlled
by the current instruction code. Some results are intermediate
result of longer calculations and have therefore a shorter
latency. Table II lists the instruction set of the ALU. The
arithmetic units use pipelining to save hardware resources
and cause delays which are also shown in the table. When
generating instructions for the ALU this behavior has to be
taken into account. Still, the ALU can accept one set of values
per clock cycle.

Every input variable can be pre-multiplied by -1 before it
is read into the ALU. This is implemented as an exclusive-
or between the sign bit of the floating-point number and
the corresponding instruction bit. Because of delays theslt
instruction that is used for comparisons, minimum, maximum
and absolute value, the parameterse, f, g, h must be provided
twice. Thersq command returns a rough approximation for
the inverse of square root which is much more likely to be
used as the square root itself, e.g. for normalization of vectors.
Usually for a more precise result one step of the Newton
iteration (formula:xn+1 = 1

2
xn(3 − x0xn

2)) is sufficient [8].

3) Instruction Format: All instructions have a fixed length
of 128 Bit, because of the eight input registers. The whole
instruction can be divided into four words with the layout
shown in Table III. The input values are read from memory
at positionsrc* and inverted according toinv*. The ALU
result is stored at indexdst, if we (write enable) is set and
in the extra output RAM ifoe (output enable) is set. To avoid
an extra function de-multiplexer for each ALU command a
selection bit was arranged (see remaining entries in Table III).

command result delay notes
dot4 a · b + c · d + e · f + g · h 19 4D dot product
dot2 a · b + c · d 14 2D dot product
mult4 a · b · c · d 18 multiplication
mult2 a · b 9 multiplication
div a/b 27 division
rsq 0x5F3759DF−(a ≫ 1) 2 start value for newton

iteration of 1
√

a

slt if (a · b + c · d < 0) then 14 input values are needed
(e · f) else(g · h) after 5 clock ticks again

int2float float(a) 6 converts integer to float
float2int int(a) 6 converts float to integer

Table II
ALU COMMANDS

Word 0:8 9:17 18:26 27 28 29 30 31
cmd0 src0 src1 dst we inv0 inv1 inv2 inv3
cmd1 src2 src3 out oe inv4 inv5 inv6 inv7
cmd2 src4 src5 - div rsq slt mult2 dot2
cmd3 src6 src7 - f2i i2f mult4 dot4 -

Table III
INSTRUCTION FORMAT

C. Vertex Shader Converter

To generate the ALU opcodes a given vertex shader program
is compiled with DirectX SDK[1]. Using the syntax analysis
for the resulting code a data flow graph is build up, which
points out the dependencies between input, provisional and
output values. Now, vector operations are mapped to scalar
(ALU) operations and long processing chains are move to
the program start, while considering the delays caused by
the arithmetic sub-units. Multiplications by -1 can be handled
directly by the ALU input stage. Diversions which are not
available inVertex Shader 1.1 and therefore are realized by
multiplication with the inverse, can be processed directlyby
the ALU. Sometimes algebraic conversions can help to map
calculations to the optimized dot product (e.g.(a + b)c →

ac+bc. Also the usage of theslt command is more practical.

V. GENERATING OPCODES

A. Overview

Writing the shader instructions is time-consuming and error-
prone, because the format is optimized for simple decoding.
Even when using an assembler that translates mnemonics into
their corresponding binary format, it would be necessary to
pay attention to the latency of the opcodes and the dependence
between them. Therefore we developed a shader converter
that reads a binary compiled Direct3D9[1] vertex shader and
optimizes it for the ALU. Unfortunately it has not been
possible to support all instructions, because of the limitations
of the FPGA. The Direct3D9 vertex shader format has been
chosen, because is well documented[9] and there are several
tools like compilers, assembler and linker available[1]. The
display driver gets the shader also in this format. Another
possibility would have been to compile the shader directly
from source code. The shader converter actually decompiles
the input shader into a data flow graph and so it would have

been only insignificant more complex to generate it from a
simple C-style language. But by using a standard format, it
is possible to develop and test shaders with Direct3D and to
execute already existing shaders.

B. Compiling the Shader

The shader is originally written in HLSL(High Level Shad-
ing Language), which is very similar to C, except that it has
build in support for special types like vectors and texture
samplers. The HLSL compiler of the DirectX SDK is then
used to compile it into its binary format. The compiler is
available both as a standalone command line tool and as
a DLL(dynamic link library), that can be used from other
applications. Using this approach, the shader converter can
directly process HLSL source code.

C. Creating the Graph

First the binary Direct3D vertex shader code is read and
executed symbolically. The instructions are interpreted,but
the calculations are performed on variables instead of real
values. Each register stores a node of data flow graph that
describes the calculations that were applied to this register. In
the beginning there is usually only one node in every register,
that is labeled with the register’s type and index. When two
registers are added, a new "‘+"’-node is created with both
registers as inputs. It represents the result of the calculation
and is assigned to the result register for this instruction.After
repeating this step for every instruction, each register contains
an expression tree for its value at the end of the shader
executing. There are of course node that belong to more than
one tree, because of common sub-expressions. The union of
all these trees is the data flow graph of the shader. It contains
less information than the original instruction list, because it
describes only the dependencies and not the exact order of
operations. So one data flow graph is usually equivalent to a
large number of programs which allows the shader converter
to select the program most suitable for the ALU.

D. Optimizations

Except eliminating common subexpression, the shader con-
verter does mainly architecture-dependent optimizations, be-
cause the Direct3D shader compiler already outputs code, that

mult2

dot2

mul

mul

mul

mul

mul

a b c d e f g h

* *

+

+

+

mux

float

int

*

*

1/√

*

/

Code

mux

result

± ± ± ± ± ± ± ±

slt

dot4

mult4

div

rsq

int

float

mult4

mult2

dot2

*

Figure 3. ALU

is very optimized, but written for a more abstract execution
model. It is preferable to merge several simple command into
one node, because almost every instruction takes one cycle.
The ALU can multiply the inputs of every calculation by (-1)
for free and so these nodes are pushed against the flow direc-
tion of the graph. This means that for an addition instead of
only the output both inputs are multiplied by (-1). Althoughthe
number of nodes increases, the number of cycles remains does
not and there is a higher probability that the resulting nodes
can be combined into a larger calculation. There is a greedy
algorithm starting at the output nodes that collects additions
and multiplications as much as it is possible and creates the
smallest equivalent dot2, dot4, mult2 or mult4 node (see Table
II). Up to four additions are converted into a dot product. If
a summand is the result of a product, the multiplication is
also included, otherwise it is simply multiplied by 1, which
does not create additional costs, because the multiplication is
always done as part of the dot product (see Figure 4). The
ALU has got a very expensive full divider, but the vertex

� � �� � ��
�

����
� � �� � � 		

Figure 4. Optimizing an expression tree.

shader uses only reciprocals. So multiplication and reciprocals
are also combined. Also the distributive law is used to convert
the expression(a + b)c into ac + bc which seems to be more
expensive, but takes one instead of two instructions, because
it is implemented as the dot2 instruction.

E. Generating the Instruction Table

The instruction table is generated recursively. Each instruc-
tion is assigned to start at the first free cycle after all of its

inputs are calculated. Because the instruction bits are used
directly to control the multiplexers, one logical instruction is
distributed over multiply rows in the table and the parameters
are delayed according to the internal pipeline of the ALU. The
eight input addresses are written in the line the instruction
starts, the (-1) inversion bits are written into the next line and
the opcode selecting the correct output is inserted after the
corresponding number of cycles (see Table II). The minimal
count of cycles required to calculate the shader is bound by
the length of longest path in the data flow graph. A simple
optimization is to generate this path first so that optimally
the first and the last instruction belongs to this path and the
others can fill the gaps between caused by long latencies.
Unfortunately this decreases the total length only by very few
cycles. Because of the high latency there are still often large
gaps of empty rows in the table where no new operations can
be started and the ALU simply waits for intermediate results.
To further reduce these gaps, there are always four instances
of the shader executed in parallel. This is achieved by simply
duplicating the nodes two times after creating the graph. Now
even the large latency of the dot product(16 cycles) does not
lead to empty rows in the table if there are at least four
independent dot products per instance which is very common
for matrix-vector multiplication. The hardware does not know
about multiple threads but its simplicity allows to improvethe
performance significantly by generating optimal instructions.

VI. RESULTS

The most important disadvantage of this implementation
is the limitation to one result per cycle. This means that a
matrix-vector multiplication takes at least four cycles. The
high latency of certain operations is not really a problem, but
it is different for almost every instruction, so that it can be
difficult or impossible to fully load the ALU. Because of the
strict requirements, not all commands could be directly im-
plemented in hardware. For example a singlemul instruction
that multiplies two vectors component wise can take up to four
cycles. But usually the instruction is part of a more complex
calculation and the shader converter can merge the previous
and following calculations so that the whole block may be
mapped to four larger instructions that also take four cycles.

On the other hand the ALU can calculate a 4D dot product
every cycle. It has been chosen to be specially optimized,
because it is a very important and often used operation. Even
the most simple but useful shader does a vector-matrix multi-
plication that can be calculated using four 4D dot products.A
large number of other instructions using only multiplications
and additions can be reordered and mapped to dot products.
But the most important reason for the dot product is the fact
that it has only one scalar result and fits perfectly to the limited
register array that can only write one result value. It is also
slightly cheaper than a parallel component wise multiplication
and addition because it only needs three addition modules.

There is the possibility to output directly the intermediate
2D dot product and to skip the last addition for a lower
latency. This can be useful when interpolating between two
vectors. The additional multiplier outside of the dot product

gives the ability to multiply four floating-point numbers inone
cycle. This is important for calculating multi-linear functions
that could otherwise only be achieved by a large number of
cumbersome repeated high latency dot products.

This design cannot be enhanced any further. Adding another
instruction type extends the multiplexer at the output of the
ALU and leads to increased complexity. The timing constraints
will not be met and the required clock speed of 100MHz
cannot be achieved.

The new hardware component has been tested with a mesh
viewer. The viewer is running on the PowerPC CPU, but the
vertex shader can be calculated either in software or hardware
to compare the performance. The triangles are not filled and
the mesh is rendered as a point model (bunny model from
[10]). We want to measure the speed of the vertex calculations
and in a real application the expensive triangle filling would
also be done in hardware. For each configuration 100 frames
have been rendered several times with different point counts.
The time spans are very precisely measured directly on the
board with a special 64 bit register that counts the CPU cycles.
The vertex shader consists of six instructions that calculate the
coordinates and the lighting from a directional light source.

Comparing the results both for software and hardware it is
obvious that the hardware accelerated version is much faster,
see Table IV and Figure 5. The last column of Table IV con-
tains the ratio between software and hardware performance.
The ratio is higher when rendering more vertices, because
there is a fixed overhead per frame for clearing the color and
depth buffers.

Vertex Count Hardware Software Software/Hardware
5000 3.607s 13.32s 3.693
10000 4.832s 24.25s 5.019
15000 6.104s 35.22s 5.770
20000 7.409s 46.26s 6.244

Table IV
PERFORMANCE RESULTS FOR100FRAMES [SEC].

Figure 5. Performance results: Time in seconds for 100 frames and varying
vertex counts

VII. C ONCLUSION

We have introduced a hardware accelerator for a vertex
shader. Our design consumes few resources (slices) on FPGA,

Figure 6. This bunny consist of approximately 20.000 vertices. [10].

while supporting almost all functions of the common language
for such data processingVertex Shader 1.1. Compared to a
software only version a significant speed advantage could
be achieved. This application is suitable for the domain of
embedded systems.

REFERENCES

[1] Microsoft Corporation, “DirectX SDK,” 09/12/2006. [Online]. Available:
http://www.microsoft.com/directx

[2] D. Thomas and W. Luk,Implementing Graphics Shaders Using FPGAs,
ser. Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2004, p. 1173.

[3] H. Styles and W. Luk, “Customising graphics applications: Tech-
niques and programming interface,” inIEEE Symposium on Field-
Programmable Custom Computing Machines 2000, 2000.

[4] I. Richardson,H.264 and MPEG-4 - video compression. Wiley, 2003.
[5] J. Y. Ju-Ho Sohn, Jeong-Ho Woo and H.-J. Yoo, “Design and test of

fixed-point multimedia co-processor for mobile applications,” in DATE
2006, 2006.

[6] symbian.com, “Bitboys introduces vector graphics processor for mobile
devices at game developers conference,”www.symbian.com, 2005.

[7] Xilinx Inc., “Virtex-4 documentation,” 09/12/2006. [Online]. Available:
http://www.xilinx.com/virtex4

[8] C. Lomont, “Fast inverse square root,” 2003. [Online]. Available:
http://www.math.purdue.edu/~clomont/Math/Papers/2003/InvSqrt.pdf

[9] Microsoft Corporation, “Windows Vista Display Driver Model
Reference,” 09/12/2006. [Online]. Available: http://msdn.microsoft.com

[10] L. Kobbelt, “Hauptpraktikum: Special effects SS05,” 09/12/2006.
[Online]. Available: http://www-i8.informatik.rwth-aachen.de/old-site/
teaching/ss05/praktikum_sfx/

