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Abstract: The concept of natural neighbors employs the notion of distance to define
local neighborhoods in discrete data. Especially when querying and accessing large
scale data, it is important to limit the amount of data that has to be processed for an
answer. Because of its implicit definition on distances, the natural neighbor concept
is extremely well suited to provide meaningful neighborhoods in spatial data with a
scattered, inhomogeneous distribution.

This paper revisits some unique properties of natural neighbor based methods and
summarizes important findings for their successful application to scattered data inter-
polation, and the computation of discrete harmonic functions.

1 Introduction

Many scientific areas deal with phenomena in a spatial context when modeling or inves-
tigating real world problems. Computational approaches, be it in the endeavor of data
generation or data analysis, inherently deal with discrete data representations. Based on
the spatial structure of the data which can range from completely regular to inhomoge-
neous and scattered, the way how we access the data model has big impact on space and
time requirements of algorithms.

In the first part of this work we are concerned with smooth, local interpolants in large,
inhomogeneous, and unstructured data, a challenging problem for data representation and
-access. We focus on the local reconstruction of a real-valued function from data in an ad-
equate spatial neighborhood. Often – in absence of further knowledge about the modeled
problem – this neighborhood is best expressed in terms of natural neighbors, a neighbor-
hood relation defined on the Voronoi diagram of the data sites.

Another problem that is related to locally defined functions is the computation of discrete
harmonic functions. We discuss implications of a discretization domain that itself is a
function of time and how natural neighbors are beneficial in this context.

In the remainder we first revisit previous work while discussing under which circumstances
natural neighbor concepts are feasible. We then turn to the algorithmic impact caused by



natural neighbor concepts in scattered data interpolation. The issues that arise in the course
of applying C2-continuous natural neighbor interpolation are presented along with a brief
sketch of available solutions. Leaving the area of function interpolation we then look at
the computation of discrete harmonic functions over scattered point sets under continuous
deformation.

2 The Natural Neighbor Concept

In a set of geometric entities X = (x1, . . . ,xm), we call xi and xj natural neighbors if
there is a point that is closer to xi and xj than to any other entity in X. This notion of
spatial proximity is formalized in the Voronoi diagram, also known as Dirichlet tessellation
or Thiessen polygons [Aur91, OBSC00]. The discrete set X of known geometric entities
is called the set of Voronoi sites, and its Voronoi diagram is the partition of space into
so-called Voronoi tiles (T1, . . . ,Tm), such that

p ∈ Ti ⇔ d(p,xi) ≤ min
1≤j≤n

d(p,xj) (1)

for every point p and a distance measure d. In this structure, natural neighbors are exactly
those Voronoi sites whose tiles have a non-empty intersection.

One of our goals is the reconstruction of an unknown function that is locally defined by
nearby data, where proximity is defined via the distance measure. In this context natural
neighbors provide an excellent notion of neighborhood.

Although (1) encompasses Voronoi sites of any shape and dimension, and is valid for
arbitrary distance measures d, not all choices are algorithmically feasible. We present two
of the most basic and elegant variants.

The traditional Voronoi diagram is uniquely defined by the point-shaped sites xi ∈ Rn

and the Euclidean metric d2(x,y) = ‖x−y‖2. It comes with properties that are typically
required in locally operating geometric algorithms: invariance under rigid transformations
and uniform scaling. Moreover, its tiles T1, . . . ,Tm are convex polyhedra, allowing easy
and robust geometric access. The most important fact about Voronoi diagrams, from a
computational point of view, is their duality to Delaunay triangulations. These data struc-
tures are well-understood with a large support in terms of fast and robust algorithms and
computation libraries, and allow easy and fast access to the entities of the Voronoi diagram.

The Voronoi diagram can be generalized e.g. in terms of different distance measures, or
by the shape of sites. Each generalization usually leads to more complex algorithms and
data structures and causes the loss of one or the other desirable property of the traditional
Voronoi diagram. One noteworthy generalization that retains most of the geometric el-
egance of the traditional Voronoi diagram is the power- or Laguerre Voronoi diagram.
Based on a non-uniform metric

(dp(p,xi))2 = (d2(p,xi))2 − wi (2)

that uses weights wi associated with the sites xi, it still leads to convex Voronoi tiles and



is dual to the regular triangulation of a weighted point set, which is only slightly more
complicated to maintain than the Delaunay triangulation.

Generalizations in the shape of the sites usually do not dualize as easily to a triangulation
and require more general graph structures to represent the Voronoi diagram.

Depending on the characteristics of a data set, natural neighbor concepts can prove valu-
able for local function approximation or interpolation, the key indicators being

• a spatial setting,

• proximity that is based on a distance measure with a geometric interpretation,

• a sought-after function that locally depends on known data.

3 Related Work

Although the general concept of natural neighbors is not restricted to interpolation and
local coordinates, the latter are their most prominent applications. The introduction of
natural neighbor based local coordinates which possess C1 continuity almost everywhere
was done in the pioneering work of [Sib80] under the nowadays misleading term “natu-
ral neighbor coordinates” and later applied to globally C1 scattered data interpolation in
[Sib81]. Further results on the properties of the C1 coordinates followed in [Far90, Pip92].

Following the concept underlying the C1-continuous coordinates, C0-continuous coordi-
nates have been independently introduced by [CFL82] in the context of random lattices
in nuclear physics, by [BIK+97] under the term “Non-Sibsonian” coordinates, and by
[Sug99] as “Laplace natural neighbor” coordinates.

In [HS00b] an integral relation between C0 and C1 coordinates was shown and generalized
to almost everywhere Ck-continuous natural neighbor coordinates.

The drawback of reduced (C0) continuity of interpolants based on the coordinates was
overcome in [Sib81, Far90] who devised globally C1-continuous interpolants, and in
[HS04] who devised a globally C2 continuous interpolant.

A generalization of natural neighbor interpolation to line- and circle-shaped Voronoi sites
was performed in [AMG98, GF99, HS00a].

The algorithmic implications of natural neighbor interpolation have been investigated
in [BBU06, BS95, Hiy05], and acceleration approaches were presented in [FEK+05,
PLK+06].

Support for the manipulation and access of generalized Voronoi diagrams by means of
graphics hardware is due to [HCK+99].

The implicit definition of higher order of continuity based on data that lacked explicit
derivative information has been the goal of [Sib81, Cla96, Flö03, BBU06].

Finally, the non-trivial definition of natural neighbor coordinates in the tangent space of
manifolds was investigated in [BC00, Flö03].



4 Smooth Data Interpolation with Natural Neighbors

The scattered data interpolation problem can be stated as follows. We assume a scattered,
unstructured set of data sites X and a partially defined function f : X → R together with
its first k derivatives f (1), . . . , f (k) at each site. We seek to construct a function Φ that
agrees with f and its first k derivatives on X and otherwise satisfies properties including,
but not limited to, smoothness and variation minimization. In the following we consider
the interpolation of scalar values and derivatives up to order two in R2, i.e. gradients
∇f(xi) and Hessians H f(xi), and concentrate on the evaluation of Φ(q) at a query
position q ∈ R2.

In the corresponding research area of scattered data interpolation, many efficient local
and global schemes have been proposed, able to deal with a large variety of input data.
Interpolation schemes with global support lead to better results in general than schemes
with local support, at the expense of considerably increased computational complexity.
Local schemes, on the other hand, depend on a definition of “local” that often amounts
to a user-provided parameter, making especially inhomogeneously distributed data hard to
deal with.

Natural neighbor scattered data interpolation determines the local support for the recon-
struction from the set of natural neighbors, thus coming with implicit and automatic control
over the neighborhood. The evaluation of natural neighbor schemes at a point q operates
on the set Nq := (x1, . . . ,xn) of natural neighbors in the Voronoi diagram of X ∪ {q},
and involves the following steps:

1. computation of coordinates λ(q) = (λ1(q), . . . , λn(q)) ∈ Rn of q with respect to
the points in Nq,

2. if not provided, estimation of the first k derivatives f (1), . . . , f (k) with respect to x
at the data points, and

3. setup and evaluation of a multivariate function ϕ in the coordinates, giving the in-
terpolant as Φ = ϕ(λ(q)).

The rest of section is dedicated to the algorithmic efforts involved in the computation of
C0, C1, and C2-continuous interpolants. After pointing out in what respect the implemen-
tation of the considered C2 interpolant is more complex, we devise an algebraic rather than
geometric approach for the computation of coordinates to simplify the algorithmic realiza-
tion. A similar difficulty can be observed for the estimation of higher order derivatives, for
which we refer to a recursive approach with limited complexity.

4.1 Natural neighbor schemes up to first order continuity

Natural neighbor coordinates as proposed in [Sib80, CFL82, Sug99, BIK+97] are com-
puted from sizes of geometric entities in the Voronoi diagram of the data sites. Thanks
to the duality between Voronoi diagram and Delaunay triangulation, operations on the



Figure 1: Discrete, scalar valued height field interpolated using the C0-continuous interpolant Φ0.

Voronoi diagram can in general be reduced to the traversal of adjacent elements in the
Delaunay triangulation. We briefly sketch the steps involved in the computation of C0 and
C1-continuous interpolants..

The set Nq of natural neighbors is identical to the set of edge-adjacent neighbors of q in
the Delaunay triangulation of X ∪ {q}. We can assume Nq = (x1, . . . ,xn) to be ordered
counter-clockwise around q. The vertices (v1, . . . ,vn) of q’s Voronoi tile Tq are the
circumcenters of the triangles 4(q,xi,xi+1), 1 ≤ i ≤ n, where we assume Nq to be
cyclic, i.e. xn+1 := x1.

Now, the C0-continuous natural neighbor coordinates λ0(q) = (λ0
1(q), . . . , λ0

n(q)) of q
with respect to (x1, . . . ,xn) are defined as

λ0
i (q) = λ̂0

i (q) /
∑

xj∈Nq

λ̂0
j (q), λ̂0

i (q) = ‖vi−1 − vi‖ / ‖xi − q‖.

From the above definitions it is obvious that the computation of λ0(q) amounts to the
iteration of the one-ring of q after it has been inserted into the Delaunay triangulation
of X. In three-dimensions, the computation of λ0

i (q) requires the iteration around the
Delaunay edge (q,xi) and the area computation of a convex polygon.

A C0-continuous interpolant is now given by

Φ0(q) = ϕ(λ0(q)) =
∑

xi∈Nq

λ0
i (q)f(xi).

An example of a height field interpolation based on Φ0 is shown in Figure 1

Natural neighbor coordinates with C1-continuity in R2 \X, initially proposed by Sibson
[Sib80], are defined by

λ1
i (q) = |Ti ∩Tq| / |Tq|,

where Ti is the tile of xi in the Voronoi diagram of X, and Tq is the tile of q in the
Voronoi diagram of X ∪ {q}. In [Wat92] it was observed that |Ti ∩ Tq| is the sum of
signed areas of “dual triangles” which are defined on circumcenters of triangles formed by
q and the vertices of Delaunay triangles that would locally be modified by the insertion
of q. The beauty of this lies in the generality of the resulting formula for the intersection
volumes, which is directly applicable to higher dimensions, operating on “dual simplexes”.
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Figure 2: (a) The weight dependent Voronoi tile Tq(w) in the power diagram. (b) Discrete, scalar
valued height field with given derivatives interpolated using the C1-continuous interpolant Φ1.

It should be noted, however, that this approach is numerically instable near and on edges
(or k − 1-simplexes) of the Delaunay triangulation due to an infinite volume of the dual
triangle (simplex). A remedy to this can be found in [Hiy05].

To achieve C1 continuity also at the data sites X by interpolating gradients, two construc-
tions have been proposed in [Sib81] and [Far90] that define ϕ as a polynomial in λ1(q)
such that the gradient of the interpolant matches that defined at the data site. The con-
struction in [Far90] builds on cubic Bézier simplexes b3 in n variables for which it is close
to trivial to model derivatives at their vertices, which coincide with the data sites. For a
thorough treatment of Bézier simplexes, see [dB87]. Consequently, the C1 interpolant is

Φ1(q) = ϕ1(λ1(q)) = b3(λ1(q)). (3)

Figure 2(b) shows a discrete height field with given gradients interpolated using Φ1.

In case of unknown gradients, [Sib81] proposed to estimate the gradient at xi from the
weighted least squares plane through Ni. This, being a standard approach to derivative
estimation, works remarkably well thanks to the utilization of λ1 as weights in the least
squares fit.

4.2 Natural neighbor coordinates with second order continuity

The evaluation of C0 and C1-continuous interpolants requires only the Delaunay triangu-
lation of X and a simple traversal of vertex-adjacent elements. This section deals with the
first step in globally C2-continuous interpolation, the computation of local coordinates.

In [HS00b], a framework for the computation of natural neighbor coordinates with Ck-
continuity in R2\X was proposed that contained above mentioned C0 and C1 coordinates
as special cases. The definition of these is based on the concept of power diagrams, which
differ from the ordinary Voronoi diagram in the use of the custom distance measure (2).
The power diagram shares all properties of the Voronoi diagram with additional control



of the Voronoi tile sizes by means of the site weights wi, where tiles can vanish for small
enough values of wi.

Interestingly, the bisectors bounding a tile Ti in the power diagram are linearly displaced
depending on wi. Thus, for a uniform choice of wi = 0 at all sites except q, the corre-
sponding weight wq ∈ [−wmax, 0], where Tq(−wmax) = ∅, continuously blends between
the ordinary Voronoi diagram of X and that of X ∪ {q}, as illustrated in Figure 2(a).

These last facts led to the observation that the areas Tq ∩ Ti used in the computation of
Sibson’s coordinates are swept by the edges of the weight-dependent tile Tq(wq) as wq

runs from −wmax to 0. This constitutes an integral relation between the variable length of
the Voronoi edge and the area of overlap Tq ∩Ti that was generalized to

λk
i (q) = λ̂k

i (q) /
∑

j

λ̂k
j (q), λ̂k

i (q) = λ̂k
i (q, 0), (4)

λ̂k
i (q, u) =

∫ 0

−∞
λ̂k−1

i (q, v)dv, λ̂0
i (q, u) = li(q, u)/ri,

where li(q, u) is the length of the tile edge separating Tq(u) and Ti(u), and ri = ‖xi−q‖.

Figure 2(a) shows that li(q, u) is a piecewise linear function, making λ̂k
i (q, u) a piece-

wise polynomial on support intervals that are determined by the geometry of the Voronoi
diagram. The implementation of the integral expression (4) involves rather complex geo-
metric operations and requires careful treatment of degenerate cases.

In [BBU06] the author devised an algebraic approach to the determination of l(q, u) that
naturally deals with degenerate situations and generalizes more easily to 3D. A sketch of
the approach follows.

The weight-dependent tile Tq(u) in our consideration is always a convex polytope which
has an alternate representation as an intersection of half-spaces whose representation in
Hessian normal form can easily be derived from the Delaunay triangulation,

Tq(u) =
⋂

xi∈Nq

Hi(u), Hi(u) = {p | (p− q)(xi − q) ≤ bi(u) }, (5)

where bi(u) is a linear function.

In [Las83] a recursive algorithm was proposed for the computation of the volume of con-
vex polytopes in half-space representation such as (5). Each recursion expresses the d-
dimensional volume as a function of d − 1-dimensional volumes, until only intersections
of real-valued intervals are to be computed at the deepest level. We exploit this by applying
the recursive algorithm to (3) while keeping track of the modifications done to the linear
functions bi(u). After d−1 recursions, the 1-dimensional volumes correspond to li(q, u).

For Tq(u) ∈ R2, this leads to a linear programming problem whose solution corresponds
to the piecewise linear function required for the computation of λk(q) in (4), and can still
be solved in a decent fashion for Tq(u) ∈ R3, where this time roots of second order
polynomials are involved.
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Figure 3: (a) Data sample from cos(‖x‖). (b) Hiyoshi’s global C2 interpolant based on gradients
and Hessians estimated from values in the natural neighborhood of each site, (c) the gradients at the
natural neighbors were fitted in a first stage and taken into account when fitting the Hessians.

4.3 Natural neighbor interpolant with second order continuity

Based on the Ck coordinate construction and the Bézier simplex idea introduced in [Far90],
a globally C2 continuous interpolation scheme was proposed in [HS04], representing ϕ
by a quintic Bézier simplex b5 over λ2(q). While the C1 approach in [Far90] interpolates
given gradients at the nodes, the C2 approach in [HS04] additionally interpolates Hessians.
The evaluation of the interpolant is rather costly in terms of floating point operations, yet
the quality of the results is very high.

However, if only function values are provided as input, ∇f(xi) and H f(xi) must be
estimated from the data. To estimate∇f(xi), [Sib81] used Sibson’s coordinates as weights
for the least squares plane through the natural neighbors, yielding good results and the
reproduction of spherical quadratics (see also [Flö03]). If also second order derivative
information shall be extracted from the data, the set Nq is of insufficient size, which
renders the estimation unstable most of the time as shown in Figure 3(b). We now sketch
the recursive scheme for the estimation of higher order derivatives devised by the author
in [BBU06].

Starting with a first iteration over the data, intermediate gradients ∇̂f(xi) are fitted based
on each site’s natural neighborhood. The second iteration fits∇f(xi) and H f(xi), which
are the first two terms of the Taylor expansion of f at xi, to the f(xi) and ∇̂f(xi) such that
both are approximated as closely as possible. The result of this improved method is shown
in Figure 3(c). The approach readily generalizes to higher order derivative estimation.

5 Discrete Harmonic Functions in Time-Dependent Point Sets

We now turn our attention to the approximation of harmonic functions. By definition, a
function f is harmonic on a domain Ω if it satisfies the Laplace equation ∆f |Ω = 0, where
∆f = ∇2f . In case of a boundary value problem with Dirichlet boundary conditions of
the form f |∂Ω = u for a given u, a fundamental result from harmonic function theory
states that there exists a unique f satisfying the Laplace equation, c.f. [ABR01].



5.1 Discrete Harmonic Functions

In case of a discrete domain X = {x1, . . . ,xm} ⊂ Ω, the characterization of a discrete
harmonic function f : X → R utilizes an approximation of ∆f(xi), which is commonly
modeled as a weighted sum of differences

∆fi := ∆f(xi) =
∑

xj∈Nxi

λij(xi − xj),

where Nxi is some nearby neighborhood and λij ∈ R+ reflect the approximation of the
metric. This is a generalization of the sum of second derivatives in finite differences.

This definition directly corresponds to that of the graph Laplacian on a directed, weighted
graph G = (X, E, Λ) over the nodes X, with edges E = {eij}ij ⊂ X × X and edge
weights Λ : E → R, where λij = Λ(eij). Under the assumption that the weights Λ
are positive and G is connected, a similar statement about existence and uniqueness of a
discrete harmonic function exists for a set of fixed function values.

In order to approximate the continuous Laplacian, a reasonable choice of E are the edges
in the Delaunay triangulation of X. This leaves the choice of λij , which can be chosen
such that the discrete Laplacian reproduces certain properties of the continuous Laplacian,
namely

∆id = ∆
[

x
y

]
=

[
0
0

]
.

This is trivially fulfilled if λij are chosen to be generalized barycentric coordinates of xi in
the one-ring neighborhood of the Delaunay triangulation, since by definition of barycentric
coordinates,

0 =
∑

eij∈E

λij(xi − xj), 1 =
∑

eij∈E

λij , 0 ≤ λij .

Obviously, λij is only defined in the interior of the convex hull C (X) of X. Therefore, the
Dirichlet conditions of the boundary value problem are automatically required at convex
hull vertices of X.

With this in hand, the discrete harmonic function that is the solution to the boundary value
problem

f |∂C (X) = u, ∆fi = 0

is found as the solution of a sparse linear system.

When ignoring the limit behavior of the above introduced Laplacian approximation the au-
thor confirmed in [BHFU07] that the computed discrete harmonic functions approximate
continuous harmonic functions very well.



xa
i

xb
i

(a)

xa
i

xb
i

(b)

Figure 4: (a) The enclosing one-ring polygon of a vertex in the Delaunay triangulation in before
and after an edge flip caused by the motion of xa

i to xb
i . (b) The same constellation in the Voronoi

diagram. Note the difference in the amount of change that happens in (a) and (b).

5.2 Deforming Domain

If the domain discretization X is now a continuous function of time X(t), say in the course
of a dynamic simulation, then we intuitively expect the Laplacian approximation and with
it the computed discrete harmonic function to continuously reflect the deformation that
occurs with time.

The author investigated this aspect in [BHFU07]. It turns out that among the many choices
of barycentric coordinates that render acceptable approximations of the Laplacian in the
static case, only natural neighbor coordinates lead to a Laplacian approximation that con-
tinuously depends on the deformation X(t).

The reason in here is the continuity of local coordinates with respect to their defining
neighborhood. The majority of generalized barycentric coordinates are defined with re-
spect to an enclosing polygon, which is derived from the connectivity of the Delaunay
triangulation. The connectivity, however, must change at some point of an arbitrary defor-
mation for any triangulation to remain valid. These changes lead to discontinuous changes
of the polygonal neighborhood, and consequently to discontinuous jumps in generalized
polygonal barycentric coordinates, which is illustrated in Figure 4(a).

Natural neighbor coordinates, on the other hand, are zero exactly when edge flips occur
in the Delaunay triangulation, which comes from their relaion to sizes of entities in the
Voronoi diagram which themselves continuously depend on the positions of the Voronoi
sites. This behavior is illustrated in Figure 4(b). Furthermore, the continuity of λij with
respect to q, as discussed in Section 4, carries over to the Laplacian approximation.

6 Conclusion

We motivated that for scattered data methods in a spatial context, the definition of “neigh-
borhood” plays an important role. Without prior knowledge about the data, spatial proxim-
ity is a valid criterion for neighborhood definition. A completely automatic determination
of such a neighborhood is given in terms of natural neighbors in the Voronoi diagram of a



set of data sites.

By pointing out the advantages and algorithmic implications of natural neighbor based
methods we provided insight into key indicators for their application.

This has been further supported by sketching the robust implementation of C2 natural
neighbor interpolation, derivative estimation and the application of natural neighbor coor-
dinates to the computation of discrete harmonic functions.
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