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Abstract
We present an adaptive subdivision scheme for unstructured tetrahedral meshes inspired by the

√
3-subdivision

scheme for triangular meshes. Existing tetrahedral subdivision schemes do not support adaptive refinement and
have traditionally been driven by the need to generate smooth three-dimensional deformations of solids. These
schemes use edge bisections to subdivide tetrahedra, which generates octahedra in addition to tetrahedra. To split
octahedra into tetrahedra one routinely chooses a direction for the diagonals for the subdivision step. We propose
a new topology-based refinement operator that generates only tetrahedra and supports adaptive refinement. Our
tetrahedral subdivision algorithm is motivated by the need to have one representation for the modeling, the
simulation and the visualization and so to bridge the gap between CAD and CAE. Our subdivision algorithm
design emphasizes on geometric quality of the tetrahedral meshes, local and adaptive refinement operations, and
preservation of sharp geometric features on the boundary and in the interior of the physical domain.

Keywords: solid modeling, tetrahedral subdivision

ACM CCS: I.3.5 [Computer Graphics]: Curve, surface, solid, and object representations.

1. Introduction

Tetrahedral meshes are an important representation for a
large number of applications including physical anima-
tions [KFCO06, CFL∗07], numerical simulations [JSK08],
solid deformations [SHW04], and scientific visualization
[GSA∗03]. For all of these applications the mesh quality
in terms of the shape of the tetrahedra is of high importance.
While long and thin tetrahedra can be useful in some applica-
tions, for example, video compression [Leh08] or simulation
of anisotropic phenomena, in general, isotropic tetrahedra
are preferred in most applications. In particular, the stability
of a numerical simulation using the finite element or finite
volume method is closely related to the quality of the under-
lying mesh [Kri92, PGH94]. An appropriate mesh quality is
usually achieved by an optimization or adaptive refinement
of the tetrahedral mesh.

The most commonly used tetrahedral meshing algorithms
are based on Delaunay, octree, or advancing-front methods
[She98, LS07, Sch07]. However, these methods cannot guar-
anty an appropriate mesh quality without an additional post-
optimization to improve the mesh quality. Furthermore, these
methods do not allow for an easy and flexible local refine-
ment of the mesh in arbitrary mesh regions without destroy-
ing sharp features in the mesh that must be captured and
preserved due to physical constraints.

In computer graphics subdivision surfaces have become
a standard tool for shape modeling [DKT98], because of
their efficiency and flexibility. They allow for a built-in
adaptivity [Kob00], for example, integrated local optimiza-
tions [GU08], and special rules to preserve sharp features
[HDD∗94]. Therefore, we present a subdivision algorithm in-
spired by the

√
3-scheme to generate high-quality tetrahedral
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Figure 1: An example for our tetrahedral subdivision scheme. Starting from the input mesh (bottom left) we show from left to
right: the mesh after 1-4 splits, 2-3 face flips, boundary 1-3 splits, boundary edge flips, edge removals and geometric smoothing.

meshes for numerical simulations or visualization. This sub-
division algorithm can be used to refine a tetrahedral mesh
adaptively while preserving all relevant sharp features.

In order to bridge the gap between CAD and CAE ap-
plications it is necessary that the underlying representation
meets the requirements of both fields: exact interpolation of
the bounding surface, preservation of geometric features on
the bounding surface and in the interior, adaptive refinement,
and quality of the tetrahedra.

First, we discuss in Section 2 previous approaches related
to our method. Then we address in Section 3 the basic def-
inition of our subdivision scheme, in Sections 4 and 5 the
boundary and sharp feature rules, and in Section 6 the adap-
tive refinement strategy. We close in Sections 7 and 8 with
our results and a brief outlook to future research directions.

2. Related Work

The presented work is related to surface subdivision, solid
subdivision, mesh quality measures, mesh optimization, and
adaptive refinement that we discuss in the sequel.

2.1. Subdivision surfaces

Subdivision surfaces are a powerful tool to model free-form
surfaces of arbitrary topology. They were developed in 1978
[CC78, DS78] and are today a standard modeling tool in
computer graphics [DKT98]. A subdivision surface is de-
fined as the limit of an iterative refinement process, starting
with a polygonal base mesh M0 of control points. Iterat-
ing the subdivision on M0 generates a sequence of refined

meshes M1, . . . , Mn, that converges to a smooth limit surface
M∞ [PR08]. This subdivision operator usually consists of a
topological refinement operation followed by a geometrical
smoothing operation. While the topological refinement in-
serts new vertices and faces or flips edges, the geometrical
smoothing moves vertices to new positions.

In general, subdivision surfaces are smooth. However, real
world models have sharp features where the surface normal
is discontinuous. For this subdivision algorithms are tailored
to also allow for sharp corners or creases. Examples for such
special rules, where tagged edges will yield creases on the
subdivision surface, are presented in [HDD∗94, Kob00].

Subdivision surfaces are classified as interpolating or ap-
proximating. For approximating schemes the control points
of Mi do, in general, not lie on Mi+1, i ≥ 0. Examples of such
schemes are the Doo-Sabin and the Catmull–Clark algorithm
[CC78]. Both schemes are generalizations of uniform tensor-
product B-Spline surfaces to arbitrary quadrilateral meshes.
Approximating schemes for triangular meshes are the algo-
rithm of Loop [Loo87] and

√
3-subdivision [Kob00]. The

topological refinement operation of the latter is particularly
designed for adaptive refinement, see Figure 2.

For interpolating schemes all control points of Mi are
also in Mi+1, i ≥ 0. Thus, the limit surface interpolates these
points. The earliest interpolating subdivision scheme for sur-
faces is the butterfly scheme of Dyn et al. [DLG90] which
triggered the subsequent development of other interpolating
subdivision schemes. An example for such a scheme that uses
the topological refinement operation of the

√
3-scheme fol-

lowed by an interpolating geometrical smoothing operation
is the interpolating

√
3-subdivision scheme of [LG00].
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Figure 2: 1-3 split (green) and edge flip (red) operations
used in

√
3-subdivision scheme for triangular meshes.

2.2. Solid subdivision

In contrast to subdivision surfaces, subdivision solids have
gained much less attention. One of the first algorithms was
presented by Joy and MacCracken [JM96, MJ96] who used
a generalization of Catmull–Clark subdivision to 3d-solids
to define smooth deformations based on unstructured hex-
ahedral meshes. As the topological refinement operation of
this algorithm made it hard to analyze the smoothness of
the resulting limit solid, Bajaj et al. [BSWX02] modified the
operation to create deformations that are provably smooth
everywhere except at the vertices of the base mesh M0.

A subdivision scheme for tetrahedral meshes based on
trivariate box splines was proposed by Chang et al. [CMQ02,
CMQ03]. Their scheme is approximating or interpolating
depending on the geometrical smoothing operation. Their
topological refinement first splits every tetrahedron into four
tetrahedra and one octahedron, see Figure 3(a). The resulting
octahedra are then split along one of their diagonals into four
tetrahedra. This choice of the diagonal can bias the resulting
meshes towards a certain spatial direction. To remedy this
effect Schaefer et al. [SHW04] use a topological refinement
that splits the octahedra symmetrically into eight tetrahedra
and six octahedra. Their geometric smoothing allows for
globally C2-continuous deformations, except along edges of
M0. The major drawback of these schemes is the use of
tetrahedra and octahedra, which are not well-suited for finite
volume simulations, and require a complicated data structure.

Another solid subdivision scheme was developed by Pas-
cucci [Pas02]. This scheme allows for any type of polygonal
elements and adaptive refinement. However, applying this

(a) Edge bisection of all
edges of a tetrahedron.

(b) 1-4 split.

Figure 3: Edge bisection and tetrahedral 1-4 split.

scheme to a tetrahedral mesh generates pyramids. So, the
handling of the different polygonal elements requires com-
plicated refinement and merging steps in each iteration.

Other topological refinement operators for tetrahedra are
described in [Bey95, RM98]. Because these allow for an
adaptive refinement, we discuss them in Section 2.5.

2.3. Mesh quality

Common quality measures are the minimum of a tetrahe-
dron’s six dihedral angles and the edge ratio of a tetrahedron’s
longest and shortest edge. The edge ratio measure is efficient
to compute but has the drawback that some badly shaped
tetrahedra (e.g. slivers) are measured to be good. Therefore,
using angle criteria to determine the quality of a tetrahedron
is more intuitive and precise because tetrahedra with large
dihedral angles cause interpolation and approximation errors
[She02] and tetrahedra with small dihedral angles lead to ill-
conditioned stiffness matrices [Fri72, BA76]. The drawback
of measuring the quality of a tetrahedron by its dihedral an-
gles is that there are some badly shaped tetrahedra with good
dihedral angles, for example, needle-shaped tetrahedra, but
there is evidence that such badly shaped elements do neither
hurt discretization error nor matrix conditioning [KS07]. For
more details on the relation of shape and matrix condition-
ing we refer to [She02], which gives an extensive survey of
different quality measures.

As dihedral angles are inefficient to compute, often the
minimum sine of a tetrahedron’s six dihedral angles are used
instead. For the rest of this paper, whenever we refer to the
quality of tetrahedra, we use the minimum sine of the signed
dihedral angle. For better readability, we show the real angle
values in all figure, where the dihedral angle of an equilateral
tetrahedron of ≈ 71◦ is the optimal value.

2.4. Mesh optimization

If a mesh contains distorted elements, a numerical simula-
tion tends to be less accurate and the numerical solution is
more expensive. Mesh optimization algorithms address this
problem as they take an existing mesh and improve its qual-
ity. There are two methods to optimize a mesh: smoothing
and topological changes. A smoothing operation moves a
vertex to a new location with the objective to improve the
local shape of the tetrahedra incident to that vertex. Topolog-
ical changes are usually local operations that remove certain
elements from a mesh and replace them with better ones
occupying the same space.

For triangular meshes, every topological operation can be
obtained by a combination of edge flips, vertex insertions
into a face or an edge, and edge collapses. For tetrahedral
meshes, there exist edge flips and face flips [dIG85]. The
simplest case of an edge flip is a 3-2 edge flip shown in

c© 2009 The Authors
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input mesh 1-4 split of
all tetrahedra
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old interior faces
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Figure 4: The tetrahedral subdivision scheme. The green shaded boxes represent the
√

3-scheme on the boundary.

Figure 5: 2-3 face flip and 3-2 edge flip.

Figure 6: Multi-face and edge removal for tetrahedra.

Figure 5, where the red edge is flipped and the red face is
inserted instead. The 2-3 face flip is the inverse operation.
Their generalizations are called edge removal and multi-face
removal, see Figure 6. In [KS07, Leh08] these generalized
flip operations are analyzed in detail.

The most popular smoothing approach is Laplacian
smoothing, which moves a vertex to the center of its one-ring
neighbors [Fie88]. The advantage of Laplacian smoothing
is its simplicity and computational efficiency, but it cannot
guaranty to improve the quality since it is a heuristic not
related to quality measures. However, Laplacian smoothing
is by far the most common technique, especially as it works
well for convex regions. Unfortunately, in concave regions,
it can create bad or even inverted tetrahedra.

A smoothing approach that produces better results—
with the drawback of higher computational costs—is
optimization-based smoothing [BS97, AB97]. This tech-
nique moves vertices in order to locally optimize the quality
of incident tetrahedra. Several researchers have implemented
optimization based smoothing techniques. There are algo-
rithms that basically use Laplacian smoothing and choose op-
timization based smoothing when necessary [Fre97, CTS98].
It has also been shown that these techniques can be paral-
lelized [FJP99].

2.5. Adaptivity

For many applications it is necessary to adaptively refine the
tetrahedra to a required level of detail. In numerical simula-
tions, for instance, in areas of strong force gradients a finer
mesh is required than in other areas. Applying free-form de-
formations to solid models based on tetrahedral mesh defor-
mations, it is necessary to adaptively refine tetrahedra, where
the deformation varies strongly. Finally, for visualization it
is often desired to have finer tetrahedra on the boundary.

The most common technique for adaptive refinement
of triangular meshes is the so-called red-green refinement
[BSW83], where one, two, or three edges of a triangle are split
to achieve transitions between different refinement levels. For
triangles, there are 23 = 8 possibilities to split the edges, i.e.,
up to symmetry there are four different cases. Here, the refine-
ment operator of

√
3 subdivision is much more advantageous,

as it only consists of triangular 1-3 splits and edge flips. For
tetrahedral meshes, there is a refinement similar to red-green
refinement based on edge bisection [RM98, Bey95].

But as tetrahedra have six edges, there are 26 = 64 differ-
ent cases and up to symmetry eleven different cases remain.
Therefore, adaptive refinement for tetrahedral meshes with
these rules is a complex operation. A simpler approach for
adaptive refinement is longest-edge bisection [RN00], if one
splits one edge after the other. However, these approaches
focus on the topological refinement and do not address ge-
ometrical smoothing. This becomes particularly important,
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if on the boundary of the solid surfaces and sharp features
must be preserved during simulation, modeling and mesh
optimization.

3. Tetrahedral Subdivision

For our tetrahedral subdivision scheme we define the topo-
logical refinement operation and the geometrical smoothing
operation separately. Each of these two operations is split
into elementary steps which are interleaved to achieve opti-
mal mesh quality. The schematic sequence of these elemen-
tary steps is shown in Figures 4 and 1, where the changes are
highlighted in red. It starts with four elementary topological
refinement steps, followed by the geometrical optimization
consisting of two elementary geometrical smoothing steps
that bracket an additional elementary topological refinement
step. The last two steps are iterated to improve the mesh
quality.

Our tetrahedral subdivision schemes was inspired by
√

3-
subdivision for triangular meshes whose topological refine-
ment operation can be factored into triangular 1-3 splits fol-
lowed by triangular edge flips. Instead of triangular 1-3 splits
we use tetrahedral 1-4 splits (Figure 3(b)) to achieve adap-
tivity. This splitting operation has not been used before for
tetrahedral subdivision or mesh generation in general. In-
stead of triangular edge flips we use 2-3 face flips (Figure 5)
and edge removals (Figure 6) to control the vertex valance.
On the boundary we use the standard

√
3-scheme.

3.1. Topological refinement

To avoid the generation of octahedra in the mesh we use the
1-4 split (Figure 3(b)), which is the analog of the triangular
1-3 split (Figure 2). One 1-4 split inserts a new vertex at the
barycenter of a tetrahedron and connects it to the tetrahe-
dron’s vertices. The benefit of this operation is the implicit
support for adaptive refinement. Unfortunately, the tetrahe-
dra become flatter and the valence of the vertices increases.

To decrease the valence,
√

3-subdivision uses edge flips.
For tetrahedral meshes there are flipping operations that
flip faces or edges. Since the number of tetrahedra inci-
dent to an edge is arbitrary, an tetrahedral edge flip can be-
come arbitrarily complex. Therefore, we use 2-3 face flips
(Figure 5) to remove all old interior faces. As 2-3 face flips
can create inverted tetrahedra, we assume that the input mesh
fulfills the geometric properties of [Leh08], i.e. for two face-
adjacent tetrahedra the line connecting the two remaining
vertices intersects the common face, see Figure 5. For all
subsequent iterations our algorithm optimizes the signed di-
hedral angles in the refined mesh with edge removal opera-
tions. Thus, we can guaranty that no inverted tetrahedra are
left after the optimization.

For our subdivision scheme, the combination of 1-4 split
and 2-3 face flips is important for a uniform refinement. Re-

fining the tetrahedral mesh only with 1-4 splits, the tetrahedra
do not get smaller, but only flatter.

A mesh with n tetrahedra and nb boundary faces has 4n

tetrahedra after the 1-4 split and nb + 3(4n − nb)/2 tetrahe-
dra after 2-3 face flips. Unfortunately, these operations still
increase the valence of an interior vertex v with nt incident
tetrahedra and ne = nt/2 + 2 incident edges. The number
of tetrahedra incident to v increases by the factor three, be-
cause each tetrahedron is split into four tetrahedra, but only
three are incident to v. Thus, the number of incident edges
becomes 3ne − 4. Note that nb and ne are even.

To reduce the valence further we perform additional edge
removals of interior edges of the mesh. Because there is no
unique way to identify removable edges we control these
edge removals by the subsequent smoothing operation.

3.2. Geometric smoothing

Traditional subdivision algorithms for surfaces use simple
stencils for geometric smoothing. As the purpose of the pro-
posed tetrahedral subdivision scheme is for numerical sim-
ulations, we use a geometric smoothing operation that is
directly related to a quality measure of the mesh. To achieve
the best trade-off between mesh quality of optimization based
smoothing and efficiency of Laplacian smoothing we com-
bined both methods. To find the best location for a vertex
v, we first determine the quality vector (q1, . . . , qn) of all
tetrahedra (t1, . . . , tn) incident to v. In principle, qi denotes
an arbitrary quality measure for a tetrahedron ti ; in practice,
we use the quality measure described in Section 2.3. We
denote by qmin = min(q1, . . . , qn) the quality of the worst
incident tetrahedron. If qmin > α for a pre-defined quality
level α (e.g., 0.3), no optimization is triggered. Otherwise,
the vertex is first moved using Laplacian smoothing and the
quality vector and qmin are re-calculated. If qmin is decreased,
the old vertex location of v is recovered. If now qmin > α, the
smoothing stops. Otherwise, optimization based smoothing
is used to find a better location for v, cf. [Fre97].

To guide the choice of edge removals to reduce the vertex
valence we also use the quality vectors. An edge is removed
when the quality of its worst incident tetrahedron would be
improved as a consequence of the removal (cf. [KS07]).

4. Boundary

The operations described in the previous section work only
for interior tetrahedra. The boundary of a tetrahedral mesh
is a triangular mesh. Therefore, we use on the boundary the√

3-scheme which consists of triangular 1-3 splits, triangular
edge flips and geometrical smoothing, see Figure 2.

To propagate the topological refinement of the
√

3-scheme
on the boundary to the interior of the tetrahedral mesh we
use the following strategy. First, we insert a new vertex at
the barycenter of each boundary face. This operation is a
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(a) Edge trisection of one
edge of a tetrahedron.

(b) Tetrahedral 1-3 split.

Figure 7: Edge trisection and tetrahedral 1-3 split.
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Figure 8: Three steps of the subdivision scheme with preser-
vation of a sharp crease (red edge). The upper row shows
the exploded view of the mesh. The lower row visualizes the
quality of the tetrahedra measured with the minimum dihe-
dral angle criterion from red (bad quality, 0◦) to green (good
quality, ≈ 71◦).

so-called tetrahedral 1-3 split, see Figure 7(b). It is the equiv-
alent to a triangular 1-3 split, but instead of three new trian-
gles it generates three new tetrahedra. Second, we flip all old
boundary edges. After the 1-4 split there are always at least
two tetrahedra incident to a boundary edge. Thus, we use
edge removals to flip boundary edges. Note that one of the
red edges in Figure 6 (left) becomes the new boundary edge
connecting triangle barycenters.

The classical
√

3-scheme [Kob00] is an approximating
subdivision scheme. We use its geometric smoothing oper-
ation for the boundary of the tetrahedral mesh. Examples
of this are shown in Figures 8 and 9. The top row shows
an exploded view of the meshes and the bottom row a vi-
sualization of the mesh quality. For the visualization of the
tetrahedral quality the color hue of the HSV model is linearly
interpolated from 0◦ (bad quality) to 120◦ (good quality).

An interpolating
√

3-scheme was proposed in [LG00].
They used the same topological refinement, but different
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Figure 9: Three steps of the subdivision scheme with a sharp
corner (red vertex left).
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Figure 10: Two subdivision steps with adaptive refinement.
Here, the interpolating boundary scheme was used.

geometric smoothing to create an interpolating scheme. We
implemented these different smoothing rules as well, so that
our framework allows to choose between interpolation and
approximation. See Figure 10 for an example.

5. Sharp Features

To allow for sharp features on the boundary of a tetrahedral
mesh we use a variant of

√
3-subdivision that is capable of

modeling corners and creases, see [Kob00]. On the one hand,
to preserve creases in a

√
3-mesh, tagged edges must not be

flipped during subdivision. On the other hand, two steps of√
3-subdivision trisect each edge. Therefore, tagged edges

are left unchanged in every odd iteration, and are trisected
in every even iteration. For the even iterations this yields
topologically the same mesh as the standard

√
3-scheme.

For the geometric smoothing linear interpolation is used.
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For sharp creases in tetrahedral meshes, we also use edge
trisection as shown in Figure 7(a), where the red edge is
trisected. For sharp creases we also leave tagged boundary
edges unchanged in every odd iteration. In every even iter-
ation we apply edge trisection to all tetrahedra incident to a
tagged boundary edge. We also use linear interpolation for
the geometric smoothing. An example for a sharp crease on
the boundary is shown in Figure 8, where one edge is tagged
(red). In the first iteration the edge is preserved, while in the
second iteration the edge is trisected. Note that the quality is
decreased near the feature.

Figure 9 shows three subdivision steps with one sharp
corner. This is achieved on the boundary and in the interior
by skipping the geometric smoothing operation for all tagged
vertices.

For interior features, tagged interior edges can be handled
the same way to allow for interior creases. Similar to bound-
ary surfaces, interior feature surfaces can be modeled based
on the

√
3-surface subdivision scheme with transitions to the

solid tetrahedral mesh on both sides.

6. Adaptive Refinement

The subdivision scheme presented so far increases the num-
ber of tetrahedra by approximately a factor of six after one
complete subdivision step. This is better than edge bisection-
based subdivision where the number of tetrahedra grows with
a factor of eight. However, the growth is still exponential.
Adaptive refinement is a strategy to avoid this, because it
allows to subdivide a mesh in different regions to different
refinement levels without generating low-quality tetrahedra.

Adaptive refinement for triangular meshes splits only those
triangles that belong to a mesh area of high importance for the
simulation or whose neighborhood is highly curved. Thus,
for automatic adaptivity mesh generation depends heavily on
the application problem.

The strategy of adaptive refinement for our tetrahedral sub-
division scheme is as follows: If a tetrahedron is selected to
be not refined, the 1-4 split is not applied. All other subse-
quent steps of the topological refinement are only applied if
none of the involved tetrahedra are selected. The geometric
smoothing operation is applied to all vertices.

Figure 10 shows two steps of an adaptive refinement. The
top-most tetrahedra are un-split, the tetrahedra in the middle
are split once and the bottom-most tetrahedra are split twice.
In this example, for the boundary we used the interpolating
smoothing operation.

7. Results

The examples in the previous figures are designed to demon-
strate the functionality and the features of the proposed sub-

Figure 11: Tripod model. Courtesy getfem++ [get09].

division scheme. In this section, we demonstrate our subdivi-
sion scheme for the tripod mesh in Figure 11. The statistics
of the initial mesh are shown in the first column of Table
1. The initial model has larger tetrahedra in the interior and
smaller tetrahedra on the boundary, which is preserved during
the refinement. To preserve the sharp features of this tripod
model, the 293 red highlighted edges are handled as feature
edges.

The first example shown in Figure 12 illustrates two steps
of uniform subdivision of the complete tripod model. The
first row shows the boundary with red highlighted sharp fea-
ture edges, the second row shows a cutaway view, the third
row shows the quality distribution in the cutaway view, and
the fourth row shows a histogram of the minimum dihedral
angles of the model. The feature edges are not highlighted
in the third column, to illustrate the edge trisection in the
second subdivision step. Note that the feature edges are not
split in the first step. The initial model has 2,799 tetrahedra,
23,480 tetrahedra after the first step and 161,028 tetrahedra
after the second step. The individual elementary steps have
the following impact on the tetrahedral mesh:

1. The 1-4 split creates 4 × 2, 799 = 11, 196 tetrahe-
dra.

2. All old 4,743 interior faces are removed by a 2-
3 flip, which creates 4, 743 additional tetrahedra.
This yields 21,096 tetrahedra in total.

3. All 1,710 boundary faces are split by a 1-3 split
(3 × 1, 710 = 5, 130).

4. All boundary edges are flipped by the edge removal,
which replaces m tetrahedra by 2m − 2 tetrahedra.

5. During the optimization steps, the first 565 boundary
vertices are smoothed.

6.&7. Iteratively interior edges are flipped and interior
vertices are smoothed, which creates the remaining
tetrahedra.

The initial tetrahedral mesh contains 967 nodes. The incre-
ment of the nodes is caused by the 1-4 splits creating 2,799
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Table 1: Statistics of initial tripod mesh and after the subdivision.

Initial Mesh Example 1 Example 1 Example 2 Example 2
Step 1 Step 2 Step 1 Step 2

Nodes 967 5,476 34,086 5,910 7,658
Edges 4,621 31,521 202,809 6,292 16,410
Tetrahedra 2,799 23,480 161,028 4,074 12,089

Worst minimum dihedral angle 7, 4◦ 6, 1◦ 4, 9◦ 6, 8◦ 5, 9◦
Average minimum dihedral angle 42, 0◦ 36, 1◦ 28, 4◦ 38, 3◦ 30, 6◦
Best minimum dihedral angle 64, 1◦ 65, 2◦ 65, 7◦ 64, 1◦ 65, 5◦

Average vertex valence 8 12 16 9 16
Maximal vertex valence 50 150 223 114 165

Figure 12: Two subdivision steps of the tripod model without adaptive refinement. The first column shows the original model,
the second column the model after the first step and the third column the model after the second step. The row shows the whole
model, the second row a cutaway view of the model, the third row the quality distribution (minimum dihedral angles) and
the fourth row shows the histogram of the minimum dihedral angles. The ordinate of the histogram represents the amount of
tetrahedra with corresponding minimum dihedral angle.
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Figure 13: Two subdivision steps of the tripod model with adaptive refinement. The first column shows the original model, the
second column the model after the first step and the third column the model after the second step. The row shows the whole
model, the second row a cutaway view of the model, the third row the quality distribution (minimum dihedral angles) and
the fourth row shows the histogram of the minimum dihedral angles. The ordinate of the histogram represents the amount of
tetrahedra with corresponding minimum dihedral angle.

new vertices and the 1-3 splits creating 1,710 new vertices
on the boundary. This yields 5,476 vertices in total.

Table 1 shows the statistics of this example in the second
and third column. As these statistics indicate we cannot com-
pletely guaranty to preserve the initial quality and to hold the
vertex valence small. The maximal vertex valence increases
from 50 to 223 after two steps of subdivision. However, less
than 2% of the vertices have a valence larger than 50. The
average vertex valence only increases from 8 to 16. The
reason for this quality decrease is that we use only vertex
smoothing and edge removal operations for the optimization
of the mesh, and that we do not add additional optimization
operations like vertex insertions or multi-face removals. The
increase of the vertex valence is not problematic for finite
element simulations, as long as vertices with high valence
still have incident tetrahedra with acceptable minimum di-
hedral angels. However, if the objective is to minimize the
vertex valence, the optimization step can be changed to use

a different objective function, for example, spherical angle
instead of dihedral angle.

The second example in Figure 13 shows two steps of the
adaptive refinement of the red highlighted region containing
284 tetrahedra. The statistics of this example are shown in
the last two columns of Table 1. As in the first example, the
quality of the tetrahedra decreases and the maximal valence
of the vertices increases from 8 to 16. Compared to the first
example the mesh quality and the vertex valance are slightly
better. This is due to the fact that globally less vertices are
necessary to achieve locally a high resolution in the red high-
lighted mesh area.

8. Conclusion and Future Work

In this paper, we have presented a new subdivision scheme
for tetrahedral meshes. The main contribution is the novel
split operation. To refine the tetrahedra we use a 1-4 split
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instead of edge bisection. This has two major advantages: we
do not introduce octahedra into the mesh and the split implic-
itly supports adaptive refinement. A second key ingredient
is that the presented subdivision scheme allows the model-
ing of sharp features such as corners and creases and can
be either interpolating or approximating. We did not tackle
the problem of analyzing the limit smoothness of the solid,
because this requires the development of new techniques for
volumetric cases, which is beyond the scope of this paper.

For the future we plan to analyze how this subdivision
scheme can be used for animation, scientific visualization,
solid modeling, and simulation of real world problems. At
the moment we are working on a more efficient data structure
for tetrahedral meshes, as this is the major bottleneck of the
proposed framework.
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