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ABSTRACT
Voronoi based interpolation employs the concept of natural
neighbors to define an interpolating function over discrete
data known at scattered sample points. In this work we
review the two main concepts for improving interpolation
continuity inside the convex hull of the sample domain and
compare four natural neighbor interpolants ofC1 andC2

continuity. We give a visual presentation of all interpolants
to provide insight into their overall behavior in addition to
a comparison of their analytical and practical properties.
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1 Introduction

In nowadays scientific culture large amounts of unstruc-
tured sample data are generated in many applications, com-
monly as a result of numerical simulation or measure data
from large scale sensor input. The common outcome is a
collection of unstructured sample positions in the plane, in
space or higher dimensions, where data has been calculated
or measured. Processing this data requires a continuous,
sometimes continuously differentiable representation. Un-
der the assumption that the data has no noteworthy error
to it, a continuous function must be found that interpolates
the values at the sample positions, and matches higher or-
der derivatives if they exist. A considerable body of work
exists on the solution of the above problem. With the size
of the data sets often exceeding the capacity of the process-
ing computers, local interpolants become more and more
important.

In this work we survey some spatial interpolation ap-
proaches based on natural neighbors, a concept derived
from the Voronoi tessellation over a set of unstructured
points. Natural neighbors inherently possess local sup-
port and cope well with inhomogeneous sampling densi-
ties. We review properties of existing methods and point
out strengths and limitations of Voronoi-based interpola-
tion.

1.1 Related Work

Natural neighbor coordinates were first introduced by Sib-
son [1, 2], who proposed a globallyC1-continuous inter-
polant in the plane that reproduces spherical quadratics.
Farin extended this to an interpolant with second order
precision on the basis of multivariate Béziersimplexes in
[3]. Laplace coordinates, a simple identity provided by the
structure of the Voronoi diagram, were presented by dif-
ferent authors in [4, 5, 6]. In [7] Hiyoshi et al. generalize
Laplace and Sibson coordinates to natural neighbor coordi-
nates of arbitrary continuity except at the data sites, called
Standard coordinates. These are combined with Farin’s ap-
proach by the same authors in [8] to produce a globallyC2

interpolant with cubic precision.
In the present work, we cover the following inter-

polants: Laplace, Sibson’s, and Hiyoshi’s coordinates in
Section 3.1, 3.2, and 3.3, and Sibson’sC1, Farin’sC1, and
Hiyoshi’sC2 interpolant in Section 4.3, 4.1, and 4.2.

For input data with values distributed along curves,
transfinite interpolation is required. Gross et al. extended
Sibson’s coordinates to planar polygons [9],
Hiyoshi et al. did so for Laplace coordinates in [6].
Transfinite interpolation to model discontinuities along
line segments using is treated in [10]. In [11], Flötotto
reviews most of the above methods in the more general
setting of power diagrams and works out aC1 interpolant
that requires no knowledge of derivatives, following an
idea of Clarkson [12]. Furthermore, she generalizes natural
neighbor interpolation to point clouds on manifolds.

1.2 Outline

We summarize the concept of Voronoi diagrams in Sec-
tion 2 to define local coordinates based on natural neigh-
bors in Section 3. In Section 4, four interpolants of global
C1 andC2 continuity are presented and discussed, along
with the explanation of how to obtain arbitraryCk conti-
nuity. A discussion of the presented schemes is given in
Section 5. We conclude our presentation with an outlook
on future work in Section 6.
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Figure 1. (a) the data was sampled from cos||x||, note the inhomogeneous sampling density, (b) Standard coordinate interpola-
tion, (c) Sibson’sC1, (d) Farin’sC1, (e) Hiyoshi’sC2, (f) squared Standard coordinates with gradient interpolation.

2 Voronoi Diagrams and Scattered Data

The overall problem of scattered data interpolation can be
stated as follows: given sample sitesX = {xi}i=1...m ⊂
Rn and data valuesZ = {zi}i=1...m ⊂ R, find a function
f : Rn → R that interpolates prescribed data at the sample
points,f(xi) = zi. If derivatives are known at the sample
positions, they are also subject to interpolation. We now
explain how this relates to Voronoi diagrams.

Let X be generators for a Voronoi diagram, andd(·, ·)
the Euclidean distance onRn. The resulting Voronoi di-
agram is the partition of space into convex tilesTi =
{x ∈ Rn|d(x, xi) ≤ d(x, xj), i 6= j}. Two generatorsxi

andxj are callednatural neighborsif their associated tiles
share a non-empty hyperfacesij := Ti ∩ Tj with (n−1)-
dimensional volume voln−1(sij). To ensure boundedness
of the elements of the Voronoi diagram, we will restrict our
considerations to the interiorD of the convex hull ofX.
We denote the set of indices of the natural neighbors for a
generatorxi by Ni. If n + 1 or more tiles share a common
point, the unique circumsphere through their generators is
calledDelaunay sphere, since it contains no other genera-

tor in its interior. For an overview on Voronoi diagrams the
reader may refer to [13, 14].

Throughout the rest of this paper,x0 ∈ D is an ar-
bitrary, variable point for which we wish to interpolate its
function value. Virtually insertingx0 into X lets us reuse
the notation from above. The set of neighborsN0 depends
on the position ofx0. Where it is unique,f(x0) is a rational
C∞-continuous function. Continuity issues arise whenever
N0 changes, i.e. whenx0 crosses a Delaunay sphere - see
Section 3, and whenx0 passes another generatorxi - see
Section 4. Separate treatment of the two cases is required
for f to be globallyCk.

3 Generalized Local Coordinates

In the following, we consider the continuity of coordinate
functions overD \X. Assumex0 is expressed as a convex
combination of its natural neighbors,

x0 =
∑
i∈N0

λixi, λi ∈ R+.
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Figure 2. Visualization of the basis functions, all sample positions in (e) are set to zero except the solid one in the center. (a)
shows the region of influence, (b)-(d) Laplace-, Sibson-, Standard-coordinates, (f)-(h) like above but with reflection lines to
emphasizeC2-continuity.

In casex0=xi ∈ X we defineλi=1 andN0={i}. This lets
us define an interpolant by

f(x0) =
∑
i∈N0

λizi. (1)

Obviously,f is as smooth asλi. If |N0| > d+1, {λi}i∈N0

is not uniquely determined. We look at different ways to
construct local coordinates{λi}i∈N0 with different orders
of continuity inD \X.

3.1 Laplace Coordinates

We first giveC0 local coordinates from [4, 5, 7], which we
call Laplace coordinates in agreement with [7]. Letsi :=
voln−1(s0i) be the volumes of the hyperfaces ofT0 and
ri := d(x0, xi). With λ̃0

i = si/ri the following identity
holds ∑

i∈N0

λ̃0
i x0 =

∑
i∈N0

λ̃0
i xi.

After normalization, we get local coordinates withC0 con-
tinuity in D \X

λ0
i := λ̃0

i /
∑

j∈N0
λ̃0

j .

The pieces of identicalN0 can be seen clearly in Fig-
ure 2(b,f) as the regions of smooth shading.

3.2 Sibson Coordinates

In the Voronoi diagram ofX\{x0}, T0 occupies parts of its
natural neighbors’ tiles. The volumesλ̃1

i = voln(Ti ∩T0)
lead to the identity∑

i∈N0

λ̃1
i x0 =

∑
i∈N0

λ̃1
i xi

which was first observed by Sibson [1]. Normalization
gives us

λ1
i := λ̃1

i /
∑

j∈N0
λ̃1

j .

With this result, the corresponding scattered data inter-
polant from equation (1) was proposed in [2]. A close
inspection of Figure 2(c,g) reveals theC2 discontinuities,
visible as sharp breaks in the reflection lines.

3.3 Standard Coordinates

A whole family of local coordinates, generalizingλ0
i and

λ1
i , with arbitrary smoothness inD \X, is given in [7].



The relationship stated there depends on the spe-
cial structure ofpower diagrams. These are defined like
Voronoi diagrams, but use a metricdp(·, ·) that incorpo-

rates weightswi attached to the generators,
(
dp(x, xi)

)2 =(
d(x, xi)

)2 − wi. Note that if allwi are equal, this gives
the Voronoi diagram.

In [7] it is observed that for a fixedx0, the shape ofT0

in a power diagram can be controlled via a uniform power
weightw on all generators inX and a weight of zero forx0,
see Figure 3(a). The face volumessi of T0 are piecewise
polynomial functions inw, and so arẽλ0

i (w) in the power
diagram. Forn = 2, thesi correspond to edge lengths and
are piecewise linear inw. Forw=0, T0(w) is the ordinary
Voronoi tile, and shrinks for growingw until it completely
disappears atw = wmax. Reversing the parameterization
via v=wmax−w, the non-normalized local coordinates are
recursively defined fork ≥ 0 as

λ̃k
i (u) =

∫ u

0

λ̃k−1
i (w) dv,

λ̃k
i = λ̃k

i (wmax).

Normalization yields orderk Standard coordinates

λk
i := λ̃k

i /
∑

j∈N0
λ̃k

j .

This procedure affects the order at whichλk
i goes to zero.

Thus, changes in the neighborhoodN0 lead toλk
i being

continuous up to thek-th derivative. The difference to Sib-
son’s original coordinates in Figure 2(g) is visible in Fig-
ure 2(h), where the reflection lines show no unsmooth be-
havior.

4 Interpolation Polynomials

In the previous section we reviewed methods to improve
the continuity of local coordinates inD\X. Forx0 coincid-
ing with a generatorxj , T0 no longer varies continuously
with the position ofx0. Small perturbations ofx0 change
the shape ofT0 discontinuously and render the above ap-
proaches useless. For derivatives off(x0)|x0→xj

of all ad-
joint pieces off to agree, a polynomial inλk

i is used.
We first resketch the method proposed in [3]. The

idea is based on the Bernstein-Bézier representation of sim-
plices inl variables, see [15]. Letλk = {λk

i }i∈N0 . The in-
terpolant from equation (1) is identical to the linear Bézier
simplexb1(λk) in l = |N0| variables with Greville abscis-
sae located at the generators{xi}i∈N0 and control points
{zi}i∈N0 . By increasing the degree of the simplex, we get
interior Bézier control points which can be chosen freely
without interfering with the interpolation property. The
directional derivativesDxj−xi

b(λ)|x0=xi
at the corners of

the simplex are scaled differences of nearby control points.
For f(x0)|x0=xi to beCr, the mixed derivatives in all ad-
jacent piecewise rational parts off must agree up to order
r. This fixesr layers of control points around the simplex
corner in order to achieveCr continuity at the generators.

(a) (b)

Figure 3. (a) Shape ofT under different uniform power
weights, (b) Cubic Bézier tetrahedron and its projected
control net.

Note that already in case of cubic simplices, there are
more control points than required for derivative modeling.
These can be chosen arbitrarily without affecting continuity
atxi. It is, however, important to choose them carefully to
prevent undesired oscillations in the interpolant.

Without loss of generality, let the elements ofX
be numbered such thatN0 = {1, . . . , l} and let α =
(α1, . . . , αl) be a multi index. The operator4ijα =
(. . . , αi − 1, . . . , αj + 1, . . . ) takes us fromα to its next
neighbor in the control net in directionxj − xi, e.g.
412(3, 0, 0, 0) = (2, 1, 0, 0) in Figure 3(b). Byei and
αi we denote thei-th standard unit basis vector resp.
the multi-index of thei-th corner of the simplex. The
Bernstein-Bézier form ofbk with control pointsbα is

bk(x) =
∑
|α|=k

bαBk
α(x), x ∈ Rl,

Bk
α(x) =

k!
α1! . . . αl!

xα1
1 . . . xαl

l =
k!
α!

xα.

We will consider one approach using cubic simplices found
in [3], and one based on quintic simplices as presented in
[8].

4.1 Farin’s Interpolant

The use of cubic Bézier simplices to interpolate first or-
der derivatives at the generators is presented in [3]. As-
sume that the gradientsgi are given along with the datazi.
For k = 3, we get one layer of independent control points
around each corner of the simplexb3. Each is chosen to
match the corresponding directional derivative forf . This
means that the generator and all inner control points around
it must be coplanar. We get

bαi = zi,

b4ijαi = zi +
1
3
(xj − xi)T gi, i 6= j.

This fixes all control points except those on simplex faces,
namely those having exactly three indices equal to one. By
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Figure 4. Reflection lines on a surface interpolatingzi =
0, i = 1, . . . ,m andgi = 0, i = 1, . . . ,m−1 except for
gm = (1, 0)T at the center node as in Figure 2. (a) Sibson’s
C1, (b) Farin’sC1, (c) Hiyoshi’sC2, (d) Squared Sibson’s
coordinatesC1.

degree elevation for Bézier simplices, these are chosen in a
way that ensures quadratic precision of the resulting inter-
polant, see [3, 11]. Letβ = ei+ej +ek for i < j < k, then
bβ is an inner control point. Setu= 1

3 (bαi +bαj +bαk) and
v= 1

6

∑
a,b∈{i,j,k},a<b b4abβ , the average of the remaining

fixed control points, thenbβ = 3
2v − 1

2u yields quadratic
precision for the interpolant. The resulting interpolant in-
heritsC1 continuity onD \X from λ1 and is given by

f(x0) := b3(λ1).

Close inspection Figure 4(b) expose theC2 discontinuities
as corners in the reflection lines.

4.2 Hiyoshi’s Interpolant

Applying the same approach as above to quintic Bézier
simplices overλ2, [8] present an explicit construction of
control points that matches derivatives up to order two
given in form of theHessianHi at generatorxi. Let i, j, k

be mutually distinct anddij = xj − xi, then

bαi = zi,

b4ijαi = zi +
1
5
gT

i dij ,

b4ij4ijαi = zi +
2
5
gT

i dij +
1
20

dT
ijHidij ,

b4ij4ikαi = zi +
1
5
gT

i dij +
1
20

dT
ijHidij ,

. . .

The remaining control points are again chosen based on
the principle of degree elevation to ensures cubic precision.
For more details we refer to [8]. The smooth reflection lines
in Figure 4(c) indicateC2 continuity of the surface.

4.3 Sibson’s Interpolant

Another way of setting up a polynomial inλ1 was pro-
posed in [2], giving aC1 function interpolating predefined
gradient information and reproducing spherical quadrat-
ics. Its construction is based onλ1 and does not gener-
alize easily to higher degrees of continuity. The proposed
C1 interpolant is a combination of Sibson’sC0 interpolant
f1(x0) :=

∑
i∈N0

λ1
i xi and an interpolantζ that blends

first order functions. Letri = d(x0, xi), γi = λ1
i /ri, then

ζi = zi + (x0 − xi)T gi,

ζ =
(∑

i∈N0
γiζi

)
/
(∑

i∈N0
γi

)
.

With

α =
(∑

i∈N0
λ1

i ri

)
/
(∑

i∈N0
γi

)
,

β =
∑

i∈N0
λ1

i (ri)2,

f1 andζ are combined to yield Sibson’sC1 interpolant

f(x0) = (αf1(x0) + βζ)/(α + β).

Similar to Farin’s method, corners in the reflection lines in
Figure 4(a) indicateC2 discontinuities.

4.4 Squared Coordinates

In the above methods a polynomial in the local coordinates
was set up in a sophisticated way to interpolate derivative
data. As mentioned before, to ensureC1 continuity atxi,
the first derivatives off(x0) have to agree. This is triv-
ially satisfied for vanishing derivatives. Taking the sec-
ond power ofλk

i , its first derivatives consequently those
of f(x0)|xj

vanish. Let

λ̃k
i = (λk

i )2/
∑

j∈N0
(λk

j )2.

We can now impose any gradient at the generators by
blending first order functions using̃λk

i

f(x0) =
∑

i∈N0
λ̃k

i

(
zi + gT

i (x0 − xi)
)
.



Interpolant D \X X Prec. Der. req Gener.

Laplace C0 C0 P 1 no
Sibson C0 C1 C0 P 1 no
Standard Ck C0 P 1 yes
Sibson C1 C1 C1 s.q.∗ g no
Farin C1 C1 P 2 g yes
Squared C1 C1 P 2 g,H yes
Hiyoshi C2 C2 P 3 g,H yes

Table 1. Continuity, precision, derivative requirements,
and the ability to generalize to higher degrees of smooth-
ness.∗spherical quadratics.

This can be extended to interpolate derivatives of arbitrary
degree, although at the expense of lacking smoothness de-
spite of continuity as can be seen in Figure 4(d).

5 Discussion and Comparison

We now compare the interpolants based on natural neigh-
bor and second degree Standard coordinates. These inter-
polants have a number of analytically provable properties,
summarized in Table 1.

We have implemented all the above methods and give
a visual comparison for the same sample problem Sibson
used in [2]. As seen in Figure 1 and 5 (a), the data is sam-
pled from the functionalcos||x||, with higher sample den-
sity in the upper-left corner.

Farin’s and Hiyoshi’s methods have quadratic respec-
tive cubic polynomial precision, Sibson’s method recovers
spherical quadratics. They can be expected to perform well
on sample data derived from polynomials of similar degree,
which motivates our choice of the non-polynomial sample
data set.

We choose second order Standard coordinates to rep-
resent the non-modified local coordinate interpolants and
depict their low approximation quality. It can clearly be
seen in Figure 1 and 5(b) that even though beingC2-
continuous almost everywhere, the interpolant based on
Standard coordinates is not suited for interpolation of the
sample data. This comes as no big surprise but gives a very
good motivation for the additional efforts one has to put
into establishing continuity at the sample points.

For the goballyC1 methods including Hiyoshi’s, the
visual difference between Figure 1 and 5(c-e) is not as ob-
vious, yet Farin’s interpolant appears somewhat superior
to both Sibson’s originalC1 interpolant and Hiyoshi’sC2

interpolant. Considering the complexity of the above ap-
proaches, it is tempting to resort to simpler methods like
the squared Sibson’s coordinates. However, the poor per-
formance of this interpolant in Figure 1 and 5(f) despite its
analytical properties makes it inappropriate in most appli-
cations. We include this approach into our comparison dis-
regarding its shortcomings to show that analytic properties
of the interpolant are insufficient to make it well-behaved

in user perception.

Extension to higher dimensions Since neither the
Voronoi diagram, the multivariate Bernstein-Bézier rep-
resentation nor any presented procedure to derive natural
neighbor coordinates is restricted in dimension, these ap-
proaches can be extended to three or more dimensions in
a straigthforward way. In doing so, however, one will face
difficulties that emerge naturally from the growing com-
plexity of the problem. Furthermore, Bézier simplex ap-
proach can be applied to any kind of local, convex barycen-
tric coordinates.

Extension to higher continuity Of the methods consid-
ered in this work, only the combination of Standard coordi-
natessk with Bernstein-Bézier-polynomials can be gener-
alized to higher continuity in a straightforward way. But we
must stress that computational complexity as well as im-
plementation rapidly become infeasible. Even in the two-
dimensional setting, construction of the Béziercontrol net
from second order derivatives becomes a bottleneck if the
number of natural neigbors is high, e.g.|N0| > 20.

6 Conclusion

We have given an overview of natural neighbor interpola-
tion schemes, focused on Sibson’s, Farin’s, and Hiyoshi’s
globally C1, C1, andC2-continuous schemes. The two
main ingredients in a globallyCk interpolant have been
summarized, i.e. the construction of local coordinates and
the setup of suitable polynomials in the sample positions.

The visual comparison provided insight into the be-
haviour of the schemes in a setting with inhomogeneous
sampling densities. Furthermore, reflection lines have been
applied to visualize the smoothness of the gradient, yield-
ing better insight than the usual shading for comparison of
C1 andC2 continuity.

Future research will focus on the automatic estima-
tion of derivatives, since especially for measurement data,
derivatives are seldom given.
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