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Abstract 
 

In recent years portfolio management began to integrate constraints which are nec-
essary to achieve an efficient portfolio selection. Cardinality constraints in the context 
of benchmark tracking, threshold restrictions or other restrictions to meet legal re-
quirements are some examples. Linear models can solve the resulting mixed integer 
optimization problems using branch&bound algorithms, while quadratic models, like 
the well known mean-variance-approach, depend on heuristics.  

Heuristics do not offer information about the quality of the solution. Therefore the 
performance of two linear approaches, the mean-absolute-deviation- and the mean-
target-shortfall-probability-mode, were compared with the mean-variance-model. For 
the comparison some thousand portfolios were computed out of stocks of the Tokyo 
Stock Exchange. This empirical simulation showed, that the mean-absolute-deviation-
portfolios produced in general good results compared with mean-variance-portfolios, 
while mean-target-shortfall-probability-portfolios can only be recommended under 
certain conditions.  

The analysis of the influence of the skewness of the return distributions demon-
strated that skewness seem not to be always diversified away by 6 or 7 securities in the 
portfolios. Further more the number of periods was estimated which should be used in 
linear models to get robust results like quadratic optimization approaches.                  

 
Key-Words: Linear portfolio optimization, empirical simulation, target-shortfall-
probability, portfolio optimization with constraints, Konno H. and Yamazaki H.   
 
 
1.  Introduction 
 

Modern Portfolio Management uses quadratic optimization since its foundation in the 
year 1952 by H. Markowitz. Since this moment alternative linear models2 were discussed 
but without remarkable applications in fund management. From the theoretical point of 
view based on the correctness of assumptions (e.g. normal distributed returns or risk-averse 
investors) or absence of constraints (e.g. cardinality-constraints in benchmark-tracking or 
transaction expenses), it is the accurate instrument to find efficient portfolios.  

                                                           
1 Email: schubert@fh-konstanz.de; workingpaper: Centro de Investigación en Mathematica Pura y Aplicada, 
Universidad de Costa Rica (CIMPA), San José, May 2005, ISSN 1409-3820. 
2 Linear models often used alternative measure of risk like the following examples: Philippatos G. C. and 
Wilson CH. J. (1972) with risk-measure entropy, Shalit H. and Yitzhaki S. (1984) with risk measure Gini 
coefficient, Konno H. and Yamazaki H. (1991) like Feinstein C. D. and Thapa M. N. (1993) with absolute 
deviation as risk measure.  

1 
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For fussy researchers assumptions like normal distributed returns are always violated. 
The justification could be, that the loss but not the profit of an investment is always limited 
to at most 100%. Apart from that nitpicking argument, empirical data show often strong 
skewed distributed returns. At least 70% of the stocks on the Tokyo Stock Exchange ex-
hibit too large skewness for the normal distribution.3 Some researchers found, that positive 
skewness is diversified away by six or seven assets.4 To avoid skewness it seem not to be 
sufficient to use some securities in portfolio. If the returns remain to be skewed, the orienta-
tion in the variance of a portfolio would have the consequence, that assets which offer 
sometimes very high returns (positive skewness) will not be selected in a portfolio, due to 
the “risk” having sometimes high returns. The risk measure “absolute deviation” do not 
overrate high returns like the risk measure “variance”. For downside risk measure like e.g. 
“target shortfall probabilities” high returns do not matter.  

Have linear models advantages in performance if assumptions like the normal distribu-
tion are violated? The answer for that question was searched by empirical simulation. Em-
pirical simulation can find differences between models under real conditions. Like sam-
pling, empirical simulation is always restricted to the selected data (e.g. a certain market 
and time period). The results may not be representative for other markets or time periods. 
The sample size of some thousand computed portfolios was selected sufficiently big for 
significant results and small enough to avoid repetition of selected portfolios.          

Two models were tested by empirical simulation: The Mean–Absolute-Deviation-
model5 (M-AD-model) and the Mean–Target-Shortfall-Probability model6 (M-TSP-model). 
The performance of the two approaches was measured relative to that of the Mean–
Variance-portfolio (M-V-portfolio).    

The well known M-V-model minimizes the variance of a portfolio, selected out of n 
assets with weightings xi (i = 1, ..., n) under the condition, that the expected return of the 
portfolio will be µ. This expected return is computed out of the expected returns µi (i = 1, 
..., n) of the securities. The objective function  
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3 Kariya T., Tsukuda Y., Maru J. (1989) showed skewness for the early 1970s to late 1980s. Now, the data of 
the following two decades were used for the empirical simulation. In most cases the observed skewness was 
positive. The return of some assets exhibited a skewness greater than 2.       
4 see Simkowitz M. A. and others (1978), Duvall R. and others (1981), Kane A. (1982). 
5 see Konno H. and Yamazaki H. (1991), Feinstein C. D. and Thapa M. N. (1993). 
6 see Engesser K., Schubert L., Woog M. (1997), Schubert L. (2002). 
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In the optimization process, the M-V-model works only with parameters iµ  and covij 
of the return distributions. The both other models use the return data directly applying sto-
chastic programming. Therefore it is possible to respect more the characteristics of other 
distribution. 

 
 

2.  M–AD-portfolios versus M-V- portfolios 
 

The M-AD–portfolio which was applied in the empirical simulation is a reformation of 
the model of Konno and Yamazaki (1991) by Feinstein and Thapa (1993)7. If the returns ri 
of the security i (i=1, ..., n) are multivariate normally distributed, then minimizing the AD 
is equivalent to minimizing the variance8. The objective function consists of the slack vari-
ables wt ≥ 0 and vt ≥ 0  (t = 1, ..., T) which represent the absolute deviation.  

Minimize  
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Some years ago the M-AD–portfolio was tested with stocks from the NIKKEI 225 and 
NIKKEI 50 by Konno y Yamazaki9. The results were concerned to the position of the effi-
cient frontier of the M-AD-portfolios in the mean-variance space, the CPU time to compute 
the different portfolios and some examples for performance differences. Three set of data 
were the base for the selection of three portfolios. The portfolios were optimized for differ-
ent µ to find the efficient frontier. Each set was characterized by 60 monthly returns, which 
were selected out of the years 1981-1987. 

The number of portfolios in the test of Konno and Yamazaki were to small for to judge 
the performance of the model. The characterization of the return distribution by 60 periods 
were small too. Deviation between the models were explained by non-normality of the data 
without separating the effect of e.g. skewness. 

Therefore the following test was constructed to find answers to the questions: How 
many time periods are necessary using stochastic programming to get robust results? How 
strong is the influence of skewness to the realized return in the post period? Is the perform-
ance difference depending on the economic business cycle?  

 
2.1 Data and software program 
 

As database served 570 of the biggest securities of the Tokyo Stock Exchange, which 
were traded without interruption in the years from 1.12.1980 until 1.11.1999. The securities 
                                                           
7 see Feinstein C. D. and Thapa M. N. (1993). 
8 see Konno H. and  Yamazaki H. (1991).  
9 see Konno H. and  Yamazaki H. (1991). 
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were divided into three sets S0, S1, S2 with different skewness. The skewness was com-
puted for the complete time interval. S0 contained 190 assets with skewness between –0,5 
and 0,5. S1 included 248 with skewness between 0,5 and 1,5 and the last set S2 with 132 
stocks had a skewness higher than 1,5. The three sets were used separate or together as da-
tabase for the random selection of 30 securities for the portfolio optimization for both mod-
els. The small number of securities offer the possibility to generate many different portfo-
lios. By this process 17987 portfolios were optimized with the M-V- and the M-AD-model. 
The expected return µ of the two optimization processes of both models was fixed in most 
cases at “return of the minimal variance portfolio + 5%”.    

The annual returns were produced like the 365 momentum in the chart analysis. Every 
possible time interval with 365 days distance can be used for an annual return. If every day 
annual returns were computed, the number of periods T would be some thousands. If every 
year only one annual return is computed, starting with 1.12.1980, the number of periods T 
would be 18. By that process it was possible to change the number of return periods 
without changing the time unit (from month to week etc.)         

The portfolio selection was optimized by the mixed-integer software CPLEX 7.1 which 
was embedded in a C++ software program which selected the sample etc.. The statistical 
package SPSS 8.0 was used for the analysis of the results.         
 
2.2 Results 
 

The quality of the solution of the M-AD–model depends on the number of periods for 
the characterization of the return distribution. If there are only some few returns computed, 
the results would not be as robust as the results of the M-V–model. The norm of the differ-
ence of the solution-vector x of both models will be used for the observation of the influ-
ence of the number of time intervals used in the optimization process. Usually this norm is 
unequal zero due to the different models.  

In Figure 2 for each set S0, S1 and S2 a set of stocks were random selected for portfo-
lio optimization with different numbers of periods. Low numbers of periods seem to pro-
duce portfolios with strong changing solutions. For higher numbers of periods, the differen-
ce of the solutions of both models seem to be more stabile. Further more, the results of the 
different skewed data in Table 1a illustrate that the norm of the difference of the solutions 
depend on the skewness. The analysis of the variance (ANOVA) of the three sets in Table 
1a show a significant level of 0,0010.   
 

Skewness Sample size   Mean of X-norm difference 
S0 4049 0,1298 
S1 4448 0,1615 
S2 4558 0,1803 

total 13055 0,1582 
Table 1a: Mean of X-norm difference and skewness 

 

                                                           
10 The significant level of 0,00 means, that the exact value is lower than 0,005.   
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The norm of the difference of the solutions of the M-AD– and the M-V-model can easy 
be interpreted, using portfolios with equal weighted assets. The weightings for stock i in the 
solution of the two models are represented by xi

AD resp. xi
V. In the case of a portfolio out of 

the set S0 (resp. S1 or S2), the mean of 0,1298 (resp. 0,1615 or 0,1803) results if one of 11 
(resp. 9 or 8) stocks is different. Extreme cases showed a difference of about 0,5. This 
would stand for the case that one of two equal weighted stocks is different. In Table 1b the 
difference of the solutions with equal weighted assets is demonstrated. The different selec-
ted stocks in the portfolios of the two models are marked with grey color. The scatter-plot 
of Figure 1 also illustrates, that the difference is not dependent on the number of assets, 
which are selected in the M-AD-portfolio. 
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Table 1b: Mean of X-norm difference and skewness in portfolios with equal weighted assets. 
 

To separate that influence of different skewed returns, in Fig. 3 only the portfolios we-
re regarded with at least 7 securities and in Fig. 4  only the set S0 was included. In Fig. 3 
and 4 the change of the norm of the difference was used to neutralize the absolute differ-
ence between the models11. Obviously the mean of the change of the difference is approxi-
mate zero for high numbers of periods, but not for small numbers. The result recommends 
to use at least 200 periods in the optimization to avoid too strong estimation errors12.  
 

X-Norm-Difference and Number of Assets

Scatter-plot with 17987 cases
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Fig. 1: X-norm-difference and number of assets in the M-AD-portfolio. 

 
                                                           
11 A change can occur between the number of periods T1 and the next number T2 with (T1<T2). The change 
must be positioned at T1 in the Fig. 3 and Fig. 4 because there exists different T2 for every T1. 
12 Referred to the total database of about 18 years, at least every month a return should be computed..  
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X-Norm-Difference and Skewness
Scatter-plot with different numbers of periods
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            Fig. 2: X-norm-difference and skewness. 

 

Change in the X-Norm-Difference
Scatter-plot; means out of 8397 cases with at least 7 assets
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             Fig. 3: Mean of X-norm-difference by at least 7 assets in the portfolios. 

 
The ex ante standard deviation difference (in % of the standard deviation of the M-

V-portfolio) for all 17987 cases is on average 2,76%. The mean of the ex post standard 
deviation difference is 6,82%. The ex post standard deviation can be computed out of the 
realized returns after one time period. In the following section the ex ante standard deviati-
on is discussed.   

If the returns are skewed distributed the ex ante standard deviation in % seem to be 
bigger (see Figure 5). In the scatter-plot of Figure 5 most of the cases have a difference in 
standard deviation which is smaller than 10%13. Only high skewed data with small numbers 
of periods produce higher differences. The standard deviation difference is not zero for 
portfolios of the set S0 because the returns are still weak skewed distributed. 

                                                           
13 Konno H. and Yamazaki H. (1991) observed, that the difference in standard deviation is at most 10%.  
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Change in the X-Norm-Difference
Skewness = 0, cases = 3413
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      Fig. 4: Mean of X-norm-difference and skewness = 0. 

 

Std.-Dev.-Difference and Skewness
Scatter-plot with 13055 cases
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Fig. 5: Scatter-plot of the standard deviation difference and skewness. 

 
The influence of the skewness on the standard deviation difference shows Figure 5 and 

also Table 2. Besides the mean of the standard deviation difference (in %), the standard 
deviation of this mean rises also with the skewness. The differences of the sets S0 to S2 
were confirmed by ANOVA with a significant level of 0,01. 

The economic business cycles of the analyzed market were divided in clusters 
“Hausse”, “Equal” and “Baisse” dependent of the return movement of the market-index in 
the year of the realized return. The market index was constructed out of all 570 securities 
with equal weightings. In the different periods of the economic business cycles, the differ-
ence of the ex ante standard deviation do not vary strong compared with the ex post stan-
dard deviation (in %). The reason is founded in the date, when the different features are 
registered. The ex ante standard deviation is computed when the portfolios are optimized 
and the ex post standard deviation is related to the period after this date. In bullish markets, 
the difference of the standard deviation (in %) between the two models seem to be stronger.   
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Skewness 

Mean of difference of stan-
dard deviation (%) 

ex ante 

 
Sample size

Standard deviation of 
ex ante mean 

 

0 1,2041 4049 1,0472  
1 2,5747 4448 1,9880  
2 4,6243 4558 2,7773  

Total 2,8652 13055 2,5188  
     

Business 
cycle 

   Mean of difference of 
standard deviation (%) 

ex post 
Baisse 3,1948 3384 2,6203 3,05 
Equal 2,8988 3377 2,5437 7,50 

Hausse 2,7454 3363 2,5038 13,80 
total 2,9468 10124 2,5631 5,48 

Table 2: Mean of difference of standard deviation (%) and skewness resp. economic business cycles 
 

The point of most interest is the realized return one period after the optimization of 
the portfolios. The absolute mean of the return difference computed for all 17987 cases is 
1,3%. This small advantage of the M-AD-model was confirmed by a t-test for means by a 
significant level of 0,00. The result may be caused by the separation of the assets in sets S0, 
S1 and S2 which are normally not visible clusters in the exchange board. The cases (ex-
actly: 13055) which were selected out of one of the separated clusters S0, S1 and S2 pro-
duced a higher return advantage of 1,69%. The return advantage of the M-AD-model de-
pends obviously on the skewness (see Table 3a). While the differences in the cluster S0 is 
very small, it rises up in S1 and S2. The results of the different clusters were tested by 
ANOVA and confirmed by a significant level of 0,00. Therefore the 4932 cases which were 
selected out of all sets (S0+S1+S2) were analyzed (see Table 3b) and the 7108 cases in 
which the portfolios contained at least 7 securities (see Table 3c). The result in Table 3b 
was 0,34% return difference with a significant level of 0,01. It is only a small, but impor-
tant difference which up values the M-AD–model. Surprising is the mean of the return dif-
ference if only portfolios with at least 7 securities in the portfolios are regarded like in Ta-
ble 3c. The return advantage of the M-AD-portfolios of 2,43% is higher than in Table 3a, 
where the number of securities in the portfolios were not restricted. The reason is the domi-
nance of cluster S2 in the sample in Table 3c.  

 
Skewness Mean Sample 

size 
Std. dev. of 

mean 
0 0,2620 4049 0,0707 
1 1,3067 4448 0,0926 
2 3,3438 4558 0,1650 

Total 1,6939 13055 0,0701 
Table 3a: Mean of the difference of realized returns. 

 
Skewness Mean Sample 

size 
Std. dev. of 

mean 
Total 0,3391 4932 0,1311 

Table 3b: Mean of the difference of realized returns without separation S0, S1, S2. 
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Skewness Mean Sample 
size 

Std. dev. of 
mean 

0 0,3604 1163 0,1554 
1 1,5485 1885 0,1462 
2 3,4357 4060 0,1765 

Total 2,4320 7108 0,1119 
Table 3c: Return differences and skewness with at least 7 assets in the portfolios. 

 
The consequences of this results are, if there are sectors of an economy with high 

skewed return distribution, the M-AD-model would produce better results on average, even 
if the portfolio contains at least 7 securities. 

The influence of the economic business cycle on the return difference of the both mod-
els was also analyzed. The return differences in the different business cycle clusters of Ta-
ble 4a were significant (ANOVA: sign. level: 0,00). Especially in bullish markets, the M-
AD-portfolio produced an average of 1,9% higher returns. In the analysis only the 10124 
cases with clear identifiable economic business cycle were used. The scatter-plot of Figure 
6 shows symmetric distributed return differences. Extreme differences are higher than 20% 
resp. lower than –20%. Obviously the differences are not so strong in bearish markets than 
in bullish markets.  
 

Return Diff. and Econ. Business Cycle
Scatter-plot with 10124 cases
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Figure 6: Scatter-plot of return differences and economic business cycle. 

 
Economic 
business 

cycle 

 
Mean 

 
Sample 

size 

 
Std. dev. of 

mean 
Baisse 0,8716 3384 0,0621 
Equal 0,3682 3377 0,0797 
Hausse 1,9133 3363 0,1617 
Total 1,0497 10124 0,0637 

Table 4a: Mean of the return difference and the economic business cycle. 
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For the Table 4b without the effect of the skewness clusters could not enough cases in 
the sample be found. If only the portfolios with at least 7 securities are analyzed, the better 
results of the M-AD model in bullish markets are confirmed. 
 

Economic 
business 

cycle 

 
Mean 

 
Sample 

size 

 
Std. dev. of 

mean 
Baisse 1,0937 2227 0,0805 
Equal 0,2313 1903 0,1126 
Hausse 3,5586 1556 0,2949 
Total 1,4796 5686 0,0961 

Table 4c: Return differences and economic business cycle with at least 7 assets in the portfolios14. 
 

Splitting the clusters of economic business cycle by the skewness of the distribution of 
the returns like in Table 5 the above mentioned effects can be seen. Securities with positive 
skewed return distributions offer higher returns in bullish markets. The M-AD-model seems 
to manage better skewed data than the M-V-model. The standard deviation of the mean 
demonstrates, that most of the results are significant. Low significant results are marked 
with gray color. In markets which are moving sideways (Equal), or falling down (Baisse), 
the effect of skewness is weaker than in bullish markets, where the advantage of the M-AD-
model is in the average 4,4%. 
 

   Baisse   Equal   Hausse   
  Return 

difference
mean cases std. dev. 

of mean
mean cases std. dev. 

of mean
mean cases std. dev. 

of mean
Schiefe 0  0,4593 1097 0,1093 0,3737 1053 0,1442 -,0234 1047 0,1435 

 1  1,1262 1172 0,1104 0,6065 1128 0,1373 1,0324 1116 0,2427 
 2  1,0096 1115 0,1015 0,1387 1196 0,1332 4,4222 1200 0,3608 

Table 5: Return difference and skewness resp. economic business cycle. 
 

The number of securities in the portfolio was relative small, due to the random se-
lected databases of 30 securities. The Bravais-Pearson correlation coefficient of the number 
of assets in the portfolios of the both models computed with 17987 cases was 0,84 on a 
significant level of 0,00. The following Table 6 illustrates the relationship in a cross-table15.  
 
 

                                                           
14 The differentiation in the Tables 4b and 4c were not planed in the sample of the empirical simulation with 
the consequence, that sometimes the number of cases is zero like in the missing Table 4b in which the results 
without the clusters S0, S1 and S2 should be analyzed.   
15 Weightings xi smaller than 0,00001 were not counted. 
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Number 
of assets 

  
 

M- 

 
 
V 

              

  2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
M-AD 2 413 82 9              

 3 111 531 191 51 13 2 2          
 4 17 209 605 344 148 42 13 2         
 5 3 45 318 801 579 272 85 38 8 2       
 6  5 99 432 868 670 317 150 58 17 6      
 7   25 147 516 890 739 438 158 54 11 3 1  1  
 8   4 32 169 471 830 714 357 124 48 13 1    
 9  1  7 40 186 419 652 454 246 108 27 2 1   
 10    2 7 52 171 323 360 300 134 52 10    
 11     1 11 39 108 167 191 118 55 15 3   
 12     1 3 13 28 60 93 68 20 11 2   
 13        7 20 27 28 12 7 2   
 14          2 3 3 5 1 1 1 
 15            3     

Table 6: Cross-table for the number of assets in the selected portfolios of the models M-V and M-
AD. 
 
 
3.  M-TSP-portfolios versus M-V-portfolios 

 
In recent years, the Target-Shortfall-Probability (TSP) was discussed as an alternative 

measure of risk16. If the return ri of the securities i (i=1, ..., n) are multivariate normally 
distributed, then minimizing the TSP is equivalent to minimizing the variance17. The only 
difference is, that the efficient frontier of the M-TSP-portfolios will not include the portfo-
lios near the minimal variance point of the M-V-portfolio. From the utility-theoretical point 
of view, the TSP is not perfect. Furthermore it is criticized due to the insufficient descrip-
tion of the risk. The advantages of the TSP are the usage independent of the return distribu-
tion and the intuitive understanding of this risk measure by the investor. 

The use of a TSP-vector18 reduces the utility-theoretical disadvantage of a single TSP 
and offers an approximate sufficient description of risk19. The Mean-TSP-vector model is a 
mixed-integer linear program. The CPU-time to solve the model demonstrated that the 
model is suitable for practical applications with some hundred assets20.   

The objective function of the M-TSP–model maximizes the expected return 

                                                           
16 Roy A. D. (1952) proposed first to use the TSP for the selection of portfolios. Many other researchers modi-
fied his suggestion.  
17 see Baumol W. J. (1963). A more general proof can be found by Schubert L. (1996).  
18 see Engesser K., Schubert L., Woog M. (1997).  
19 see Schubert L. (2002). The risk measure “TSP-vector” is not restricted to the utility-function of risk-averse 
investors. The investor itself determines the utility function by selecting different targets and probabilities. 
20 Due to the mixed-integer problem, the optimization needs much more time than the M-V-model. In most 
cases it was possible to find the optimal solution, although near 700 stocks were sometimes included (see 
Schubert L. (2002)). 
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In the restrictions (7a) and (7b) are binary variables δtk ( t = 1, ..., T,   k = 1, ..., m) in-
cluded counting the cases, when the target-restriction is violated. The restriction (7c) de-
termines for the target τk that the shortfall probability must be at most αk. The rank-order of 
the targets τ1 < τ2 < ... < τm must be equal to the rank-order of the probabilities α1 < α2 < ... 
< αm. The parameter ε (resp. M) is a very small (resp. big) number. 

To compare the M-TSP and the M-V-model, answers to the following questions should 
be found: How strong is influence of the number of targets and the skewness on the realized 
return in the post period? Is the result of the portfolio depending on the economic business 
cycle? What will be the difference in the risk-measures like standard deviation and short-
falls? How many assets will be in the optimized portfolios of the two models?  

 
3.1 Data and Software 
 

The database contains the same 570 securities resp. returns and the same clusters S0, 
S1 and S2 as in the empirical simulation above21.  The software CPLEX 7.1  and SPSS 8.0 
were used in the same way. 

Every simulated case was generated for a given target with its shortfall-probability (t, 
α)22. For this TSP, the optimal portfolio resp. expected return (µ) was computed (see equa-
tion (6)). This expected return of the M-TSP-portfolio was a restriction when in the second 
part the solution for the M-V–portfolio was searched (see equation (3)). By this process 
11895 portfolios were optimized with each model. 

 
3.2 Results 
 

The whole sample of 11895 cases showed a small disadvantage of -0,22% on average 
(sign. level: 0.01) of less realized return produced by M-TSP-portfolios. If we exclude the 
cases with only one target, because of the insufficient description of risk using only one 
target-shortfall probability, return difference disappear (see Table 7a). The remaining return 
                                                           
21 Per random selection 30 to 50 securities were given as database for every case of the sample.  
22 For the M-TSP–model, all cases (11895) are divided in cases with one (5395), two (3151) and three (3349) 
targets. 



CIMPA-01-2005,  Leo Schubert: Performance of linear optimization portfolio.      13 

difference means of –0,059% resp. –0,068% do not have a significant levels (with 0,71 
resp. 0,67) in a t-test of the means. Disregarding the different risk measures, a M-TSP-
vector portfolio with at least 2 targets seems to produce return results like the M-V-
portfolio. For only one target, the negative result of –0,41% on average has a high signifi-
cant level. 

 
Number of 

targets 
Mean Sample 

size 
Std. dev. of 

mean 
1 -0,4047 5395 0,1322 
2 -0,0591 3151 0,1621 
3 -0,0681 3349 0,1574 

Total -0,2184 11895 0,0860 
Table 7a: Return differences and number of targets. 

 
The return differences of cases with one target and the cases with more than one target 

are confirmed as significant by an ANOVA test (sign. level: 0,05). 

Due to the separate sampling of the cases according to their skewness (either clusters 
S0 or S1 or S2), the same tests for return differences were done for the 1636 cases, which 
were sampled out of all 570 assets without skewness cluster. Under this circumstances, the 
portfolios with one target produced a negative return difference of -11.81% (sign. level: 
0,05). It must be mentioned, that in the sample size existed only of 8 cases (see Table 7b). 
Two (resp. three) targets effect a result of positive return differences with sign. level 0,50 
(resp. 0,01). In Table 7c the cases with at least 7 securities in the portfolios were analyzed. 
Under this condition, the negative result on average for M-TSP-portfolios with only one 
target remains, but without significant level like in the cases with more than one target 
which produced positive results.  

 
Number of 

targets 
Mean Sample 

size 
Std. dev. of 

mean 
1 -11,8049 8 4,9383 
2 0,2204 822 0,3060 
3 0,7501 806 0,3027 

Total 0,4226 1636 0,2165 
Table 7b: Return differences and number of targets (without S0, S1, S2). 

 
Number of 

targets 
Mean Sample 

size 
Std. dev. of 

mean 
1 -0,6409 635 0,4786 
2 0,2128 39 1,3887 
3 0,1618 270 0,5421 

Total -0,3761 944 0,3619 
Table 7c: Return differences and number of targets with at least 7 assets in the portfolios. 

 
The results of the three tables (7a-7c) confirm a return disadvantage of the M-TSP-

model, if only one target is used. In the case of more targets the return differences of the 
models on average are small and not significant; with short words: there seem to be no re-
turn-difference. 
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The skewness of the returns and the influence on the realized return were analyzed too. 
The skewness of an asset was computed with all time periods which existed in the database. 
This is the reason why the analysis was restricted to 4087 cases, which were computed at 
the 2. June 1997 or later23 (see Table 8a). While the cases in cluster S0 offered a negative 
return difference of –1,77% (sign. level 0,00), higher skewness seem to be an advantage of 
the M-TSP-portfolio (see Table 8a). The M-TSP-portfolios, whose asset-returns had a 
skewness of 2, offered 2,10% additional return on average (sign. level: 0,00) than the M-V-
portfolios. Only in the case of the skewness of 1, the results had a low significant level of 
0,54. The variance analytical test (ANOVA) shows, that the three clusters in Table 8a effect 
different results (sign.-level: 0,00). In the Table 8b, the cases are included which were sam-
pled without the differentiation in clusters S0 to S2. Under this condition, the M-TSP-
portfolios produced on average a return advantage of 1,39% with a significant level of 0,01. 
In Table 8c only cases with at least 7 securities are included. Under this condition the return 
difference in the different skewness cluster is like in the Table 8a but with lower level of 
significance for cluster S0 and S1: negative difference in cluster S0 and positive in cluster 
S1 and S2.       
 

Skewness Mean Sample 
size 

Std. dev. of 
mean 

0 -1,7665 1036 0,3052 
1 0,1912 1133 0,3096 
2 2,1030 1378 0,3806 

Total 0,3622 3547 0,2007 
Table 8a: Return differences and skewness. 

 
Skewness Mean Sample 

size 
Std. dev. of 

mean 
Total 1,3869 540 0,4936 

Table 8b: Return differences and skewness (without S0, S1, S2). 
 

Skewness Mean Sample 
size 

Std. dev. of 
mean 

0 -2,2073 99 1,1504 
1 1,8753 97 1,3666 
2 4,3520 203 0,9985 

Total 2,1224 399 0,6826 
Table 8c: Return differences and skewness with at least 7 assets in the portfolios. 

 
The result of the Tables 8a and 8c show, that the M-TSP-model does not offer an re-

turn advantage, if the returns are not skewed distributed. But if strong skewness exists, the 
M-TSP-portfolio produces higher returns on average.   

The analysis of the effect of the economic business cycle includes only the 11780 
cases, were the economic business cycle could be clearly identified. Table 9a demonstrates, 
that the M-TSP-model is concerned to the risk. Therefore, in bearish markets the mean of 
                                                           
23 The simulation of the last chapter (M-TSP-model versus M-V-model) used only cases which were produced 
after the 1. June 1997. In the simulation of this chapter cases which were computed at an earlier date are in-
cluded to get more cases of different economic business cycles.   
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the return difference of 0,74% is significant better (level: 0,00) compared with the M-V-
model (see Table 9a). In bullish markets the opposite result can be regarded. In this times, 
the mean of the return difference is –1,60% (sign. level: 0,00). In markets which are mov-
ing sideways (Equal), the effect is with 0,35% weaker than in bearish markets (significant 
level: 0,00). The better results of the M-TSP-Portfolio are also confirmed by the results of 
the Tables 9b resp. 9c in which only the cases were analyzed which were computed without 
the separation in clusters S0, S1 and S2 resp. which contain at least 7 assets in the portfo-
lios.  
 

Economic 
business 

cycle 

 
Mean 

 
Sample 

size 

 
Std. dev. of 

mean 
Baisse 0,7354 3782 0,1061 
Equal 0,3460 3996 0,1175 
Hausse -1,6040 4002 0,1950 
Total -0,1915 11780 0,0850 

Table 9a: Return differences and economic business cycle. 
 

Economic 
business 

cycle 

 
Mean 

 
Sample 

size 

 
Std. dev. of 

mean 
Baisse 1,0332 533 0,2603 
Equal 0,8841 575 0,3136 
Hausse -0,5256 520 0,5105 
Total 0,4826 1628 0,2153 

Table 9b: Return differences and economic business cycle (without S0, S1, S2). 
 

Economic 
business 

cycle 

 
Mean 

 
Sample 

size 

 
Std. dev. of 

mean 
Baisse 1,2208 295 0,4633 
Equal 0,4022 359 0,4398 
Hausse -2,9921 286 0,9169 
Total -0,3736 940 0,3608 

Table 9c: Return differences and economic business cycle with at least 7 assets in the portfolios. 
 

Under the circumstances of Table 9b, the portfolios with TSP as risk measure earned 
1,03% more (sign. level: 0,00) in times of bearish markets. In markets with are moving 
sideways, the return difference was 0,88% (sign. level: 0,01). In bullish markets, the return 
result of the M-TSP-portfolios was also negative compared with the M-V-model, but with a 
low significant level of 0,30. In the Table 9c, the advantage in bearish markets and the dis-
advantage in bullish markets have also a high significant level. In bearish markets it can be 
summarized, the return result of the M-TSP-portfolio is better on average and in bullish 
markets worse. 

The Table 10 demonstrates the effect of both variables, the skewness and the economic 
business cycle. While the influence of the skewness is like above (high skewness means 
better returns for the M-TSP-model) the return difference is better, if only bearish markets 
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were compared with bullish markets. When the markets are moving sideways, the results of 
the M-TSP-model are always better than in bullish markets. Due to the standard deviation 
of the mean of the differences, in this economic business cycle the results have low signifi-
cant level (see gray marked means). 
 

   Baisse   Equal   Hausse   
  return 

difference 
mean cases std. dev. 

of mean
mean cases std. dev. 

of mean
mean cases std. dev. 

of mean
Schiefe 0  -1,7732 365 0,4607 0,5966 337 0,4411 -4,1435 334 0,6423 

 1    2,1481 404 0,3236 0,7349 368 0,4209 -2,5530 361 0,7728 
 2    2,6903 404 0,4132 4,3740 405 0,3842 0,6223 462 0,9085 

Table 10: Return Difference and skewness resp. economic business cycle. 
 

Return Diff. and Econ. Business Cycle
Scatter-plot with 11780 cases
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Figure 7: Scatter–plot of the return difference and economic business cycles. 

 
In the scatter-plot of Figure 7 can be seen, that the return differences vary stronger in 

bullish markets than in bearish markets. 

The average of the ex ante standard deviation difference (in % of the standard devia-
tion of the M-V-solution) between the M-TSP- and the M-V-model is for all 11895 cases 
12,05%. The average of the ex post standard deviation difference is only 0,50%. The ex 
post standard deviation can be computed out of the standard deviation of the realized re-
turns of the models. 

The influence of the skewness on the ex ante standard deviation difference in % shows 
Table 11. Like above, for the analysis of skewness, only the cases which were computed 
after the 1. June 1997 were included. Table 11 shows, that high skewness results high stan-
dard deviation difference. The analysis of the mean of the ex ante standard deviation al-
ways must show results with high significant level. Therefore, the significance will not be 
mentioned for the following tables concerning the standard deviation.   

The ex ante standard deviation of the return of the M-TSP-portfolios is sometimes very 
high compared with the ex ante standard deviation of M-V-portfolios. The scatter-plot of 
Figure 8 illustrates that high differences occur if the skewness is high. 
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Skewness 

Mean of 
std. dev. 
diff. % 

 
Sample 

size 

 
Std. dev. of 

mean 
0 6,5963 1036 0,1697 
1 7,9213 1133 0,2101 
2 14,2151 1378 0,3606 

Total 9,9795 3547 0,1728 
Table 11: Ex ante standard deviation difference % and skewness. 

 
Standard Deviation % and Skewness
Scatter-plot with 3547 cases
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Figure 8: Scatter–plot of the std. deviation difference % and skewness. 

 
The following Tables 12a – 12c demonstrate, that the standard deviation difference in 

% obviously depends a little bit on the number of targets. Table 12a contains all cases24, 
Table 12b only the cases which were computed without splitting in skewness cluster S0, S1 
and S2 and Table 12c only the cases with at least 7 assets in the portfolios.  
 

Number of 
targets 

Mean of std. 
dev. diff. % 

Sample 
size 

Std. dev. of 
mean 

1 14,1475 5395 0,2044 
2 8,4849 3151 0,1807 
3 12,0340 3349 0,2237 

Total 12,0524 11895 0,1237 
Table 12a: Ex ante standard deviation difference (%) and number of targets. 

 
Number of 

targets 
Mean of std. 
dev. diff. % 

Sample 
size 

Std. dev. of 
mean 

1 11,5576 8 2,9602 
2 10,0104 822 0,4004 
3 11,3915 806 0,4205 

Total 10,6984 1636 0,2895 
Table 12b: Ex ante standard deviation difference (%) and number of targets (without S0, S1, S2). 

                                                           
24 For some cases, no definition of the business cycle exists (compare sample size of Table 9a and Table 12a). 
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Number of 
targets 

Mean of std. 
dev. diff. % 

Sample 
size 

Std. dev. of 
mean 

1 25,6844 635 0,7088 
2 14,7920 39 1,6916 
3 21,7695 270 0,8906 

Total 24,1147 944 0,5513 
Table 12c: Ex ante standard deviation difference (%) and number of targets of portfolios with at 
least 7 assets. 
 

If only one target constraints the portfolio optimization, the difference of the standard 
deviation (in %) has the highest level under the condition of Tables 12a – 12c. The lowest 
standard deviation difference on average had portfolios with two targets and not the portfo-
lios with three targets.   
 

Economic 
business 

cycle 

Mean of std. 
dev. diff. %  

(ex ante) 

Sample 
size 

Std. dev. of 
mean 

(ex ante) 

Mean of std. 
dev. diff. %  

(ex post) 
Baisse 12,4171 3782 0,2273 15,72 
Equal 11,4467 4002 0,2173 10,88 
Hausse 12,4387 3996 0,2031 4,84 

total 12,0948 11780 0,1246 0,50 
Table 13a: Standard deviation difference (%) and economic business cycle. 

 
Economic 
 business 

cycle 

Mean of std. 
dev. diff. %  

(ex ante) 

Sample 
size 

Std. dev. of 
mean 

(ex ante) 

Mean of std. 
dev. diff. %  

(ex post) 
Baisse 10,7456 533 0,5145 7,43 
Equal 9,5201 520 0,5080 7,16 
Hausse 11,7082 575 0,4852 1,86 

total 10,6941 1628 0,2906 0,09 
Table 13b: Standard deviation difference (%) and economic business cycle (without S0, S1, S2). 

 
In the different periods of the economic business cycles, the difference of the ex ante 

standard deviation do not vary as strong as the ex post standard deviation (in %) (see Table 
13a and 13b). The reason is founded in the date, when the different features are registered. 
The ex ante standard deviation is computed when the portfolios are optimized and the ex 
post standard deviation as the economic business cycle is related to the period after this 
date. In bullish markets the difference of the ex post standard deviation seem to be smaller 
than in bearish markets. If the total number of cases in the Tables 13a and 13b are regarded, 
differences of the ex post standard deviation between the models disappear.  

The Tables 14a-c show the target shortfall of the M-TSP and the M-V-model. The 
target shortfall was only registered for portfolios with one target, this means in 5395 cases. 
The advantage of the M-TSP-model is very weak. The model produced in about 0,2% (= 
34,4%-34,6%) of all 5395 cases less target shortfalls. The Table 14b refers to cases which 
were computed without the splitting into cluster S0, S1 and S2. The results were for both 
models equal (see Table 14b). If only the cases were analyzed, which had portfolio solu-
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tions with at least 7 assets, the M-TSP-portfolios failed in about 0,8% (= 27,7%-26,9) more 
often than the M-V-portfolios (see Table 14c).   
 

M-TSP Return Number of 
cases 

Percent Cumulated 
Percent 

target ok 3548 65,8 65,8 
target below 1847 34,2 100,0 
M-V     
target ok 3540 65,6 65,6 
target below 1855 34,4 100,0 
Total  5395 100,0  

Table 14a: Target shortfall. 
 

M-TSP Return Number of 
cases 

Percent Cumulated 
Percent 

target ok 8 100,0 100,0 
target below 0 0,0 100,0 
M-V     
target ok 8 100,0 100,0 
target below 0 0,0 100,0 
total  8 100,0  

Table 14b: Target shortfall (without S0, S1, S2) . 
 

M-TSP Return Number of 
cases 

Percent Cumulated 
Percent 

target ok 459 72,3 72,3 
target below 176 27,7 100,0 
M-V     
target ok 464 73,1 73,1 
target below 171 26,9 100,0 
total  635 100,0  

Table 14c: Target shortfall with at least 7 assets in the portfolios. 
 

If the M-TSP-model uses only one target, there cannot be insisted any advantage con-
cerning the risk measure of target shortfalls.   

The target shortfall and skewness was analyzed for both models. In Table 15a only the 
1798 cases were included, which were computed after the 1. June 1997. In 500 ( resp. 579) 
cases, the M-TSP (resp. M-V) portfolios missed the target. The target missing difference 
shows, in how much cases, the M-TSP-model was better. The Table 15a shows, that the 
target missing difference depends on the skewness.  

In 2,86% of the cases of the cluster S2 in Figure 9a, only the M-TSP-portfolios missed 
the target while the M-V-portfolio did not. But in 8,90% the M-V portfolios failed the tar-
get, while the M-TSP did not25. The difference between the skewness clusters remain under 
the condition if only cases with at least 7 assets in the M-TSP- and M-V-portfolios were 

                                                           
25 The target shortfall difference of Table 15a can be computed e.g. for cluster S2 by:  629 * (8,90-2,86) / 100 
≈ 38. 
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regarded (see Table 15c and Figure 9c). High skewness means a target shortfall advantage 
for the M-TSP model.  
 

Skewness  TSP missed target V missed target Target missing (difference)
0 cases 547 547 547 
 target-missing 187 188 1 

1 cases 622 622 622 
 target-missing 166 206 40 

2 cases 629 629 629 
 target-missing 147 185 38 

Total cases 1798 1798 1798 
 target-missing 500,00 579,00 79 

Table 15a: Target shortfall difference and skewness. 
 

Diff. in Missing the Target and Skewness
1798 cases (1 target, > 1. Juni 97)
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Figure 9a: Target shortfall and skewness. 

 

Diff. in Missing the Target and Skewness
313 Cases (1 target, > 1. June 97, at least 7 assets)
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 Figure 9c: Target shortfall and skewness with at least 7 assets in the portfolios. 
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Skewness  TSP missed target V missed target Target missing (difference)
0 cases 83 83 83 
 target-missing 21 19 -2 

1 cases 67 67 67 
 target-missing 28 33 5 

2 cases 163 163 163 
 target-missing 61 70 9 

Total cases 313 313 313 
 target-missing 110 122 12 

Table 15c: Target shortfall difference and skewness with at least 7 assets in the portfolios. 
 

The economic business cycle seem to have an influence on the target shortfalls of the 
models. In times of bearish markets, the M-V-portfolios failed in 6,69% of the cases the 
target, while the M-TSP-portfolios produced at least the target return. In bullish markets 
however, the M-TSP-portfolios failed more often (2,01%) the target (see Figure 10a). With 
the more realistic condition of at least 7 securities in the portfolio, the results seem to be 
similar (see Figure 10c)26.     

The 11895 cases had different numbers of securities in the portfolio. Table 16 demon-
strates, that the M-TSP-portfolios used nearly as much assets as the M-V-portfolio. The 
average was 4,5 and 4,7 assets. The Bravais-Pearson correlation coefficient between the 
numbers of assets in the portfolios of the two models is 0,61. 

 
Diff. in Missing the Target & Business Cycle
5395 cases (1 target)
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Figure 10a: Target shortfall difference and economic business cycle. 

 

                                                           
26 Due to less cases in the sample, it was not possible to design Figure 10b (without splitting in cluster  S0, S1 
and S2).   
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Diff. in Missing the Target & Business Cycle
635 cases (1 target, at least 7 assets )
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Figure 10c: Target shortfall difference and economic business cycle with at least 7 assets in the 
portfolios. 

 
Number 
of assets 

  
 

M- 

 
 

V 

           

  2 3 4 5 6 7 8 9 10 11 12 13 14 
M-TSP 2 977 406 138 56 13 6 2       

 3 527 794 527 273 120 59 19 4 3 1    
 4 269 590 661 451 287 142 77 20 16 6 2   
 5 102 311 439 442 341 266 141 73 39 15 5  2 
 6 51 143 253 283 266 251 172 108 57 22 4 4 1 
 7 9 51 107 139 161 168 142 94 68 27 7 2 1 
 8 1 21 26 62 60 72 77 59 28 20 9 1  
 9  7 11 20 21 26 35 23 15 17 3 3  
 10   1 5 10 4 7 11 5 1 1 1  
 11      3 4 3 2 2 1 1  
 12     2 1        

Table 16: Cross-table for the number of assets in the selected portfolios of the models  
M-V and M-TSP. 

 
 
4.  Constraints in portfolio optimization 
 

In recent years, researchers tried to find efficient portfolios, which are feasible under 
certain conditions. The efficiency of a portfolio depends also on the transaction- and ad-
ministration costs. Therefore, constraints of transaction costs but also threshold- and cardi-
nality restrictions must be integrated. Besides this, there exist conditions by law which must 
be fulfilled e.g. by funds or some individual conditions of investors. Models which are de-
signed to respect such conditions have often the consequence, that mixed integer problems 
have to be solved. Mixed integer optimization with binary variables means concerning the 
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efficient frontier in the mean-variance space, that the shape of the efficient frontier will be 
discontinuous.27   

To find the optimal solution of such mixed integer problems with quadratic objective 
functions is more complicated than within a linear model. The reason is, that in linear mod-
els the optimal solution contains always at least one extreme point of the feasible area. Op-
timal solutions which are extreme points of the feasible area can be easier found than opti-
mal solution which are within the feasible area like in the case of quadratic mixed integer 
optimization problems. Therefore the classical portfolio optimization with mixed integer 
variables has to use heuristic methods28. Only in cases with few securities and one restric-
tion a complete enumeration or an algorithm for continuous problems29—which is con-
cerned to only a single restriction—is possible for finding the global optima.  

For linear mixed integer problems, branch&bound algorithms are successful instru-
ments. If the algorithm is not adjusted to the specific restrictions the CPU time for solving 
the problem can be too long. But if the time for finding the global optima is restricted, 
branch&bound algorithms always offer some information about the quality of the best 
found solution and the potential maximum loss if the algorithm will be interrupted. 

Linear optimization seem to be more suitable to find efficient portfolios under consid-
eration of different mixed integer constraints. 
 
 
5. Conclusions 
 

For the analysis of the results of linear and quadratic optimization models, the database 
was divided into three skewness cluster. On the one hand the clusters offered the possibility 
to show the advantages of the linear models, if the return distributions are positive skewed. 
On the other hand this could be criticized due to the separation of securities with high 
skewed return distributions. Normally, funds are designed out of  stocks of a specific sector 
of the economy or of a country etc.. But it could happen, that in some sector companies 
with high skewed return distributions are dominant or that a fund manager like to construct 
something like a high skewness fund. For this cases linear optimization models can achieve 
higher returns, if some skewness will stay in the distribution of the portfolio returns. 

The skewness seem not to be diversified away by six or seven assets like some re-
searchers found. The reason could be the splitting in different skewness cluster, too. There-
fore, some results were checked under the condition, that there is no splitting into skewness 
cluster or that there are at least 7 stocks in the portfolios. This check could not always be 
realized due to the content of the database. In most cases the differences between the mod-
els continued to exist.     

Concerning the economic business cycle, the M-TSP-model seem to realize a better re-
turn on average in bearish markets, while the M-AD-model showed good results especially 

                                                           
27 see Jobst N. J., Hornimann M. D., Lucas C. A., Mitra G. (2001). 
28 see Beasley J. E., Meade N., Chang T.-J. (2003); Chang T. J., Meade N., Beasly J. E., Sharaiha Y.M. 
(2000); Crama Y., Schyns M. (1999); Derigs U., Nickel N. H. (2003); Jobst N. J., Hornimann M. D., Lucas C. 
A., Mitra G. (2001). 
29 Jansen R., Dijk van R. (2002) substituted the cardinality constraint: limp→0 ∑i=1→100 xi

p = |{xi / xi > 0}|. 
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in bullish markets compared with the results of the M-V-model. Without differentiation in 
skewness or periods of the economic business cycle, the M-TSP-model showed a small 
return disadvantage while the M-AD-model realized on average higher returns than the M-
V-model. According to this return results and the capital market theory, the difference of 
the ex-post standard deviation (in % of the standard deviation of the M-V-portfolios) was in 
the case of the M-TSP-model only +0,50% and in the case of the M-AD-model +6.82% on 
average. 

The M-TSP-model can be recommended as an alternative model under certain condi-
tions (bearish markets, high skewness) if more than one target are used, while the M-AD-
model seem to be an alternative approach in general. Taking into account, that this linear 
model is more flexible if constraints have to be respected or that the reward of portfolio 
manager is sometimes based on the AD30, it is surprising, that portfolio management is still 
dominated by the M-V-model. 
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