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Abstract 
The parameters of linear programming models are often not (in a deterministic or stochastic 
sense) fix, nor totally free selectable. Classic linear optimisation as an example proceeds on 
the assumption that prices for different products to be produced are predetermined by the 
market and on this basis defines quantities for production that maximize the profit. Only in 
perfect and polypolistic structured markets, prices are fixed by supply and demand. In 
parametric linear programming models this assumption is modified in a way that the 
parameters of the model (e. g. the prices) depend on an additional parameter t ∈ IR. 
Stochastic linear programming replaces determined parameters by stochastic ones. None of 
the upper models offer the possibility to select parameters out of a constrained area (e. g. 
prices are constrained by costs and also by the prices of the competition) to maximize the 
objective function. Hence the following optimisation problem with  
the objective function  g(x,p) = pTx → max 
and the restrictions   Ax x ≤ bx ,  x ∈ IR0+

n, Ax ∈ IRm,n,  bx ∈ IRm, 
    Ap p ≤ bp

 ,  p ∈ IR0+
n, Ap ∈ IRm´,n, bp ∈ IRm´ 

will be regarded. 
Two procedures, based on the Simplex-Algorithm will be presented as the solution. 
 
 
Introduction 
Markets are not perfekt and polypolistic structured. Therefore the output-prices are not 
always predetermined only by the market. Companies attempt to achieve sales advantages by 
strategies which make their products different in comparison with the competitors. Hence the 
comparison of products is only reduced possible the companies get their own range for setting 
the prices. 
In the case of continuous batch production the products are manufactured out of the same 
types of resources. This resources can not or should not be enlarged in short date. 
Therefore in batch type costing and planning the use of Linear Programming is helpful. The 
objective function value is the contribution margin, the profit or the sales volume which 
should be maximized. For constructing the objective function, it is necessary to know the 
selling prices of the products. But as mentioned earlier companies have their own range for 
setting the selling prices. Sometimes cost accountant try to find a better result by alternating 
the selling prices. Usually the setting of prices is limited by competition, the direct costs, the 
total production costs and so on. 



In the following model, the assumption of fixed prices will be replaced by the assumption of 
linear restricted prices. 
 
 
Model 
In Linear Programming the physical units of output x are the variables. If the prices for the 
products are also variables then a nonlinear programming problem  results. Because of the 
tools, which will be used for finding the solution of the problem, it is also part of the linear 
programming. 
The optimization problem consits of the objective function 
  g(x,p) = pTx → max,        (1a) 
the physical units of output constraints 
  Ax x ≤ bx ,  x ∈ IR0+

n, Ax ∈ IRm,n,  bx ∈ IRm    (1b) 
und the price constraints 
  Ap p ≤ bp

 ,  p ∈ IR0+
n, Ap ∈ IRm´,n, bp ∈ IRm´    (1c) 

By joining slacks in (1b) and (1c) equation systems result representing basic feasible 
solutions1). 
The Fundamental theorem2) of Linear Programming states besides: "if there is an optimal 
feasible solution, there is an optimal basic feasible solution". The equivalence of extreme 
points of the feasible region and basic feasible solutions is stated in the Equivalenztheorem3) . 
 
If the feasible region for the physical units of output is defined according to (1b) by 
  Zx = {x / Ax x ≤ bx ,  x ∈ IR0+

n}      ( 2) 
and the feasible region for the prices according to (1c) by  
  Zp = {p / Ap p ≤ bp

 ,  p ∈ IR0+
n}      ( 3) 

then the complete feasible region is  
  Z  = Zx ∪ Zp.         ( 4) 
By fixed p results the optimal region  
  Zx

* = {x* / pTx* =  max  pTx }      
 ( 5) 
            x∈Zx 
and by fixed x  
  Zp

* = {p* / p*Tx =  max  pTx }.      ( 6) 
           p∈Zp 
If either p nor x are fixed, the optimal region is called  
  Z* = {(x*,p*) / p*Tx* =       max   pTx }.     ( 7) 
              x∈Zx , p∈Zp 

                                                           
1) If a basic feasible solution of the linear equation system exists, it can be found by the "Big-M" method or the 
"Two -Phase-Simplex" method. (see e.g. Winston (1994), pp.164 and pp. 170)  
2) see Luenenberger (1984), p. 19 
3) see Luenenberger (1984), p. 21 



The linear programs with fixed p and the program with fixed x corresponding with (5) and (6) 
are  
  g (x) = pTx →  max    with x ∈ Zx     ( 8) 
and 
  g (p) = pTx →  max    with p ∈ Zp.     ( 9) 
Naturally the Fundamental theorem and the Equivalenz theorem are valid for both linear 
programs. Therefore,  
 
if Zp ≠ ∅ and Zx ≠ ∅ , then 
 ∀p∈Zp   : Zx

*  consists at least one optimal feasible solution x*   
 (10) 
and  
 ∀x∈Zx   : Zp

*  consists at least one optimal feasible solution p* .  (11) 
The result of (10) and (11) implies: 
 Z*  consists at least one combination of a basic feasible solution  
 of the system (1b) with one of (1c).       (12) 
 
After a comment on the price constraints a solution for the problem (1) founded on (12) will 
be presented. 
 
 
Price constraints 
As price constraints are only a special set of constraints regarded. Normally it is not to 
difficult to estimate the coefficients of that set of constraints.  
(The coefficients bp are in the following displayed without the Index p.) 
 
Kinds of price constraints: 
   n 

 Ia)  ∑ pj ≤ bup     price level - upper bound  
  j=1 
   n 

 Ib)  ∑ pj ≥ blo mit bup ≥ blo  ≥ 0  price level - lower bound  
  j=1 
 II) pj ≥ pj´   für j ≠ j´ und j, j´ ∈ {1, ..., n} value rank order 
 IIIa) pj - pj´ ≤ bu

jj´     price difference - upper bound 
 IIIb) pj - pj´ ≥ bl

jj´  mit  bu
jj´ ≥ bl

jj´ ≥ 0  price difference - lower bound 
 IVa) pj  ≤ bu

j      price - upper bound 
 IVb) pj  ≥ bl

j  mit  bu
j ≥ bl

j ≥ 0  price - lower bound 
The average of the prices (see Ia) and Ib)) are in some branches used for the positioning of the 
assortment as high-priced or low-priced. The decision for a certain price level is an important 



part of the price policy. Like in Ia) it is possible to use the sum of prices, instead of the 
average, if every product has to be supplied.  
By the viewpoint of the customer the value of all or some products can be described by a rank 
order. The type II) of constraints allows to take such ranking order into account.  
Sometimes, equal prices for product j and j´ in the rank order should be avoided. This can be 
reached by the type III) of constraints. 
The upper bound bu

j for the product j (see IVa)) is determined by the market, the customer (or 
better the price elasticity of demand) or by the prices of the competitors. The lower bound bl

j 

in IVb) depends of the direct cost or the total production cost of product j. 
Additionally some constrains can be joined, which represent different combinations of prices 
and demands. In this case, the unequation system (1b) must be adequate constructed. 
 
If the feasible region Zp  is not limited then an optimum may result by pj = + ∞ . To prevent 
such an optimum, the type Ia) can be used. An other possibility for limitation of Zp is the 
value rank order type II) with a price upper bound (see IVa)) for at least the product with the 
highest value rank order.  
 If the system of linear unequations of (1c) is build up by constraints of the type Ia) up 
 to IVb) and if Zp ≠ ∅, then inefficient feasible basic solutions may exist. If Zp is 
 restricted by type Ia) all feasible basic solutions pd with  
   n         n 

  ∑ pj
d  < b´ with b´ =  max {b / b = ∑ pj ,  p ∈ Zp}     

  j=1       j=1 
 are inefficient.          (13) 
 
For to prove this, the remaining price constraints Ib) up to IVb) must be considered. That 
constraints are responsible for edges of the convex polyhedron. This edges must be used to 
reach a vertex pd with ∑ pj

d < b´ coming from a neighbouring vertex pe with ∑ pj
e = b´ (see 

Ia)). The statement "vektor pe  dominates pd ", is equivalent with pd ≤ pe and pj
d < pj

e for at 
least one j∈{1, ..., n}. 
The consideration of the constraints begin with constraint Ib). Since the plane of the 
polyhedron corresponding with the constraint Ib) is parallel to that of constraint Ia), the vertex  
of constraint Ib) can only be reached about the edges of the other constraints. It is sufficient to 
regard the rest of the constraints. The edges of the constraints hold the following conditions: 
  pj = pj´    (see II)) 
  pj = bu

jj´ + pj´   (see IIIa)) 
  pj = bl

jj´ + pj´  (see IIIb)) 
  pj = bu

j   (see VIa)) 
  pj = bl

j    (see VIb)). 
None of the conditions allows the increase of pj while pj´ decreases. So, if a neighbouring 
vertex pd  should be reached as stated using one of that edges pj and pj´ must decrease. Since 



the polyhedron is convex, there can´t exist other vertex pd which are not dominated besides 
the dominated in the neighborhood of pe.  
 
To find the efficient feasible basic solutions satisfying (1c), the vector x = 1 in the objective 
function (9) can be used. 
 
As stated alternatively the value rank order II) with a price bound for at least the product j1 

with the highest value rank order can also be used for the limitation of Zp. In that case the 
efficient feasible basic solutions can be found by an appropriate vektor x in the objective 
function (9). 
 
 
 
Solution 
For the solution of problem (1) two algorithms will be presented. The first serves a global 
optima and is useful if n or m´or m are small. The second algorithm is useful in the case of 
many variables and many constraints. The second algorithm cann´t promise a global optima. 
 
Algorithm 1:  
The optimal region Z* contains at least one combination of the basic solution of (1b) and (1c) 
as stated in (12). 
For solving the problem (1) a modification of the Simplex-Algorithm will be applied. The 
modification considers that there are m´´ different efficient basic solutions p* of (1c). That 
means m´´ different rows instead of one row with the objective function coefficients (Tab. 1). 
 

x1 x2 ... xn+1 ... xn´  
 

  p11
*                      ...                                 p1n´

* 
(rows with the objective function coefficients) 
(eff. feasible basic solutions of Ap p ≤ bp ) 

  pm´´1
*                    ...                                 pm´´n´

* 

values of the 
objective 
functions 

g(x,p) 
 

 
Ax  and        E 

(physical units of output constraints) 
 

  
bx 

 

Tableau 1: Simplex-tableau with m´´ objective functions     
 



The values in the rows with the objective function coefficients indicate like in the simplex 
algorithm the additional contribution of variable xj (j=1, ..., n´) to the objective function value 
if variable xj becomes a basic variable. For getting an equation system, some slacks xn+1, ..., 
xn´ 
and the identity-matrix E were joined in (1b). 
Each of the m´´ rows with the objective function coefficients must once have non positiv 
values to indicate that their optimal basic solution x* had been found. By changing the basic 
variables, at least m´´ relativ optimal basic solutions x* will be found. Some of that relativ 
basic solutions may be identical. At the end the optimal solution (p*, x*) of (1) must be 
selected out of the m´´ relativ optimal basic solution by the value of the objective function.   
 
For the selection of the objective function row i´  the sum-criterion 
   ∑  pi´j  =   max   ∑  pij         (14) 
 pi´j>0            i       pij>0  
or the number-criterion 
 |{pi´j / pi´j > 0, j∈{1, ..., n´}}| = max  |{pij / pij > 0, j∈{1, ..., n´}}|   (15) 
                       i   
can be used . 
To take the sum-criterion means, to start with that row, which seems to get a high objective 
function value. But the sum-maximum may be originated in only one big pij > 0. On the other 
side, the number-criterion starts with a objective function row, which has the most variables 
offering a contribution to increase the objective function. 
 The objectiv function column (or pivot column) can also be selected by a sum- and a 
number-criterion. After the selection of the objective function row i´, the number-criterion 
   |{pij´ / pij´ > 0, i∈{1, ..., m´´}}|  =  max  |{pij / pij > 0, i∈{1, ..., m´´}}|  (16) 
        j   
             pi´j> 0 

can be used for the selection of the pivot column j´. 
The selection of the pivot column by (16) may offer the advantage to discover other optimas 
while searching the optima of the objective funktion row i´. Hence a combination of the 
selection rule (15) and (16) seems to be useful. 
The selection of the pivot row will be done like the simplex algorithm do. 
The described modification of the Simplex-Algorithm may serve to solve the problem (1) 
under certain conditions. Because of the combinatorial increase of the number m´´ of rows 
with objective function coefficients, the number of variables n or the number m´ of 
constraints (1c) or the number m of physical units of output constraints (1b) must be small.  
If there are only certain types of constraints in use, the number m´´ of basic solutions of (1c) 
will be small (e.g. if only the constraints of type Ia) and II) are used, then m´´ = n).  
If the number of constraints of (1b) is small it is possible to use the algorithm. Then the parts 
of (1b) and (1c) must be exchanged in the algorithm.  
 



Algorithm 2: 
If none of the conditions for using the discribed modification of the Simplex-Algorithm, 
which guarantees a global optima, are satisfied, another algorithm, based on the Simplex-
Algorithm too will solve the problem (1). 
 

       x0      and (0, ..., 0) ma
x 

 ←⎯  x0  ←⎯   start-vector x0 

  ⎫     
      Ap     and      E   bp ⎬ ⎯→  p1*  ⎯→  ma

x 
            p1*  and (0, ..., 0) 

  ⎭  ⎧   

       x1*     and (0, ..., 0) ma
x 

 ←⎯  x1*  ←⎯ ⎨   bx             Ax  and      E 

  ⎫  ⎩   

      Ap     and      E   bp ⎬ ⎯→  p2*  ⎯→  ma
x 

            p2*  and (0, ..., 0) 

  ⎭  ⎧   

       x2*     and (0, ..., 0) ma
x 

 ←⎯  x2*  ←⎯ ⎨   bx             Ax  and      E 

  ⎫  ⎩   
      Ap     and      E   bp ⎬         . . .      

  ⎭    until: pk* = pk+1*   
      or     xk* = xk+1* 

       
Tableau 2: Alternating use of the Simplex-Algorithm  
 
The principle of Algorithm 2 is shown in tableau 2. First a start-vector x0 has to be 
determined. This could be a random vector. Then using this vector x0 as fixed values in the 
objective function g, the system (1c) can be solved by the Simplex-Algorithm. Let p1* be the 
optimal solution of that step. Next the vector p1* is taken as fixed values in the system (1b). 
Let x1* be the resulting optimal solution of that step. And so on. In every double-step k = 1, 2, 
...  pk* and xk* are determined. The alternating determination of the solution of (1c) and (1b) 
using the solution of its previous step will be finished, if pk* = pk+1* or xk* = xk+1*.  
The alternating determination of the solution of (1c) and (1b) causes an ascending sequence  
 g(p0, x1*) ≤  g(p1*, x1*) ≤  g(p1*, x2*) ≤  g(p2*, x2*)  ≤   ... 
of objective function values of (1). 
Since the number of feasible basic solutions of (1b) and (1c) is finite (see also (12)) the 
algorithm converges in a finite number of steps.   



 
Conclusion 
Like the Simplex-Algorithm the algorithms 1 and 2 for the solution of the problem (1) are not  
polynominal time algorithms. It isn´t rare, that in continuous batch production the conditions 
for using Algorithm 1 (small n or m´ or m) are satisfied. It serves a global optima. The 
alternating procedure of Algorithm 2 has it´s origin in the principle of ALS (alternating least 
squares). In data analysis ALS is useful for handling qualitative data5) . ALS only guarantees 
suboptimal fixed points. In opposition to ALS the Algorithm 2 is not a least squares 
procedure and guarantees local optima. Using the price constraint Ia), it seems, that a start-
vector x0 = 1 serves better to find the global optima than random vectors. Since Algorithm 2 
uses in every step the Simplex-Algorithm a polynominal time algorithm4) could be integrated 
instead. 
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