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Linear Programming with Linear Restricted Parameters

Leo Schubert, FH-Konstanz, Germany

Abstract
The parameters of linear programming models are often not (in a deterministic or stochastic
sense) fix, nor totally free selectable. Classic linear optimisation as an example proceeds on
the assumption that prices for different products to be produced are predetermined by the
market and on this basis defines quantities for production that maximize the profit. Only in
perfect and polypolistic structured markets, prices are fixed by supply and demand. In
parametric linear programming model s this assumption is modified in away that the
parameters of the model (e. g. the prices) depend on an additional parameter t € IR.
Stochastic linear programming replaces determined parameters by stochastic ones. None of
the upper models offer the possibility to select parameters out of a constrained area (e. g.
prices are constrained by costs and aso by the prices of the competition) to maximize the
objective function. Hence the following optimisation problem with
the objective function g(x,p) = p'™x — max
and the restrictions Ax<b, xelR," A elIR™, b, IR

A,p<b,, pelR," A elR"N b e R
will be regarded.
Two procedures, based on the Simplex-Algorithm will be presented as the solution.

Introduction

Markets are not perfekt and polypolistic structured. Therefore the output-prices are not
always predetermined only by the market. Companies attempt to achieve sales advantages by
strategies which make their products different in comparison with the competitors. Hence the
comparison of productsisonly reduced possible the companies get their own range for setting
the prices.

In the case of continuous batch production the products are manufactured out of the same
types of resources. This resources can not or should not be enlarged in short date.

Therefore in batch type costing and planning the use of Linear Programming is helpful. The
objective function value is the contribution margin, the profit or the sales volume which
should be maximized. For constructing the objective function, it is necessary to know the
selling prices of the products. But as mentioned earlier companies have their own range for
setting the selling prices. Sometimes cost accountant try to find a better result by alternating
the salling prices. Usually the setting of pricesis limited by competition, the direct costs, the
total production costs and so on.




In the following model, the assumption of fixed prices will be replaced by the assumption of
linear restricted prices.

Model

In Linear Programming the physical units of output x are the variables. If the prices for the
products are also variables then a nonlinear programming problem results. Because of the
tools, which will be used for finding the solution of the problem, it is also part of the linear

programming.
The optimization problem consits of the objective function

g(x,p) = p'x — max, (1a)
the physical units of output constraints

A, x<b,, xelRy"A, elR™, b, elRM (1b)
und the price constraints

A,p<b,, pelRy" A elR™N b e IR (1)

By joining slacks in (1b) and (1c) equation systems result representing basic feasible
solutions?.

The Fundamental theorem? of Linear Programming states besides: "if there is an optimal
feasible solution, there is an optimal basic feasible solution”. The equivalence of extreme
points of the feasible region and basic feasible solutions is stated in the Equivalenztheorem? .

If the feasible region for the physical units of output is defined according to (1b) by

Z,={x/A;x<b, xelRy" (2
and the feasible region for the prices according to (1c) by

Zy={p/A,p<b,, pelRy" (3
then the complete feasible region is

Z=20Z, (4

By fixed p results the optimal region
Z ) ={X"/p™x' = max p'x}

(5)
XeZ,
and by fixed x
Zy ={p" /p™x=max p'x}. (6)
peZIO
If either p nor x are fixed, the optimal regionis called
Z'={(x"p)/pT™xX = max pTx}. (7)
XeZ, , peZp

1) If abasic feasible solution of the linear equation system exists, it can be found by the "Big-M" method or the
"Two -Phase-Simplex" method. (see e.g. Winston (1994), pp.164 and pp. 170)

2) see Luenenberger (1984), p. 19

3) see Luenenberger (1984), p. 21



The linear programs with fixed p and the program with fixed x corresponding with (5) and (6)
are

g (X) =p™x > max withx € Z, (8)
and

g (p) = p™x > max withp e Z,. (9
Naturally the Fundamental theorem and the Equivalenz theorem are valid for both linear
programs. Therefore,

if Z,# @ and Z,# @ , then

VpeZ, : Z,’ consists at least one optimal feasible solution x*
(10)
and
VxeZ, : Z," consists at least one optimal feasible solution p* . (11)

Theresult of (10) and (11) implies:
Z* consists at least one combination of a basic feasible solution
of the system (1b) with one of (1c). (12

After acomment on the price constraints a solution for the problem (1) founded on (12) will
be presented.

Price constraints

As price constraints are only a specia set of constraints regarded. Normally it is not to
difficult to estimate the coefficients of that set of constraints.

(The coefficients b, are in the following displayed without the Index p.)

Kinds of price constraints:

n
la) 2p <bw price level - upper bound
j=1
n
Ib) > p=bo mit bup > plo > 0 price level - lower bound
j=1
1) P =Py furj=j undj,j € {1, ..., n} value rank order
a) p-py <by price difference - upper bound
I1Ib) p;-py = bl mit b4 >bl >0 price difference - lower bound
IVa) p, <by price - upper bound
IVb) p; = b mit b4 >bl; >0 price - lower bound

The average of the prices (see 1a) and 1b)) are in some branches used for the positioning of the
assortment as high-priced or low-priced. The decision for a certain price level is an important



part of the price policy. Likein Ia) it is possible to use the sum of prices, instead of the
average, if every product hasto be supplied.

By the viewpoint of the customer the value of all or some products can be described by arank
order. The type 1) of constraints allows to take such ranking order into account.

Sometimes, equal prices for product j and j” in the rank order should be avoided. This can be
reached by the type I11) of constraints.

The upper bound b, for the product j (see IVa)) is determined by the market, the customer (or
better the price elasticity of demand) or by the prices of the competitors. The lower bound b,
in 1Vb) depends of the direct cost or the total production cost of product j.

Additionally some constrains can be joined, which represent different combinations of prices
and demands. In this case, the uneguation system (1b) must be adequate constructed.

If the feasible region Z,, is not limited then an optimum may result by p, = + o . To prevent
such an optimum, the type 18) can be used. An other possibility for limitation of Z; isthe
value rank order type 11) with a price upper bound (see 1Va)) for at least the product with the
highest value rank order.
If the system of linear unequations of (1c) is build up by constraints of the type 1a) up
toIVb) and if Z, # &, then inefficient feasible basic solutions may exist. If Zis
restricted by type 1a) al feasible basic solutions pd with

n n
Ypd<b  withb' = max{b/b=Xp, peZ}
j=1 =1

areinefficient. (13)

For to prove this, the remaining price constraints Ib) up to I\Vb) must be considered. That
constraints are responsible for edges of the convex polyhedron. This edges must be used to
reach avertex pd with 2 p,@ < b’ coming from a neighbouring vertex pe with . pe=b" (see
13)). The statement "vektor p¢ dominates pd”, is equivalent with pd < peand pd < p;e for at
least oneje{1, ..., n}.

The consideration of the constraints begin with constraint 1b). Since the plane of the
polyhedron corresponding with the constraint I1b) is parallel to that of constraint 1a), the vertex
of constraint Ib) can only be reached about the edges of the other constraints. It is sufficient to
regard the rest of the constraints. The edges of the constraints hold the following conditions:

P =B (see I1))

p, = bY; + py (see ll1a))
p =0y +p (see 111b))
p, = by (see Vla))
p =D (see VIb)).

None of the conditions allows the increase of p; while p;- decreases. So, if aneighbouring
vertex pd should be reached as stated using one of that edges p, and p;; must decrease. Since



the polyhedron is convex, there can’t exist other vertex pd which are not dominated besides
the dominated in the neighborhood of pe.

To find the efficient feasible basic solutions satisfying (1c), the vector x = 1 in the objective
function (9) can be used.

As stated alternatively the value rank order 11) with a price bound for at least the product j!
with the highest value rank order can also be used for the limitation of Z,,. In that case the
efficient feasible basic solutions can be found by an appropriate vektor x in the objective
function (9).

Solution

For the solution of problem (1) two algorithms will be presented. The first serves aglobal
optima and is useful if nor m"or m are small. The second agorithm is useful in the case of
many variables and many constraints. The second algorithm cann’t promise a global optima.

Algorithm 1.

The optimal region Z* contains at least one combination of the basic solution of (1b) and (1c)
as stated in (12).

For solving the problem (1) a modification of the Simplex-Algorithm will be applied. The
modification considers that thereare m”” different efficient basic solutions p* of (1c). That
means m”” different rows instead of one row with the objective function coefficients (Tab. 1).

X, X, X1 Xy
P11 P values of the
(rows with the objective function coefficients) objective
(eff. feasible basic solutions of AP < bp) functions
pm"l* e pm"n'* g(X1p)
A, and E b,
(physical units of output constraints)

Tableau 1: Simplex-tableau with m”™ objective functions



The valuesin the rows with the objective function coefficients indicate like in the simplex
agorithm the additional contribution of variable x; (j=1, ..., n") to the objective function value
if variable x; becomes abasic variable. For getting an equation system, some slacks X5, --.,
Xy
and the identity-matrix E were joined in (1b).

Each of the m™” rows with the objective function coefficients must once have non positiv
valuesto indicate that their optimal basic solution x* had been found. By changing the basic
variables, at least m”” relativ optimal basic solutions x* will be found. Some of that relativ
basic solutions may be identical. At the end the optimal solution (p*, x*) of (1) must be

selected out of the m”” relativ optimal basic solution by the value of the objective function.

For the selection of the objective function row i” the sum-criterion

2 Py = max X p (14
pi'j>0 ! p”>0

or the number-criterion
Kpi/piy>0,je{l, .., n}}=max [p;/p;>0,je{l, .., n}} (15)

can beused .

To take the sum-criterion means, to start with that row, which seems to get a high objective
function value. But the sum-maximum may be originated in only one big p;; > 0. On the other
side, the number-criterion starts with a objective function row, which has the most variables
offering a contribution to increase the objective function.

The aobjectiv function column (or pivot column) can also be selected by asum- and a

number-criterion. After the selection of the objective function row i”, the number-criterion
Kpj /py>0,ie{l, ..., m7}} = max [{p;/p;>0,ie{l, .., m}} (16)

can be used for the selection of the pivot columnj”.

The selection of the pivot column by (16) may offer the advantage to discover other optimas

while searching the optima of the objective funktion row i". Hence a combination of the

selection rule (15) and (16) seems to be useful.

The selection of the pivot row will be done like the simplex algorithm do.

The described modification of the Simplex-Algorithm may serve to solve the problem (1)
under certain conditions. Because of the combinatorial increase of the number m™” of rows
with objective function coefficients, the number of variables n or the number m” of
constraints (1c) or the number m of physical units of output constraints (1b) must be small.

If there are only certain types of constraints in use, the number m”™ of basic solutions of (1c)
will be small (e.g. if only the constraints of type 1a) and 11) are used, then m™™ = n).

If the number of constraints of (1b) issmall it is possible to use the algorithm. Then the parts
of (1b) and (1c) must be exchanged in the algorithm.



Algorithm 2:
If none of the conditions for using the discribed modification of the Simplex-Algorithm,

which guarantees a global optima, are satisfied, another algorithm, based on the Simplex-
Algorithm too will solve the problem (1).

x0 and (O, ...,0) [ma —— X0 «—— start-vector x°
X
]
A, ad E by |} > pr' ——> ma p* and (O, ..., 0)
X
J [
x* and (0, .., 0) |ma — XU < 1 | b, A, and E
X
] L
A, ad E by |} > P2 ——> ma p? and (O, ..., 0)
X
J [
xZ and (0, ..., 0) [ma < X?" < 3 b, A, and E
X
] L
A, and E b, |
) until: pk* = pk+1*

or XK' =xk+l*

Tableau 2: Alternating use of the Simplex-Algorithm

The principle of Algorithm 2 is shown in tableau 2. First a start-vector x° hasto be
determined. This could be arandom vector. Then using this vector x° as fixed valuesin the
objective function g, the system (1c) can be solved by the Simplex-Algorithm. Let p* be the
optimal solution of that step. Next the vector p!* is taken as fixed values in the system (1b).
Let xI* be the resulting optimal solution of that step. And so on. In every double-step k = 1, 2,
.. K and xk* are determined. The alternating determination of the solution of (1c) and (1b)
using the solution of its previous step will be finished, if pk* = pk*+1* or xk* = xk+1*,

The alternating determination of the solution of (1c) and (1b) causes an ascending sequence

g(p, x1) < g(p*, x¥) < g(p*, x¥') < g(p¥, x*) < ...

of objective function values of (1).

Since the number of feasible basic solutions of (1b) and (1c) isfinite (see aso (12)) the

algorithm converges in afinite number of steps.



Conclusion

Like the Simplex-Algorithm the algorithms 1 and 2 for the solution of the problem (1) are not
polynominal time algorithms. It isn’t rare, that in continuous batch production the conditions
for using Algorithm 1 (small nor m” or m) are satisfied. It serves aglobal optima. The
alternating procedure of Algorithm 2 hasit’s origin in the principle of AL S (alternating least
squares). In data analysis ALS is useful for handling qualitative data® . ALS only guarantees
suboptimal fixed points. In opposition to ALS the Algorithm 2 is not a least squares
procedure and guarantees local optima. Using the price constraint 1a), it seems, that a start-
vector x0= 1 serves better to find the global optima than random vectors. Since Algorithm 2
usesin every step the Simplex-Algorithm a polynominal time algorithm? could be integrated
instead.
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