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THE ESTIMATION OF BIODIVERSITY AND THE  
CHARACTERIZATION OF THE DYNAMICS: AN APPLICATION TO THE 

STUDY OF A PEST 

Carlos Bouza HERRERA1 
Leo SCHUBERT2 

��ABSTRACT: In this paper the estimation of biodiversity is developed by deriving an estimator of an 
index. It is considered as a parameter and should be estimated when a simple random sample of plots 
is selected. Its variances is obtained. Pest dynamics is studied using a Data Mining tool. We used 
data generated by a large study on the behavior of a sugar cane pest, in order to evaluate the 
accuracy of the estimators and determine characteristics of the pest dynamics. 

��KEY WORDS: Unbiased estimators; accuracy; bootstrap; sampling errors; data mining; decision 
tree. 

1 Introduction 

A common interest of ecologists is to characterize biodiversity and establish the 
structure of communities. Diversity can be described by the number of individuals in a 
population (N) , the number of species (K) and their distribution as expressed by the 
proportions Wi=Ni / N, i=1,...,K. Generally, the number of species Ni is unknown and Wi must 
be estimated. The study of biodiversity needs a single numerical measure index. Non-
statistically minded persons have proposed many of them. Hence, their meaning is fuzzy and 
their properties out of the usual statistical thinking. Heltshe-Bitz (1979) made an empirical 
study on the behavior of a biodiversity index. Other authors have used Jacknife in the study 
of variability, for example Adams-McCune (1979) and Zahl (1977). Patil-Taillie (1982) used 
some general assumptions for deriving families characterized by the index structure. Beran 
(1994) proposed a set of properties that establishes the admissibility of an index. In the 
sequel a population index is considered as a parameter. In this paper we derive some point 
estimators. The variances of the estimators with a linear structure are determined. A 
comparison among the estimators cannot be developed analytically. We use data generated 
by a study of a pest in the western provinces of Cuba during three years. Ecologists studied 
the effect of the pest on sugar-cane yields. This research was developed within a project of 
the Centro Nacional de Sanidad Agropecuaria (National Center of Agricultural and Cattle 
Health) supported by the Ministerio de Agricultura (Ministry of Agriculture) during the 
period 1997-2001. The measurements made in 3604 plots were used for constructing an 
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artificial population. The variables were the number of eggs, larvae and beetles. 
Two of the biodiversity measures (index) can be estimated unbiasedly. Their variances 

are determined. The structure of one of them suggests that using Bootstrap for estimation it is 
an adequate option. The third index has a non-linear structure. The estimation of its variance 
is made using Bootstrap. A Monte Carlo experiment allows the comparison of the behavior 
of the estimators in terms of accuracy. Samples were selected from the artificial population 
and the variances were estimated. Confidence intervals (CI) were constructed in each 
generated sample. We measured the percent of times in which the computed CI covered the 
value of each index. 

The dynamics of this population was studied using Data Mining techniques. These 
methods allow to explore large quantities of data for discovering patterns and rules. Our goal 
was to establish behavioral regularities in the population structure. The undirected 
knowledge methodology was used. Decision Tree tools were utilized for the analysis. The 
module Answer Tree of SPSS was the software put to use. 

2 Estimation of indexes 

Diversity is very important in the study of population dynamics. The practical need of 
using it is one of the reasons for biodiversity measurement. Researchers have defined an 
index for measuring diversity in their data. Patil-Taillie (1982) proposed a statistical frame 
for modeling the diversity measurement. Hence, characterizing it statistically will help to 
understand its differences and properties. A biodiversity index should give an idea of the 
equilibrium. An index is generally treated in the literature as a descriptive measure. Patil-
Taillie (1982) and Beran (1999) established this fact clearly. Therefore, inferences cannot be 
developed using the data obtained from random samples. In this paper we consider a 
population index as a parameter and develop an estimator. 

Our approach is to consider the existence of at most K different species in each site. We 
model this fact by considering that the population is described by the partition U = U1+ 
+...+UK. Uj is the set of individuals of species j in the community and Nj is its size. Hence 
N = N1 +...+NK . 

The proposals of Simpson (1949), Brillouin (1962), McIntosh (1967) and Fayer (1972) 
are frequently used to measure biodiversity. Pielou (1977) proposed a method for pooling a 
sample of m quadrant. His experiments established that the index of McIntosh (1967) was a 
function of Simpson’s index. Heltshe-Bitz (1979) derived experimentally that the index 
proposed by Brillouin (1962) was insensitive to changes in the distribution.  

These studies determined the tractability of an index from a statistical point of view. 
We studied: 

2.1 The index of Fayer 

The ecologist must fix a rank for every species. Denoting it by Ri  

λ*F = [N(K+1)-J(K-J)]/2 - �K
i=1 Ni Ri =λ* 0-�

K
i=1 Ni Ri 

is the index. J∈[0,K) is an integer and R1 ,... , RK are the ranks of the species in decreasing 
order of importance. For typifycation we will consider a simple transformation of this index 
given by 
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2.2 The index of Simpson 

It is: 

λS =1 - �K
i=1 Ni (Ni -1) . 

We propose using the transformation of Simpson's index given by: 

λ'S =1 - �K
i=1 Wi 

2 . 

When the number of individuals is large enough, we have that λ'S ≅λS. Note that λ'S=1-
H, where H is Herfindall’s concentration index, which is of commonly used as a descriptive 
measure in economy, see Bruckman (1969 and 1999). When H=1, the concentration of the 
shares is maximum and H=1/N when it is minimum. H is robust for the unknowledge of the 
shares, the Wi’s, for small units. Hence, we can argue about the robustness of λ'S. This is the 
most popular index among biologists because of its easy computation and interpretation. 

2.3 The index of Beran 

Beran (1994) analyzed the concept of diversity and proposed desirable properties of a 
diversity index d(U1,... ,UK). When we deal with one variable, they are: 

• d(U1,... ,UK)≥0. 

• d(U1,... ,UK) is symmetric in Wi . 

• d(U1,... ,UK) is continuous in Wi . 

• d(U1,... ,UK)= d(U1,... ,UK,UK+1 ,... ,UK+m) if Wj>0 for any j>K. 

• d(U1,... ,UK) is minimum if Wj=1 for a certain j. 

• d(U1,... ,UK) is maximum if Wj=1/K for any j . 

• d(U1,... ,UK)∈[ d(U1,... ,UK’), d(U1,... ,UK”)] in another case with K’≤K≤K”. 

• d(U1,... ,UK)> d(U1,... ,UK’) if K>K’ and Wj=1/K, W’j=1/K’ . 

• 1≤ d(U1,... ,UK)≤K. 

Beran (1999) introduced three other properties when the index depends on two 
classification variables, which is not our case.  He derived the index  

λB =Πi=1
K  Wi 

-Wi = exp [-�i=1
K Wi ln(Wi )] 

and proved that it is the only admissible index. 
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The sampling procedure that we will consider is a random sampling design 
implemented as follows: 

Sampling Procedure 

a) Select a random sample of n plots using simple random sampling. 

b) Evaluate the number ni of individuals in Ui . 

The distribution of (n1 ,... ,nK) is a multinomial. Hence, E(nj)=nWj and pj= nj / n 
unbiasedly estimates the population proportion of species j. We assume that Ri=Rank (Ni) ≅ 
Rank (nWi) and that the relation Ri ≅Rank (ni)=ri . Then  

λ0
F=λ 0-�

K
i=1 pi ri 

and 

λ0
S=1-�K

i=1 pi 
2 

are naive estimators of λF and λ‘S .  

Note that E(λ0
F)≅ λF, with variance  

V(λ0
F)= �K

i=1 Ri
2Wi(1-Wi)/n.  

An unbiased estimator of it is easily derived as  

Vo(λ0
F)= �K

i=1 ri
2pi(1-pi)/n. 

The transformed Simpson’s index is seriously biased because: 

E(λ0
S )=1-�K

i=1 E(pi 
2)=1-�K

i=1 Wi 
2+Wi(1-Wi)/n. 

A biased corrected estimator of it is λ*S=λ0
S+�

K
i=1 νi , where νi is an unbiased estimator 

of Wi(1-Wi). Then, we propose using λ*S=λ0
S+�K

i=1 pi(1-pi)/n. The derivation of the variance 
of this estimator requires cumbersome calculations because they involve moments of high 
order of the multinomial. It is given by : 

V(λ*S)=�
K

i=1 Wi(1-Wi)/n + 4�K
i=1 Wi

3 /n -�K
i≠j WiWj (Wi +(1-Wj ))/n. 

Its estimation leads to a very complicated formula. We recommend using Bootstrap for 
estimating the error. 

For the index of Beran 

 λB
0 =Πi=1

K  pi 
-pi = exp [-�i=1

K pi ln(pi )] 
is a naive estimator, which is consistent. Its variance has a very complicated structure 
because of its non-linearity. We will use a Bootstrap procedure for estimating it. 
 

3 Study of the biodiversity 

We studied biodiversity in the population of M=3,604 plots where the number of eggs, 
larvae and beetles were measured. The selection of the sample was made using Sampling 
Procedure 1. The sampling fractions were f=m/M=0.01, 0.05 and 0.10. The corresponding 
values of ni, ri and pi were computed in each sample. The procedure was repeated S=100 
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times. In our Monte Carlo experiment Ni, Ri and Wi were known; hence the values of each 
index in the population were computed. The classic Bootstrap methodology was used for 
obtaining error estimations for the three proposed estimators and the number of bootstrap 
samples were b*=100. The Bootstrap sub-samples were selected using simple random 
sampling with replacement from the original sample. We computed 

V*(λA
0 )=�b*

b=1 (λA
0 (b)-λ A(BS) )

2 /b* 

where λA
0(b) is the estimate computed in the bth-Bootstrap sample for A=F, S, B and  

λA(BS) =�
b*

b=1 (λA
0 (b) /b* 

is the Bootstrap mean. The accuracy of each estimator was evaluated by 

A( λA
0 )=100�S

s=1 λA
0 (s)-λ A /SλA 

and  

CV(λA
0 )=100[�S

s=1 V
0 (λA

0 (s))/SλA
2]1/2 . 

The first measure serves for evaluating the absolute deviations of the estimators and the 
second one the relative accuracy in a sense related to the coefficient of variation. Both are 
relative measures. 

The results of the Monte Carlo experiments are given in Table 1.  

Tabela 1 - Analysis of the behavior of index estimators in the study of a sugar cane pest 

m/M=0.01 m/M=0.05 m/M=0.10 
Index 

Value of 
the Index CV(λA) A(λA ) CV(λA) A(λA) CV(λA) A(λA) 

Fayer   0.57 27.21 12.46 15.62 11.16 10.54 7.81 
Simpson 0.51 24.67 16.97 22.89 13.52 11.71 10.14 
Beran 0.52 32.33 11.95 28.97 13.24 18.85 11.74 

 
Note that the estimator of Beran’s index is estimated more accurately only for the 

largest sampling fraction (f=0.10). Its accuracy can be considered as a direct function of f. 
Fayer’s index has the opposite behavior in the experiment. 

CI’s were computed in each generated sample assuming that the normal approximation 
was valid. The percent of the samples that contained the true index value was computed. In 
any case 1-α=0.95. The CI’s were determined by using the population variance, when it was 
possible to be computed. In the case of Fayer, we computed the CI’s using Bootstrap and 
sample estimation of the variance. The results are given in Table 2. 

Tabela 2 - Proportion of samples in which the Confidence Interval contained de Index with 
α=0.05 

Confidence Interval Fayer Simpson Beran 

)(96.1 00
AA V λλ ±  0.87 0.83 - 

)(96.1 000
AA V λλ ±  0.91 - - 

)(96.1 0*0
AA V λλ ±  0.96 0.94 0.82 
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The results show that Fayer index estimator has closer behavior to that expected in 
theory. Its best behavior was when the Bootstrap estimated variance was used. Beran’s index 
has the worst results. It should be expected because its structure does not suggest that the 
usual Bootstrap approximation to the normal should be acceptable. 

4 Study of the population dynamics 

Data Mining (DM) is a collection of techniques that allow the analyzis of large data 
sets. Its development is a result of the possibilities given by modern computers. The 
existence of large databases in companies is largely due to the storing capabilities of their 
computers. They accumulate data, but their use in management does not go beyond the usual 
needs of controlling. The identification of the problem to be studied or its detection is the 
first step in DM investigations. In the analysis, statistical, artificial intelligence and data base 
techniques are used for ‘drilling’ into the data in order to obtain valuable information. The 
result of DM application should be the characterization of the problem and the support of an 
adequate decision-making process. Its increasing use in marketing research has its roots in 
such fact. A lot of applied scientific research provides large date bases and the problem 
concerning data analysis in order to determine patterns and rules is also present. Scientists 
identify the problem and they want to determine the patterns reflected in their observations. 
In fact, a measurement process originates data and the objective of applied research is to look 
for the establishment of the regularities of the phenomena. Hence, DM techniques may be 
used as a useful tool for the study of experimental data. 

DM is mainly used for two groups of tasks: 
a) Classifying, affinity grouping or clustering. 

b) Describing, estimating or predicting. 
The techniques in each group deal with similar problems. Clustering is used for 

determining groups by analyzing how close the units are. A certain distance or similarity 
measure is utilized for constructing homogenous groups. Examining the features of new 
units for placing them in a previously known group is the classification task. Affinity 
grouping is related to the need to determine why some units of different nature appear 
together.  

Describing may be the main objective of an investigation: to obtain some knowledge of 
the characteristics of a phenomenon. Estimation deals with the determination of a set of 
values that characterizes data, while prediction establishes what may be expected in the 
future by analyzing the existing results. 

Delineating the picture of population dynamics requires the observation of a large 
number of specimens. In practice it poses the need to analyze a relatively large Data Base. 
Ecologists were interested in developing a theoretical model that describes the behavior of 
the pest. Its evaluation should permit to establish what should be used for controlling pest 
once a field is sampled. Some of the biological controls usable for pest control are efficient 
because of their consume, or parasitace, eggs, larvae or beetles. The theoretical model should 
be reflected in the data analysis. We considered the use of Data Mining for describing the 
regularities exhibited by the collected data. Researchers from the Centro National de Sanidad 
Agrícola of Cuba obtained the data during a three-years study of a sugar-cane pest. They 
measured the number of eggs, larvae and beetles in the same sampled plots. The results 
generated 3604 valid observations.  
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The characteristics of the eggs-larvae-beetles relations in the same plot should permit to 
learn about the behavior of its structure. This knowledge should sustain the establishment of 
environmental policies for pest control. The dynamics was studied using the number of eggs 
and beetles as explanatory variables. The number of larvae was regarded as unimportant for 
considering it as a explanatory variable by the ecologists. 

An analysis of our objectives and the characteristics of DM techniques suggested using 
the tool known as Answer-Tree. The trees may be constructed using different algorithms. In 
our case we used CHAID and C&RT because of the nature of the data. CHAID (CHi squared 
Automatic Interaction Detection) is due to Hartigan, see Hartigan (1985). Different 
improvements of it have been introduced. The algorithm looks for detecting the significance 
of statistical relationships among the variables using a Chi-squared test at each step. The 
input variables are split generating at least two new child-nodes from each parent node. The 
significance of the split is tested. If it is significant the split is performed. 

CR&T (Classification & Regression Tree) is an algorithm which works looking for the 
minimization of a measure of the difference. It uses the input and builds a binary tree. At 
each step it fixes which independent variable is the best splitter. Then the classes are 
determined. Breiman et al. (1984) developed it within the frame of machine learning. The 
measure of the difference is considered an ‘impurity’ or ‘diversity’ measure. The best 
variable is that with the smaller value of the measure selected by the specialists from those 
offered by the software. 

The question posed to the data, at each step, was which values of the other variables 
determine homogeneous groups. The final result should permit to establish which 
composition of the units supports saying that 'from the point of view of its population their 
dynamics, are similar'. Then the elements in a group should be treated similarly when an 
eradication campaign is planned. 

The output obtained using the Answer-Tree 2.0 module, provided by SPSS 8.0, is given 
in Figures 1 - 4. Their analysis yielded the following results. 

5 Explanatory variable: Beetles 

5.1 Beetles computed with CHAID 

Node 1 of Figure 1 gives the structure of the sample. Note that their existence has the 
probability P[XB≥1]=0,134. The most important variable for the target variable (beetles) is 
the number of eggs. Four  nodes  appear  in  the  following  level.  Node 1 [XE =0], node 2 
[XE =1], node 3 [XE ≤5] and node 4 [XE≥6]. The most important nodes are 1 and 3. When the 
number of eggs is zero the probability of observing at least one beetle is  

P(XB ≥1XE=0)=1-0.8392=0.1208 .  
This node may be split by taking into account the existence of larvae. If no larvae are 

observed the conditional probability is P(XB>0XE=XL=0)=0.1833. This means that 18.33% 
of the sample plots without eggs and larvae will not mean that the pest does not invade the 
plot. When larvae are observed the probability is reduced to P(XB ≥0XE=0 and 
XL>0)=0.0539. Hence, the probability of observing beetles is considerably large when there 
are no eggs, but there are larvae in the plot. 
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FIGURE 1 - Tree of Beetles computed with CHAID. Beetles=Adultos, Puestas=Eggs, Ninfas= Larvae. 

5.2 Beetles computed with CR&T 

The output obtained is given in Figure 2. The results obtained with this algorithm and 
with CHAID when XE=0 are the same. The nature of the search developed by this algorithm 
permits to detect that the main importance of observing XE>0 is described by node 6 because 
P(XB >0XE>1)=0.1399. 

Cat. % n 
0 83.92 1436 
1 12.40 212 
2   3.16 54 
3   0.35 6 
4   0.18 3 
5   0.00 0 

Total (47.45) 1710 

 

Cat. % n 
0 69.81 37 
1 15.09 8 
2   5.86 3 
3   7.55 4 
4   1.89 1 
5   0.00 0 

Total (1.47) 53 
 

Cat. % n 
0 87.67 1195 
1 10.42 142 
2   1.47 20 
3   0.29 4 
4   0.07 1 
5   0.07 1 

Total (37.82) 1363 

 

Cat. % n 
0 94.98 454 
1 3.35 16 
2   1.67 8 
3   0.00 0 
4   0.00 0 
5   0.00 0 

Total (13.26) 478 
 

Ninfas 
P-value=0.0000    Chi-square=41.1203; df=3 

 

Adultos 
Cat. % n 

0 86.60 3121 
1 10.49 378 
2   2.38 85 
3   0.39 14 
4   0.14 5 
5   0.00 1 

Total (100.00) 3604 
 

Puestas 
P-value=0.0000    Chi-square=62.0330; df=3 

 

0 1 2,3,4,5, >5 

Cat. % n 
0 81.67 1154 
1 13.94 197 
2   3.75 53 
3   0.42 6 
4   0.21 3 
5   0.00 00 

Total (39.21) 1413 
 

Cat. % n 
0 94.61 281 
1   5.05 15 
2   0.34 1 
3   0.00 0 
4   0.00 0 
5   0.00 0 

Total ( 8.24) 297 
 

0 >0 
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FIGURE 2 - Tree of beetles computed with C&RT. Beetles=Adultos, Puestas=Eggs, Ninfas=Larvae. 

>0.1 0.1 >0 0 
Cat. % n 

0 81.67 1154 
1 13.94 197 
2   3.75 53 
3   0.42 6 
4   0.21 3 
5   0.00 0 

Total (39.21) 1413 

 

Cat. % n 
0 94.61 281 
1   5.05 15 
2   0.34 1 
3   0.00 0 
4   0.00 0 
5   0.00 0 

Total (8.24) 297 

 

Cat. % n 
0 89.82 1886 
1  8.76 166 
2   1.84 31 
3   0.42 8 
4   0.11 2 
5   0.05 1 

Total (52.55) 1894 
 

Cat. % n 
0 83.92 1436 
1 12.40 212 
2   3.16 54 
3   0.35 6 
4   0.18 3 
5   0.00 0 

Total (47.45) 1710 
 

Ninfas 
Improvement=0.0018 

 

Puestas 
Improvement=0.0012 

 

0 >0 

Cat. % n 
0 94.98 454 
1   3.35 16 
2   0.00 8 
3   0.00 0 
4   0.00 0 
5   0.00 0 

Total (13.26) 478 

 

Cat. % n 
0 87.01 1232 
1 10.59 150 
2   1.62 23 
3   0.56 8 
4   0.14 2 
5   0.07 1 

Total (39.29) 1416 

 
Puestas 

Improvement=0.0006 
 

<5 ≥5 
Cat. % n 

0 87.67 1195 
1 10.42 142 
2   1.47 20 
3   0.29 4 
4   0.07 1 
5   0.07 1 

Total (37.82) 1363 

 

Cat. % n 
0 69.81 37 
1 15.09 8 
2   5.66 3 
3   7.55 4 
4   1.89 1 
5   0.00 0 

Total (1.47) 53 

 

Adultos 
Cat. % n 

0 86.60 3121 
1 10.49 378 
2   2.38 85 
3   0.39 14 
4   0.14 5 
5   0.00 1 

Total (100.00) 3604 

Puestas 
Improvement=0.0010 
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6 Exploratory variable: Eggs 

6.1 Eggs computed with CHAID 

The output obtained is given in Figure 3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 3 - Tree of Eggs computed with CHAID. Beetles=Adultos, Puestas=Eggs, Ninfas= Larvae. 

 

Adultos 
Cat. % n 

0 47.45 1710 
1 13.26 478 
2 18.09 652 
3 11.46 413 
4 8.88 248 
5 1.39 60 
6 0.75 27 
7 0.22 8 
8 0.11 4 
9 0.06 2 
10 0.19 7 
11 0.06 2 
12 0.08 3 

Total (100.00) 3604 
 

Ninfas 
Improvement=0.0087 

 

Cat. % n 
0 64.48 187 
1 12.76 37 
2 11.03 32 
3   7.24 21 
4   3.79 11 
5   0.00 0 
6   0.69 2 
7   0.00 0 
8   0.00 0 
9   0.00 0 

10   0.00 0 
11   0.00 0 
12   0.00 0 

Total (8.05) 290 
 

Cat. % n 
0 44.42 1413 
1 13.64 434 
2 19.33 615 
3 12.13 386 
4   7.36 234 
5   1.64 49 
6   0.79 26 
7   0.26 8 
8   0.13 4 
9   0.03 1 

10   0.22 7 
11   0.06 2 
12   0.09 3 

Total (88.26) 3181 
 

Cat. % n 
0 82.71 110 
1   5.26 7 
2   3.76 5 
3   4.51 6 
4   2.26 3 
5   0.75 1 
6   0.00 0 
7   0.00 0 
8   0.00 0 
9   0.75 1 

10   0.00 0 
11   0.00 0 
12   0.00 0 

Total (3.69) 133 
 

0 1 >1 
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A two-level tree is generated. The second level is larvae. The response to the increase 
of larvae is a decrease in the number of eggs. When XL=0 (node 1), the structure is very 
similar to that observed in the whole population of eggs. Note that P(XE=0XL≥2)=0.827, 
which is almost the double of the population’s probability (0.4745). The use of this algorithm 
permits to detect that when XE =XL =0 splitting it into two child nodes of adults is significant.  

6.2 Eggs computed with CR&T 

The output obtained is given in Figure 4. A similar result is observed, but when there 
are not larvae, the numbers of beetles is a significant variable and two child nodes are 
generated. The conditional probability of observing no beetles is  

P(XB =0XL=0)=0.7564  
and for the other child node  

P(XB >0XL=0)=0.1262. 
Hence, the non-existence of larvae seems to be linked with the presence of beetles in 

more than 12% of the sampled plots. Node 4, XB>0 , is split into nodes 7 and 8. Their 
analysis establishes that in the 9.85% of the plots with no larvae, only one beetle was 
observed. The split of node 2 into node with one larvae and another with more than one is 
not of real importance for describing the pest dynamics. 

Though the classification of the plots was not important for the purposes of this 
research, we analyzed the probability of erroneous classification. The results appear in Table 
3. Note that CHAID has a larger probability of correct classification than CR&T for eggs, 
but smaller for beetles, although the differences are not high. We reclassified all the plots. 

Tabela 3 - Percent of correctly classified plots 

Explanatory Variable Method 
CHAID CR&T 

Beetles 94.7 95.4 
Eggs 96.0 93.4 

 
The obtained results suggest a pest dynamics in the fields. Ecologists can evaluate the 

behavior of the infestation structure and elect an adequate control for it. 

Conclusions 

In Section 2 we derived unbiased estimators for λF and λS and their sampling errors 
when the design is simple random ample with replacement. Their comparison and the plug-in 
derived estimator of Beran’s index was made by developing a Monte Carlo study based on 
an artificial population. The results suggest that: 
1. The estimation of biodiversity for this pest is more accurate when the Fayer’s index was 

used as a measure because: 
   • Its point estimation seems to be more accurate, 
   • The CI’s computed contained the parameter in a very similar proportion to 1-α.  
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FIGURE 4 - Tree of eggs computed with C&RT. Beetles=Adultos, Puestas=Eggs, Ninfas= Larvae. 

>0.1 0.1 >0 0 

Puestas 
Cat. % n 

0 47.45 1710 
1 13.26 478 
2 18.09 652 
3 11.46 413 
4 8.88 248 
5 1.39 60 
6 0.75 27 
7 0.22 8 
8 0.11 4 
9 0.06 2 

10 0.09 7 
11 0.06 2 
12 0.08 3 

Total (100.00) 3604 
 

Cat. % n 
0 70.21 297 
1 10.40 44 
2   8.75 37 
3   6.38 27 
4 3.31 14 
5 0.24 1 
6 0.47 2 
7 0.00 0 
8 0.00 0 
9 0.24 1 
10 0.00 0 
11 0.00 0 
12 0.00 0 

Total (11.74) 423 
 

Cat. % n 
0 44.42 1413 
1 13.64 434 
2 19.33 615 
3 12.13 386 
4 7.36 234 
5 1.64 49 
6 0.79 26 
7 0.26 8 
8 0.13 4 
9 0.03 1 
10 0.22 7 
11 0.06 2 
12 0.09 3 

Total (88.26) 3181 
 

Ninfas 
Improvement=0.0087 

 

Cat. % n 
0 42.33 1154 
1 15.15 413 
2 19.99 546 
3 12.29 335 
4   7.45 203 
5   1.50 41 
6   0.65 19 
7   0.16 4 
8   0.11 3 
9   0.00 0 

10   0.22 6 
11   0.04 1 
12   0.11 3 

Total (75.64) 2728 
 

Cat. % n 
0 59.92 259 
1   4.62 21 
2 15.38 70 
3 11.21 51 
4   6.81 31 
5   1.76 8 
6   1.54 7 
7   0.89 4 
8   0.22 1 
9   0.22 1 

10   0.22 1 
11   0.22 1 
12   0.00 0 

Total (12.62) 455 
 

Cat. % n 
0 64.48 187 
1 12.76 37 
2 11.09 32 
3   7.24 21 
4   3.79 11 
5   0.00 0 
6   0.59 2 
7   0.00 0 
8   0.00 0 
9   0.00 0 
10   0.00 0 
11   0.00 0 
12   0.00 0 

Total (8.05) 290 
 

Cat. % n 
0 82.71 110 
1   5.26 7 
2   3.76 5 
3   4.51 6 
4   2.26 3 
5   0.75 1 
6   0.00 0 
7   0.00 0 
8   0.00 0 
9   0.75 1 
10   0.00 0 
11   0.00 0 
12   0.00 0 

Total (3.69) 133 
 

Cat. % n 
0 55.49 197 
1   3.94 14 
2 18.59 66 
3 11.83 42 
4   5.63 20 
5   2.25 8 
6   0.85 3 
7   0.85 3 
8   0.00 0 
9   0.28 1 
10   0.28 1 
11   0.00 0 
12   0.00 0 

Total (9.85) 355 
 

Cat. % n 
0 62.00 62 
1   7.00 7 
2   4.00 4 
3   9.00 9 
4 11.00 11 
5   0.00 0 
6   4.00 4 
7   1.00 1 
8   1.00 1 
9   0.00 0 
10   0.00 0 
11   1.00 1 
12   0.00 0 

Total (2.77) 100 
 

0 >0

Adultos Impr.=0.0038 Ninfas: Impr.=0.0011 

Adultos Impr.=0.0007 

>0.1 0.1 
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2. The CI’s based on Bootstrap variance cover the true index value in a larger proportion 
than the other alternatives. 

3. The index of Simpson is the second best alternative. 
The study of the Answer Tree suggested that CHAID should be recommended for 
analyzing the pest dynamics because its associated classification error probability is 
smaller than Cr&T’s.  
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��RESUMO: Neste artigo a estimação da biodiversidade é feita pela obtenção do estimador de um 
índice, que é considerado como um parâmetro e que pode ser estimado quando se tem uma amostra 
aleatória simples. A variância deste índice é obtida. A dinâmica da doença é estudada usando um 
procedimento Data Mining. Para avaliar a precisão dos estimadores e descrever as características da 
doença, foram utilizados dados gerados em um estudo do comportamento de uma doença da cana-
de-açúcar. 
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