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Outline: Deep learning for single cell phenotype
classification in High-Content Screening

« Short Introduction to CNN
« A straight forward application of CNN for HCS
« Challenges in HCS
— No labeled cells in the beginning
— How much labeled data is needed?
— Measuring confidence of the phenotype classifications



A short introduction to CNN



Why DL: Imagene‘l' 2012, 2013, 2014, 2015

1000 classes
1 Mio samples

container s
container ship
lifeboat
amphibian
fireboat
drilling platform

Human: 5% misclassification

Traditional CV @ Deep Learning

Only one non-CNN
approach in 2013
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GooglLeNet 6.7%

A. Krizhevsky 2015: It gets tougher
' 4.95% Microsoft (Feb 6 surpassing human performance 5.1%)

first CNN in 2012 4.8% Google (Feb 11) -> further improved to 3.6 (Dec)?

Und es hat zoom gemacht 4.58% Baidu (May 11 banned due too many submissions )
3.57% Microsoft (Resnet winner 2015)

Figure: https://medium.com/global-silicon-valley/machine-learning-yesterday-today-tomorrow-3d3023c7b519
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Convolution extracts local information using few weights

FULLY CONNECTED NEURAL NET LOCALLY CONNECTED NEURAL NET

Example: 1000x1000 image

S

——

- Spatial correlation is local
- Better to put resources elsewhere!

Shared weights:

by using the same weights for each patch of the image we need much less
parameters than in the fully connected NN and get from each patch the same
kind of local feature information such as the presence of a edge.



Convolutional networks use neighborhood information and

replicated local feature extraction

In a locally connected network the calculation rule

z = b+ xw

/

Pixel values in a small image patch are element-wise
multiplied with weights of a small filter/kernel:

The filter is applied at each position of the image and it
can be shown that the result is maximal if the image
pattern corresponds to the weight pattern.

The results form again an image called feature map

(=activation map) which shows at which position the
feature is present.

feature/activation map




Convolutional networks use neighborhood information and
replicated local feature extraction

filtering = feature map 1 pooling =
convolution l p down-sampling
5 SsEit
_ feat 5 pooled
\fllter 2 caturs map feature maps
HHEHE

i

The weights of each filter are randomly initiated and then adapted during the training.




Putting it all together

Feature Extraction Classification

Full

Output probability for % I]

Connection
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Training of a CNN is based on gradient backpropagation

' om0 > Minimize Loss Function:
T A oL
e ' _ W
. F S~ 0 Wim _ W,-(t D _ o (w)
= ; W, | ¢ 0 aWi w;=w
/ - U, ez3 1
Large w‘@ s B
TRAINING ..' - A Error
tran _loss
306" i vaihd_loss
S ‘ valid_accuracy
< ERROR BACKPROPAGATION \p l
034 L
Backpropagation=“chain rule” Nﬂ!‘“{g‘)ﬂ# INTRIFR ,'.N_‘I'\',\%‘.u.‘w-y,\k“""-L‘L
Loss-function: . , , , , '
. 0 100 200 . 300 400 500
L=distance(truth, output(w)) .

Image credits: Audhkhasi et al., Neural Networks 78 (2016) 15-23
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A straight forward application
to phenotype classification



Dataset: BBBCO22v1 “Cell Painting Assay”

Hoechst Concanavalin SYTO 14 WGA + MitoTracker
2 A Phalloidin DeepRed
-“E, Nuclei Endoplasmic Nucleoli Membrane / | Mitochondria
n reticulum Golgi / F-actin
472/520 nm 531/593 nm | 562/642 nm 628/69
Compound classes:
2
G 0 DMSO,
1 e.g. Paclitaxel
= 2 e.g. Metoclopramide
[7)] . .
3 3 e.g. Digoxin
(&)
N
?
]
(3}
Data Split
© 52’000 segmented cells
L (using Cellprofiler)

20% testing

Durr, O., and Sick, B. Single-cell phenotype classification using deep convolutional neural networks. Journal of
biomolecular screening 21, 9 (2016), 998-1003. Image Genedata
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The workflow

Cellprofiler were used  Cellprofiler (traditional) LDA/SVM (traditional)

for cell segmentation

Predefined /g ae,
feature

CNN (new approach)

learned task specific feature

Durr, O., and Sick, B. Single-cell phenotype classification using deep convolutional neural networks. Journal of
biomolecular screening 21, 9 (2016), 998-1003 13



Definition of the network

| O |input | 5X72x72 |

[y

| convl | 32x70x70 |
| 2 | convll | 32x68x68 |
| 3 | pooll | 32x34x34 |

| conv2 | 64x32x32 |
| conv22 | 64x30x30 |
| pool2 | 64x15x15 |

| convd | 128x13x13 |
| conv33 | 128x11x11 |
| pool3 | 128x6x6 |

O 00 N (o) JN&) I

| 10 | hidden1 | 200 |
| 11 | dropout1 | 200 |
| 12 | hidden2 | 200 |
| 13 | dropout2 | 200 |
| 14 | hidden3 | 50 |
| 15 | dropout3 | 50 | Inspired by the Oxfordnet, the 2nd

best submission of the 2014 image
| 16 |output |4 | net competition.

Durr, O., and Sick, B. Single-cell phenotype classification using deep convolutional neural networks. Journal of biomolecular screening 21, 9 (2016),
998-1003 14



Making the most of your data: augmentation
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034

0.04

25 50
epoch

094
Ermror
train_loss
g 06 valhd_loss
S valid_accuracy
%
N
0.3 ,', | P
A | " ) N
*f'm“" LU SRR pr vl v A u
0.04
0 100 200 300 400 500

Durr, O., and Sick, B. Single-cell phenotype classification using deep convolutional neural networks. Journal of

biomolecular screening 21, 9 (2016), 998-1003
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(a) Standard Neural Net (b) After applying dropout.

At each training step we remove random nodes with a probability of p.
« Sparse version of the full net

* In each training step we train another NN model
» Dropout prevents co-adaptation
At testing no dropout

» Dropout can also be used later for assigning confidence!

Srivastava et al., Journal of Machine Learning Research 15 (2014), Image Martin Gérner
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Comparison with Cell Profiler

DMSO (True) Cluster A (True) Cluster B (True) Cluster C (True)

CNN

DMSO 7775 13 208 0

Cluster A 28 382 23 |

Cluster B 414 8 1657 0

Cluster C 0 0 0 8l
LDA

DMSO 7949 20 542 0

Cluster A 15 323 35 12

Cluster B 251 60 1310 |

Cluster C 2 0 | 69

Overall accuracy: CNN 93.4% [93.0%, 93.9%], LDA 91.1% [90.5%,91.6%)],
SVM 87.6% [88.2%,87.0%]

Conclusion: Deep Learning applicable for phenotype classification in HCS.
Better accuracy and no need for hand crafted features.

Durr, O., and Sick, B. Single-cell phenotype classification using deep convolutional neural networks. Journal of
biomolecular screening 21, 9 (2016), 998-1003



Challenges in High Content
Screening



Challenges in High Content Screening

« Data is abundant / labels are scarce

— Millions of Cells but only hundreds / thousands of labeled cells
« Heterogeneity of the data

— Do we really have all relevant phenotypes in the training set?

« We will address the following points:
— Overview w/o labeled cells
— How many labeled cells are necessary?
— Approaches to reduce the number of labeled cells

— How to assign and use uncertainties

19



Definition of data set

e 19 Classes
« 2 Channels

Data (all available from https://github.com/okraus/Deepl.oc)
— 21882 64x64x2 segmented images in training set
— 4491, 4516 for validation and testing

00009

Actin Bud Neck Bud Tip Cell Periphery Cytoplasm Endosome Golgi
uclear Vi o
Mitochondria oo Nucleolus Nucleus Peroxisomes Spindle Pole vy

Periphery Membrane

Kraus, O.Z. et all. , B.J. Molecular Systems Biology 13.4 (2017): 924
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Overview of your data

Visualization to get first impression

At the beginning you have no labels
— You can’t train a NN

T-SNE on

— Autoencoder
+ See Poster

— Canned network VGG16 / FaceNet

Network trained on ImageNet

(image
conv-64
conv-64
maxpool
conv-128
conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool

Features

conv-512

conv-512

FC-4096
FC-4096

FC-1000

maxpool
softmax

N

4096 dimensional feature
vector as input for t-SNE
visualization

21



TSNE with V6616 trained on ImageNet
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Definition of our CNN

Conv2D (None, ©4, 64, 32) 1184
Batch (None, o064, 064, 32) 128
Conv2D (None, ©4, 64, 32) 9248
Batch (None, 064, 64, 32) 128
MaxPooling?2 (None, 32, 32, 32)

Conv2D (None, 32, 32, 64) 18496
Batch (None, 32, 32, 64) 256
Conv2D (None, 32, 32, 64) 36928
Batch (None, 32, 32, 64) 256
MaxPooling?2 (None, 16, 16, 64) 0
Flatten (None, 16384) 0

Dense (None, 200) 3277000
Batch (None, 200) 800
Dropout (None, 200) 0
Softmax (None, 19) 3819

Approx. 3 Mio. Parameters, 10 Mio. Oren Kraus



ACTIN

BUDNECK

BUDTIP

CELLPERIPHERY

CYTOPLASM

ENDOSOME

ER

GOLGI

MITOCHONDRIA

NUCLEARPERIPHERY

NUCLEI

NUCLEOLUS

PEROXISOME

SPINDLE

SPINDLEPOLE

VACUOLARMEMBRANE

VACUOLE

GHOST

esults

Our CNN

Confusionmatrix, Our CNN

87 1 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0
0 61 2 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0
2 0 37 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0
0 0 0 52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 (287 O 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 209 O 4 1 0 0 0 1 0 1 2 1 0 1
1 0 0 2 3 [N 515 i 1 4 0 0 0 0 0 0 3 0 0
0 0 0 0 0 3 2 187 1 0 0 0 4 0 0 0 0 0 0
1 0 0 0 1 5 0 9 Kk 2 0 0 5 0 2 1 1 0 0
0 0 0 0 0 0 1 0 2 1260 O 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 4 0 1 0 0 2 0 0
0 0 0 0 1 0 0 0 0 0o 11 0 0 5 0 0 0 0
0 0 0 0 0 2 0 1 1 0 0 1 116 1 1 0 0 0 0
0 0 0 0 0 2 0 0 1 0 0 0 0 14 6 0 0 0 0
0 1 0 0 1 3 0 1 0 0 0 9 1 4 281 O 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 191 2 0 0
0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 216 O 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 93 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 178

v"@ @ogvd' @\ofx\q Q&« ng;oq \;}" ‘)oo"’O\‘& & é)&\ \@\o@" r ‘@i@c@ (1&0&”’ O-PQO& y é’& . Vép& O&qf; oo& &v° <’Qp"/\

K 8 & 0953 & 55 5
$ &

Overall acc;

Predicted label

96.3% [95.7%,96.8%)]

ACTIN

BUDNECK

BUDTIP

CELLPERIPHERY

CYTOPLASM

ENDOSOME

ER

GOLGI

MITOCHONDRIA

NUCLEARPERIPHERY

NUCLEI

True-label

NUCLEOLUS

PEROXISOME

SPINDLE

SPINDLEPOLE

VACUOLARMEMBRANE

VACUOLE

GHOST

DeeplLoc®

Confusionmatrix, DeeplLoc

82 1 1 0 0 0 0 4 0 0 0 0 3 0 1 0 0 0 0
2 58 4 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
3 0 38 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 (278 O 1 0 1 0 0 0 0 0 1 1 2 0 0
0 0 0 0 0 193 0 13 4 0 0 0 0 1 6 1 1 0 1
4 0 2 2 0 2 By o 2 8 0 0 0 0 0 1 4 0 0
5 0 0 0 0 9 0 179 2 0 0 0 2 0 0 0 0 0 0
4 0 0 0 0 8 2 15 EEEER S5 0 3 4 4 2 1 5 0 0
1 0 0 0 0 0 1 0 2 (257 1 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 1 18 0 1 0 1 7 0 0
0 0 0 0 0 2 0 0 0 0 12 0 3 10 O 0 0 0
2 0 0 0 0 5 0 3 4 0 0 0 102 2 5 0 0 0 0
0 0 0 0 0 5 0 0 1 0 1 1 1 8 6 0 0 0 0
0 0 0 0 0 8 0 0 1 0 0 7 1 1 283 O 0 0 0
0 0 0 0 0 7 0 0 0 0 0 3 0 0 0 179 6 0 0
0 0 0 0 0 1 1 0 2 0 0 0 0 0 0 1 214 O 0
0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 91 O
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 178

v"@ @ogvd' @\ofx\q Q&« ng;oq \;}" ‘)oo"’O\‘& & é)&\ \@\o@" r ‘@i@c@ (1&0&”’ O-PQO& y é’& . Vép& O&qf; oo& &v° <’Qp"/\

K 8 & 0953 & 55 5
$ &

Overall acc:

Predicted label

93.5% [92.7%, 94.2%)]

*Oren Z Kraus et al. Mol Syst Biol 2017;13:924, trained model from: https://github.com/okraus/DeeplLoc/
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How much data do we need need?

1.0
e < Qverall acc: 96.3%

T 0.9
N
C
O
® 08 method
O
<_>\3 random
; 0.7 —e— stratified
> 0.
©
>
3
< 06

0.5

0 5000 10000 15000 20000
Number of Training Examples

For a small network with only 3420 images or 180 images per phenotype,
more than 90% accuracy is reached (with augmentation)
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Quantifying Uncertainty



Why do we want probability estimates?

There are so many cells
— Only include cell for which the classifier is sure.

Condense to one value per compound.
— Use averages weighted with confidence

Cells for which the classifier is unsure might hint towards novel or
rare phenotypes

27



Don't we have probabilities anyway?

« Why don’t take the output of the softmax as an estimate for
uncertainty?

ST XN
NEASIF K
S, S, AP T
[ ‘\’/ g@.&«

« These are probabilities (in a mathematical sense) but do not reflect
the models / classifiers knowledge or ignorance.

 They don’t have error bars!



A first thought experiment

« Suppose you train a classifier on dogs only and show it a cat.
« What will be the result?

= o
=2 )
o on

520

Predicts some class
with p,,,,=0.95

* How can that be?

— Forced to classify as a dog.
+ Ifit's a dog, than most probably a colly

— No confidence of the prediction given

00}

29



A first experiment

« Let’s do the experiment (with our data)
— We remove a Mitochondria phenotype (cat) from the training set
— Train the classifier w/o Mitochondria

— Show Mitochondria (from validation set) to the trained classifier
It should tell you that it is unsure

Actin Bud Neck Bud Tip Cell Periphery Cytoplasm Endosome Golgi

Nuclear Vacuole &
Mitochondriz Nucleolus Nucleus Peroxisomes Spindle Pole
Periphery Membrane

Image credit Kraus, O.Z. et all. , B.J. Molecular Systems Biology 13.4 (2017): 924
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Results for the removed class

Mitochondria

N

No mitochondria
in training.

106 of 620 cells are from a class scored 50
with over 90%!

count

Not enough to have point estimates, we 2
want error bars... "

520

=
-~

050
00}

[ Predicts some class
u with p,..,=0.95
.. ]

Repeat this for all 620 Mito. cells
in the validation set

0.00

0.25

pmax

=0.95
N

0.50 0.75 1.00
p_max
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Results for the removed class

o

=) 0.
AV
JIP

‘:{' o

%@4)&;

X
4
$

Mitochondria

No mitochondria in

training.

106 of 620 cells are from a class scored 50
with over 90%)! "

Not enough to have point estimates, we
want error bars... 10

00’}

= (=
wn |
S o

000
520

[ Predicts some class
[] with p,..,=0.95
.. ]

Repeat this for all 620 Mito. cells
in the validation set

0.00 0.25 0.50 0.75 1.00
p_max
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We want error bars (or even better a distribution)

95% class 6 95% class6 unsure 95% class6 sure
10 10 10
0.8 - : 0.8 - : 0.8 -
0.6 - 0.6 - 0.6 -
0.4 0.4 1 0.4 -
0.2 - 0.2 - 0.2 1
0.0 L4 , , 0.0 ’ . 0.0 . ;
0 5 10 15 0 5 10 15 0 5 10 15

How to get error bars?
What would an experimenter do?
« Goin lab and repeat!

What would a kaggle script kid do?
« Simply spin up 100 AWS instances and repeat (train and predict)

What would a computer scientist / statistician do?
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..Remember Dropout?

output: probabilities for each class

Done in training anyway

x4 ) input: image pixel values

34



Use dropout also during testing

RUN 1

output depends on dropout

stochastic dropout of units

same input
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RUN

p,=0.11 p,=0.81  p,=0.08
a
Q, @V @ output depends on dropout

\R &/
/ stochastic dropout of units

@ X3 @ same input

36



X1

output depends on dropout

stochastic dropout of units

same input

RUN 3

37



RUN 4

output depends on dropout

stochastic dropout of units

same input

38



..Repeat 1000 times



Distributions of predicted probabilities by dropout during test time

The class with highest probability at modus (MAP) chosen as
predicted class.

Use 66% CI [l ,l.] around MAP for confidence of the predicted
probability.

<
1%
I
g
5

MAP, = 0.925\ MAP, =0.025

300

100
]

250

80
1
200
|

Frequency

60

|
Frequency

|

Frequency

150

|

40
|
—
C
o
—_

|

100
|

0.0 0.2 04 06 0.8 1.0 0.0 0.2 0.4 06 0.8 1.0 0.0 0.2 04 06 0.8 1.0
p1 p2 p3 40




Does this really make sense?

Equivalence

< %

Yarin Gal* (2015)

Bayesian Neural Networks
* Provides predictive probability

distribution.

MC-Dropout
At each training and testing step
we remove random nodes with a

probability p

Get new experiments by simply doing
dropout, also at testing.

*Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning https://arxiv.org/abs/1506.02142
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Phenotype in training

MAP

legend
L |p1
O

Spindle Pole

p2
p3

Many Dropout Runs C
: : 0.00 0.25 0.50 0.75 1.00
This phenotype is o
in training!
30 30
20 20
10 10
0 L 0 -
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Cl_low MAP
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Phenotype in training

Spindle Pole

2 ps
L
£

Many Dropout Runs

This phenotype is
in training!

MAP

legend

p2
p3

A .
A

0.00 025 0.50 0.75 1.00
p

Repeat this for all 3849 non mitochondria cells

in the validation set

3000

count

2000

1000

1000
, N J
0.00 0.25 0.75 1.00

count

0.50
Cl_low
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Phenotype not in training

¥

Mitochondria
AN

Many Dropout Runs : : . .
: : 00 03 06 09
This phenotype is

not in training! _ . . P :
Repeat this for all 620 mitochondria cells in
the validation set

30

a—
c
g
(&)

20

count

0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00
Cl_low
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Phenotype not in training

¥

Mitochondria
N

Many Dropout Runs
This phenotype is

not in training!

00 03 06 09

p
Repeat this for all 620 mitochondria cells in
the validation set

300

30

200

count

100

0.00 0.25

0
0.50 0.75 1.00
Cl_low

0.25

0.75
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Comparison lower ClI /MAP

A

» Use MC-Dropout: the lower CI as filter
« Use MC-Dropout: MAP as filter
« Use a traditional approach and maximal value of p as filter

1.0- — —
09-
Threshold
%) — L
© ow ClI
§ a — MAP
< —— No mc dropout
0.7-

642 Mitoch.s.
3843 non Mitoch.

T~

1.00 0.75 0.50 0.25 0.00

No Filter Percentage of Cells used All filtered out
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Conclusion

Deep Learning works for single cell phenotype classification (at least
for the assays seen)

— No hand crafting of features needed

Dropout in forward pass can be used quantify model uncertainty
(basically for free) and boosts performance
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Thank youl

Zircher Hochschule
fir Angewandte Wissenschaften

Elvis Murina Vasily Tolkachev ~ Beate Sick

This work has been partly funded by the CTI grant: “DeepCells”

Gefleca @
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Comparison
No MC Dropout
s p_max
% v part % "
:.%t N(I)ml\:ltos j: 10-
" p_max 1
W Mitos (not in training)
No Mitos (all phenotypes in training) 2

1

With MC-Dropout, lower CI can
be used as filter.

MC

10-

0.00

Dropout

MAP

lower CI

0.25

0.50
MAP

Cl_low

part
Mitos
No Mitos

part
Mitos
No Mitos

MAP



Result on training with all phenotypes

« Now we include mitochondria again in the training

Threshold
Low Cl
MAP

No mc dropout

Accuracy

No mc dropout MO

Percentage of Cells used

« Doing several forward passes increases performance for free
» Consistent with

Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning https://arxiv.org/abs/1506.02142



Idea of Bayesian Network

« Motivation
— Weights of a network are random (next run other weights)

* Principle ldea

— Choose these networks as probabilistic models: weights have a
distribution (aka Bayesian Neural Network)

Learned in training

— N
p(7 1XY)  p(Y[W,X)

Prediction p(YIX)=[p(YX.W)-p(w)dw

or sample!

Picture from http://mlg.eng.cam.ac.uk/yarin/blog 3d801aa532c1ce.html




Pure man's Bayesian Neural Network

« Bayesian networks are hard to train.

« Dropout can be seen as a (variational approximation) of a simple
Bayesian Neural Network

Weights have independent
Bernoulli Distributions.

Uncertainty estimates for free (basically)

« Estimation of weights: just do standard NN training with dropout
« Sampling: simply keep dropping out nodes MC-dropout

For proofs: Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning https://arxiv.org/abs/1506.02142




Don't we have this already?
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Softmax input as a function of data X Softmax output as a function of data X



[validation set]

Prediction on mito “cats| Prediction on cells w/o Mito??7?7?
Highest MAPs estimate for non-existing class Highest MAPs estimate for all classes
250 A 350 -
300 -
200 1
250 -
B0 200 -
100 1 150 1
100 1
50 .
0- 0 '_- T I T T
0.0 0.2 04 06 08 10 0.0 0.2 04 0.6 0.8 10

Highest lower credibility intervall estimate for all classes

Highest lower credibility intervall estimate for non-existing class 160

140

250 1
120 -
200 100
150 80 1
60 4

100 A
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50 4
20 1
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Validation set w/o non-existing classes

Highest MAPs estimate for all classes Highest mean estimate for all classes
350 - 130 -
300 -
100 A
250 -
m -
200 1
w -
150 A
40 4
100 A
20 -
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0= ; .
o-—m- r = f " 02 03 04 05
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Highest median estimate for all classes 160
250 1
140 A1
200 120 -
100 A
150 1
80 -
100 1 60 A
40 4
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20 4
0 . |
02 04 06 08 10 0
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Other methods to reduce the number of labeled data
[outlook]

« Metric Embedding “cell2vec”

— Train a network trained for metric embedding (similar objects are close to
each other)

— Special loss functions
» Contrastive Loss, Triplet Loss, Center Loss, ...
— State of the art in face recognition

» Trained on millions (MSCeleb-1M, open) and 100 of millions (closed, source) of
examples

— Issues
» FaceNet not good for cells (see tSNE)
« Training needs (too?) much labeled data
— See Deep Metric Network on HCI (biorxiv.org 2017/07/10/161422)

« Semi-supervised learning

— Ladder Network (still working on it)
— GAN, VAE

* Question: Is labeling 200 cells per class so bad after all?



Approaches to reduce the number of labeled data

« Transfer learning [needs trained network]
— Train a network on a similar dataset
— Fine-tune this network new dataset

Nice Figure

« Label propagation
— Use network to predict unlabeled cells, and then use those



Transfer learning

C 1.0 T T T T T T T T v
Chong 2015 . W S WS T —
Labels : : : . v . .
D06 - T A
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New : W . : : : : :
Labels 0.2pf f---- =--+-1}- transfer learning f
: b - training from scratch
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Label propagation

« Train classifier on 1140 random cells from training set=>» 81%
validation accuracy

« Apply classifier again on training set

« Take best 40% best predictions of each class (4143 new pseudo
labeled cells)

 Train network again including pseudo labeled cells -86%

5% for free 4
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Other methods to reduce the number of labeled data

« Transfer learning
— Use a network trained on a similar task and only retrain the last few
layers. For HCS done in (Kraus et. al. 2017)
« Metric Embedding “cell2vec”

— Train a network trained for metric embedding (similar objects are close
to each other).
— State of the art in face recognition

» Trained on millions (MSCeleb-1M, open source) and 100 of millions (closed
source) of examples

— Issues

» Training needs (too?) much labeled data
— See Deep Metric Network on HCI (biorxiv.org 2017/07/10/161422)

« Semi-supervised learning g N
— Ladder Network (still working on it) . kA

_ GAN,VAE | . g
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Question: Is labeling 200 cells per class so bad after all?
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Other methods to reduce the number of labeled data

« Transfer learning

— Use a network trained on a similar task and only retrain the last few
layers. For HCS done in (Kraus et. al. 2017)

« Semi-supervised learning
— Ladder Network (still working on it)

— GAN, VAE
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Question: Is labeling 200 cells per class so bad after all?



TSNE with inception trained on faces (center loss) o
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Faces on Chongl_test vgg
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KNN accuracy 47% (learned with 4000 examples). Model from:_https://github.com/davidsandberg/facenet/




TSNE with V6616 trained on ImageNet
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KNN accuracy 60% (learned with 4000 examples). Model from keras



