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Outline: Deep learning for single cell phenotype 
classification in High-Content Screening 
 
•  Short Introduction to CNN 
•  A straight forward application of CNN for HCS 
•  Challenges in HCS 

–  No labeled cells in the beginning 
–  How much labeled data is needed? 
–  Measuring confidence of the phenotype classifications  
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A short introduction to CNN 



Why DL: Imagenet 2012, 2013, 2014, 2015 

A.  Krizhevsky 
first CNN in 2012 
Und es hat zoom gemacht 

GoogLeNet 6.7% 

 
Figure: https://medium.com/global-silicon-valley/machine-learning-yesterday-today-tomorrow-3d3023c7b519 

1000  classes 
1 Mio samples 

Only one non-CNN 
approach in 2013 

2015: It gets tougher  
4.95% Microsoft (Feb 6 surpassing human performance 5.1%) 
4.8%   Google (Feb 11) -> further improved to 3.6 (Dec)? 
4.58% Baidu (May 11 banned due too many submissions ) 
3.57% Microsoft (Resnet winner 2015) 

 
 

… 

Human: 5% misclassification 
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Shared weights:  
 

by using the same weights for each patch of the image we need much less 
parameters than in the fully connected NN and get from each patch the same 
kind of local feature information such as the presence of a edge. 

Convolution extracts local information using few weights 
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Convolutional networks use neighborhood information and 
replicated local feature extraction 

	
The	results	form	again	an	image	called	feature	map	
(=ac6va6on	map)	which	shows	at	which	posi6on	the	
feature	is	present.	

In	a	locally	connected	network	the	calcula6on	rule	
	
	
	
Pixel	values	in	a	small	image	patch	are	element-wise	
mul6plied	with	weights	of	a	small	filter/kernel:	
	
	
	
	
	
	
	
The	filter	is	applied	at	each	posi6on	of	the	image	and	it	
can	be	shown	that	the	result	is	maximal	if	the	image	
paEern	corresponds	to	the	weight	paEern.	

image 
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feature/activation map 
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Convolutional networks use neighborhood information and 
replicated local feature extraction 

The	weights	of	each	filter	are	randomly	ini6ated	and	then	adapted	during	the	training.	

feature map 1 

filter 1 

filter 2 feature map 2 

…
 

filtering = 
convolution 

image 
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pooled  
feature maps 

pooling = 
down-sampling 
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Putting it all together 

Output probability for 
class 
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Feature Extraction Classification 



Training of a CNN is based on gradient backpropagation 
 

Loss-function: 
 

L=distance(truth, output(w)) 
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Image credits: Audhkhasi et al., Neural Networks 78 (2016) 15–23 
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A straight forward application 
to phenotype classification 



Dataset: BBBC022v1 ”Cell Painting Assay” 

Dürr, O., and Sick, B. Single-cell phenotype classification using deep convolutional neural networks. Journal of 
biomolecular screening 21, 9 (2016), 998-1003. Image Genedata 

Data Split 
52’000 segmented cells 
(using Cellprofiler) 
20% testing 

Compound classes:  
 
0 DMSO,  
1 e.g. Paclitaxel  
2 e.g. Metoclopramide  
3 e.g. Digoxin  
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The workflow 

Dürr, O., and Sick, B. Single-cell phenotype classification using deep convolutional neural networks. Journal of 
biomolecular screening 21, 9 (2016), 998-1003 

Image data 

CNN (new approach) last layer 

Predefined 
feature 

Cellprofiler were used 
for cell segmentation 

Segmentation Feature extraction Classification 

Cellprofiler (traditional) LDA/SVM (traditional) 

learned task specific feature 5 channels 
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Definition of the network 

Dürr, O., and Sick, B. Single-cell phenotype classification using deep convolutional neural networks. Journal of biomolecular screening 21, 9 (2016), 
998-1003 

Inspired by the Oxfordnet, the 2nd 
best submission of the 2014 image 
net competition. 

|			1		|	conv1					|	32x70x70			|	
|			2		|	conv11			|	32x68x68			|	
|			3		|	pool1						|	32x34x34			|	

|   4  | conv2     | 64x32x32   | 
|   5  | conv22   | 64x30x30   | 
|   6  | pool2      | 64x15x15   | 

|   7  | conv3     | 128x13x13 | 
|   8  | conv33   | 128x11x11  | 
|   9  | pool3      | 128x6x6     | 

|  10 | hidden1  | 200             | 
|  11 | dropout1 | 200             | 
|  12 | hidden2  | 200             | 
|  13 | dropout2 | 200             | 
|  14 | hidden3  | 50               | 
|  15 | dropout3 | 50               | 

|   0  | input       | 5x72x72     | 

Dürr, O., and Sick, B. Single-cell phenotype classification using deep convolutional neural networks. Journal of 
biomolecular screening 21, 9 (2016), 998-1003 

|  16 | output     | 4                 | 
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Making the most of your data: augmentation 

Dürr, O., and Sick, B. Single-cell phenotype classification using deep convolutional neural networks. Journal of 
biomolecular screening 21, 9 (2016), 998-1003 15 



Making the most of your data: Dropout 

 Srivastava et al., Journal of Machine Learning Research 15 (2014), Image Martin Görner 

At each training step we remove random nodes with a probability of p.  
•  Sparse version of the full net 

•  In each training step we train another NN model 
•  Dropout prevents co-adaptation 
At testing no dropout 
•  Dropout can also be used later for assigning confidence! 
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Comparison with Cell Profiler 

Dürr, O., and Sick, B. Single-cell phenotype classification using deep convolutional neural networks. Journal of 
biomolecular screening 21, 9 (2016), 998-1003 

Conclusion: Deep Learning applicable for phenotype classification in HCS.  
Better accuracy and no need for hand crafted features. 

Overall accuracy: CNN 93.4% [93.0%, 93.9%], LDA 91.1% [90.5%,91.6%], 
SVM 87.6% [88.2%,87.0%] 
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Challenges in High Content 
Screening  



Challenges in High Content Screening 

•  Data is abundant / labels are scarce 
–  Millions of Cells but only hundreds / thousands of labeled cells 

•  Heterogeneity of the data  
–  Do we really have all relevant phenotypes in the training set? 

 
•  We will address the following points: 

–  Overview w/o labeled cells 
–  How many labeled cells are necessary? 
–  Approaches to reduce the number of labeled cells 

 
–  How to assign and use uncertainties 
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Definition of data set 

•  19 Classes 
•  2 Channels 
•  Data (all available from https://github.com/okraus/DeepLoc) 

–  21882 64x64x2 segmented images in training set 
–  4491, 4516 for validation and testing  

Kraus, O.Z. et all. , B.J. Molecular Systems Biology 13.4 (2017): 924 
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Overview of your data 

•  Visualization to get first impression 
•  At the beginning you have no labels 

–  You can’t train a NN 
•  T-SNE on  

–  Autoencoder 
•  See Poster 

–  Canned network VGG16 / FaceNet 

4096 dimensional feature 
vector as input for t-SNE 
visualization 

Network trained on ImageNet 

Features 
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TSNE with VGG16 trained on ImageNet 
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Definition of our CNN 

Conv2D       (None, 64, 64, 32)      1184       
Batch    (None, 64, 64, 32)      128 

Conv2D       (None, 64, 64, 32)      9248       

Batch    (None, 64, 64, 32)      128 

MaxPooling2  (None, 32, 32, 32)      0  

Conv2D       (None, 32, 32, 64)      18496      
Batch    (None, 32, 32, 64)      256 

Conv2D       (None, 32, 32, 64)      36928 

Batch    (None, 32, 32, 64)      256 

MaxPooling2  (None, 16, 16, 64)      0          

 

Flatten      (None, 16384)           0          
Dense        (None, 200)             3277000    

Batch    (None, 200)             800 

Dropout      (None, 200)             0          

Softmax   (None, 19)              3819       

Approx. 3 Mio. Parameters, 10 Mio. Oren Kraus  
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Results 

Tr
ue

 la
be

l 

Overall acc: 93.5% [92.7%, 94.2%] Overall acc: 96.3% [95.7%,96.8%] 

Our CNN DeepLoc* 

*Oren Z Kraus et al. Mol Syst Biol 2017;13:924, trained model from:  https://github.com/okraus/DeepLoc/ 
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How much data do we need need? 

For a small network with only 3420 images or 180 images per phenotype, 
more than 90% accuracy is reached (with augmentation) 
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Overall acc: 96.3% 



Quantifying Uncertainty 



Why do we want probability estimates? 

•  There are so many cells 
–  Only include cell for which the classifier is sure. 
 

•  Condense to one value per compound.  
–  Use averages weighted with confidence 

•  Cells for which the classifier is unsure might hint towards novel or 
rare phenotypes 
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Don’t we have probabilities anyway? 

•  Why don’t take the output of the softmax as an estimate for 
uncertainty? 

 

•  These are probabilities (in a mathematical sense) but do not reflect 
the models / classifiers knowledge or ignorance. 

•  They don’t have error bars! 
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A first thought experiment 

•  Suppose you train a classifier on dogs only and show it a cat.  
•  What will be the result? 
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Predicts some class   
with pmax=0.95  

•  How can that be? 
–  Forced to classify as a dog. 

•  If it’s a dog, than most probably a colly 
–  No confidence of the prediction given 



A first experiment  

•  Let’s do the experiment (with our data) 
–  We remove a Mitochondria phenotype (cat) from the training set 
–  Train the classifier w/o Mitochondria 
–  Show Mitochondria (from validation set) to the trained classifier 

•  It should tell you that it is unsure 

30 
Image credit Kraus, O.Z. et all. , B.J. Molecular Systems Biology 13.4 (2017): 924 



Results for the removed class 

Predicts some class   
with pmax=0.95  

Repeat this for all 620 Mito. cells 
in the validation set 

No	mitochondria	
in	training.		

106 of 620 cells are from a class scored 
with over 90%! 
 
 
Not enough to have point estimates, we 
want error bars… pmax=0.95  

31 



Results for the removed class 

Predicts some class   
with pmax=0.95  

Repeat this for all 620 Mito. cells 
in the validation set 

No	mitochondria	in	
training.		

106 of 620 cells are from a class scored 
with over 90%! 
 
 
Not enough to have point estimates, we 
want error bars… 
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We want error bars (or even better a distribution) 

95% class 6 95% class6  unsure 95% class6  sure 

How to get error bars? 
What would an experimenter do? 
•  Go in lab and repeat! 
 
What would a kaggle script kid do? 
•  Simply spin up 100 AWS instances and repeat (train and predict)  
 
What would a computer scientist / statistician do? 
•  … 
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input: image pixel values 

output: probabilities for each class 
p1 p2 p3 

…Remember Dropout? 

Done in training anyway 
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Use dropout also during testing 

p1=0.08 p2=0.89 p3=0.03 

same input 

output depends on dropout  

stochastic dropout of units 
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p1=0.11 p2=0.81 p3=0.08 

same input 

output depends on dropout  

stochastic dropout of units 
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p1=0.03 p2=0.94 p3=0.03 

same input 

output depends on dropout  

stochastic dropout of units 
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p1=0.16 p2=0.78 p3=0.06 

same input 

output depends on dropout  

stochastic dropout of units 
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…Repeat 1000 times 



Distributions of predicted probabilities by dropout during test time   
p1 p2 p3 The class with highest probability at modus (MAP) chosen as 

predicted class.  
 
Use 66% CI [lu,lo] around MAP for confidence of the predicted 
probability. 

1MAP 0.075= 2MAP 0.925= 3MAP 0.025=

[lu,lo] 
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Does this really make sense? 

MC-Dropout 
At each training and testing step 
we remove random nodes with a  
probability p 

Bayesian Neural Networks  
•  Provides predictive probability 

distribution. 

p1 p2 p3 

Get	new	experiments	by	simply	doing	
dropout,	also	at	tes6ng.	

*Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning https://arxiv.org/abs/1506.02142     

Equivalence 

Yarin Gal* (2015) 
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Phenotype in training 

This	phenotype	is	
in	training!	

Many Dropout Runs 

MAP 
CI 
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Phenotype in training 

This	phenotype	is	
in	training!	

Many Dropout Runs 

MAP 
CI 

Repeat this for all 3849 non mitochondria cells 
in the validation set 
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Phenotype not in training 

This	phenotype	is	
not	in	training!	

Many Dropout Runs 

MAP CI 

Repeat this for all 620 mitochondria cells in 
the validation set 
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Phenotype not in training 

This	phenotype	is	
not	in	training!	

Many Dropout Runs 

MAP CI 

Repeat this for all 620 mitochondria cells in 
the validation set 
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Comparison 

•  Use MC-Dropout: the lower CI as filter 
•  Use MC-Dropout: MAP as filter  
•  Use a traditional approach and maximal value of p as filter 

MAP 
lower CI 
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642 Mitoch.s.  
3843 non Mitoch.  

No Filter All filtered out 



Conclusion 

•  Deep Learning works for single cell phenotype classification (at least 
for the assays seen) 
–  No hand crafting of features needed 

 
•  Dropout in forward pass can be used quantify model uncertainty 

(basically for free) and boosts performance 
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Thank you! 

This work has been partly funded by the CTI grant: “DeepCells” 

Elvis Murina Vasily Tolkachev Beate Sick 



Backup 



Comparison  

No MC Dropout MC Dropout 

With MC-Dropout, lower CI can 
be used as filter. 

MAP 
lower CI 

MAP 

lower CI 

p_max 

(all phenotypes in training) 

(not in training) 



Result on training with all phenotypes 

•  Now we include mitochondria again in the training 

•  Doing several forward passes increases performance for free 
•  Consistent with 

•   Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning https://arxiv.org/abs/1506.02142  
 



Idea of Bayesian Network 

•  Motivation 
–  Weights of a network are random (next run other weights) 

•  Principle Idea 
–  Choose these networks as probabilistic models: weights have a 

distribution (aka Bayesian Neural Network)  

   p(W1 | X, Y)

Prediction  

Picture from http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html 

Learned in training 

  
p Y|X( ) = p Y|X,W( ) ⋅ p W( )dW∫
or sample!  

   p(Y |W1,X)



Pure man’s Bayesian Neural Network 

•  Bayesian networks are hard to train.  
•  Dropout can be seen as a (variational approximation) of a simple 

Bayesian Neural Network 

 
Weights have independent 
Bernoulli Distributions. 

•  Estimation of weights: just do standard NN training with dropout 
•  Sampling: simply keep dropping out nodes MC-dropout 

For proofs: Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning https://arxiv.org/abs/1506.02142     

Uncertainty estimates for free (basically) 



Don’t we have this already?  



[validation set] 
Prediction on mito “cats| Prediction on cells w/o Mito???? 



Validation set w/o non-existing classes 



Other methods to reduce the number of labeled data 
[outlook] 

•  Metric Embedding “cell2vec” 
–  Train a network trained for metric embedding (similar objects are close to 

each other) 
–  Special loss functions 

•  Contrastive Loss, Triplet Loss, Center Loss, … 
–  State of the art in face recognition 

•  Trained on millions (MSCeleb-1M, open) and 100 of millions (closed, source) of 
examples 

–  Issues 
•  FaceNet not good for cells (see tSNE) 
•  Training needs (too?) much labeled data 

–  See Deep Metric Network on HCI (biorxiv.org 2017/07/10/161422) 
 

•  Semi-supervised learning 
–  Ladder Network (still working on it) 
–  GAN, VAE 

•  Question: Is labeling 200 cells per class so bad after all? 



Approaches to reduce the number of labeled data 

•  Transfer learning [needs trained network] 
–  Train a network on a similar dataset 
–  Fine-tune this network new dataset 

•  Label propagation  
–  Use network to predict unlabeled cells, and then use those 



Transfer learning 

Oren Z Kraus et al. Mol Syst Biol 2017;13:924 



Label propagation 

•  Train classifier on 1140 random cells from training setè 81% 
validation accuracy 

•  Apply classifier again on training set   
•  Take best 40% best predictions of each class (4143 new pseudo 

labeled cells) 
•  Train network again including pseudo labeled cells à86%  

5% for free 



Other methods to reduce the number of labeled data 

•  Transfer learning 
–  Use a network trained on a similar task and only retrain the last few 

layers. For HCS done in (Kraus et. al.  2017) 
•  Metric Embedding “cell2vec” 

–  Train a network trained for metric embedding (similar objects are close 
to each other).  

–  State of the art in face recognition 
•  Trained on millions (MSCeleb-1M, open source) and 100 of millions (closed 

source) of examples 
–  Issues 

•  Training needs (too?) much labeled data 
–  See Deep Metric Network on HCI (biorxiv.org 2017/07/10/161422) 

•  Semi-supervised learning 
–  Ladder Network (still working on it) 
–  GAN, VAE 
 
 

Question: Is labeling 200 cells per class so bad after all? 

61 



Other methods to reduce the number of labeled data 

•  Transfer learning 
–  Use a network trained on a similar task and only retrain the last few 

layers. For HCS done in (Kraus et. al.  2017) 

•  Semi-supervised learning 
–  Ladder Network (still working on it) 
–  GAN, VAE 
 
 
 
 
 

Question: Is labeling 200 cells per class so bad after all? 
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TSNE with inception trained on faces (center loss)  

KNN accuracy 47% (learned with 4000 examples). Model from: https://github.com/davidsandberg/facenet/ 



TSNE with VGG16 trained on ImageNet 

KNN accuracy 60% (learned with 4000 examples). Model from keras   


