#### SIBS 2017



Deep learning for single cell phenotype classification in High-Content Screening

Oliver Dürr

Institute of Data Analysis and Process Design Zurich University of Applied Sciences

Zurich, 13th October 2017

# Outline: Deep learning for single cell phenotype classification in High-Content Screening

- Short Introduction to CNN
- A straight forward application of CNN for HCS
- Challenges in HCS
  - No labeled cells in the beginning
  - How much labeled data is needed?
  - Measuring confidence of the phenotype classifications

# A short introduction to CNN

### Why DL: Imagenet 2012, 2013, 2014, 2015

1000 classes1 Mio samples

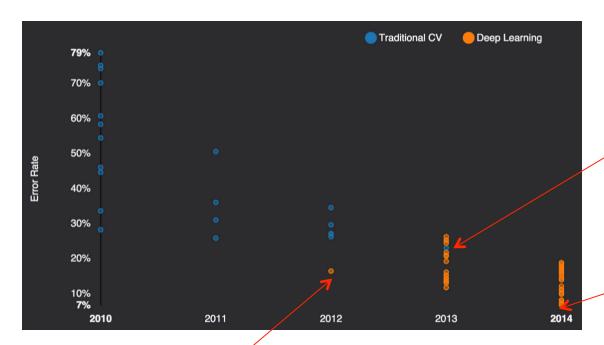








. .



Human: 5% misclassification

Only one non-CNN approach in 2013

GoogLeNet 6.7%

A. Krizhevsky first CNN in 2012 **Und es hat zoom gemacht** 

2015: It gets tougher

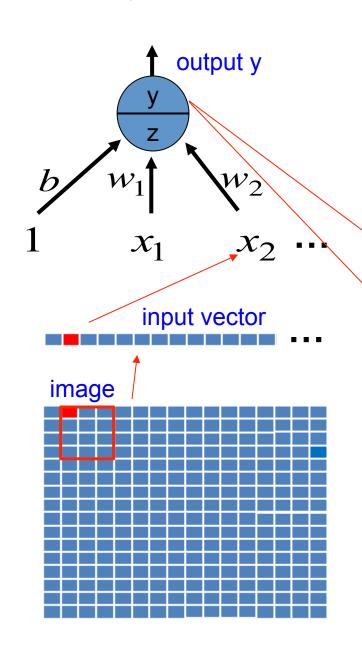
4.95% Microsoft (Feb 6 surpassing human performance 5.1%)

4.8% Google (Feb 11) -> further improved to 3.6 (Dec)?

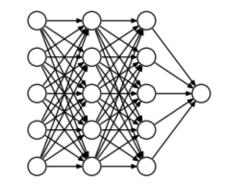
4.58% Baidu (May 11 banned due too many submissions )

3.57% Microsoft (Resnet winner 2015)

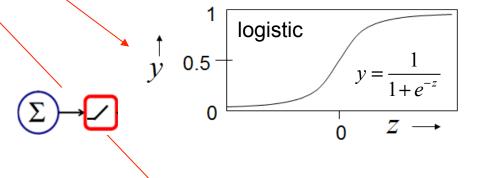
#### An artificial neuron

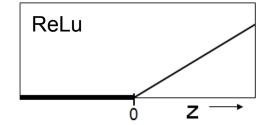


bias weights
$$Z = b + \sum_{i} x_{i} W_{i}$$

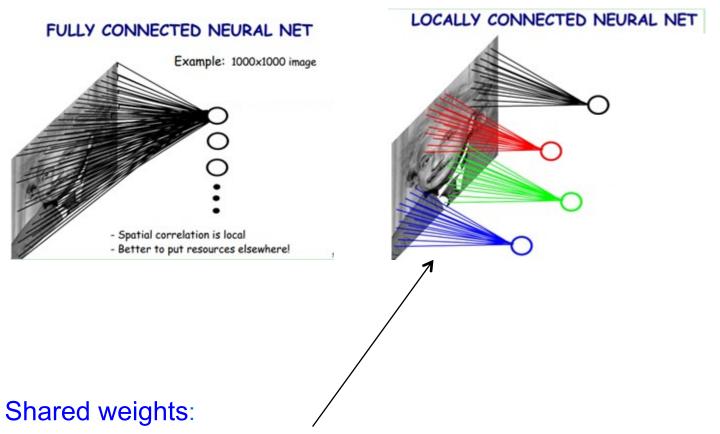


Different non-linear transformations are used to get from z to output y





### Convolution extracts local information using few weights



by using the same weights for each patch of the image we need much less parameters than in the fully connected NN and get from each patch the same kind of local feature information such as the presence of a edge.

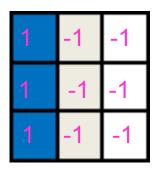
# Convolutional networks use neighborhood information and replicated local feature extraction

In a locally connected network the calculation rule

$$z = b + \sum_{i} x_{i} w_{i}$$

Pixel values in a small image patch are element-wise multiplied with weights of a small filter/kernel:

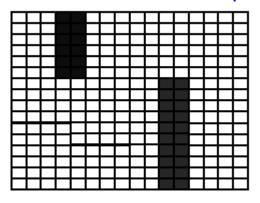
| $W_1$          | $\mathbf{W}_2$        | $W_3$                 |
|----------------|-----------------------|-----------------------|
| $W_4$          | <b>W</b> <sub>5</sub> | <b>W</b> <sub>6</sub> |
| W <sub>7</sub> | W <sub>8</sub>        | <b>W</b> <sub>9</sub> |

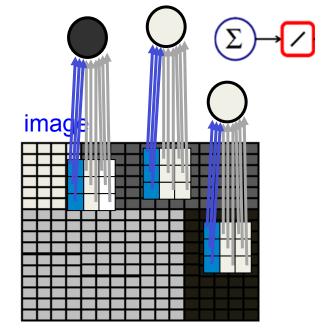


The filter is applied at each position of the image and it can be shown that the result is maximal if the image pattern corresponds to the weight pattern.

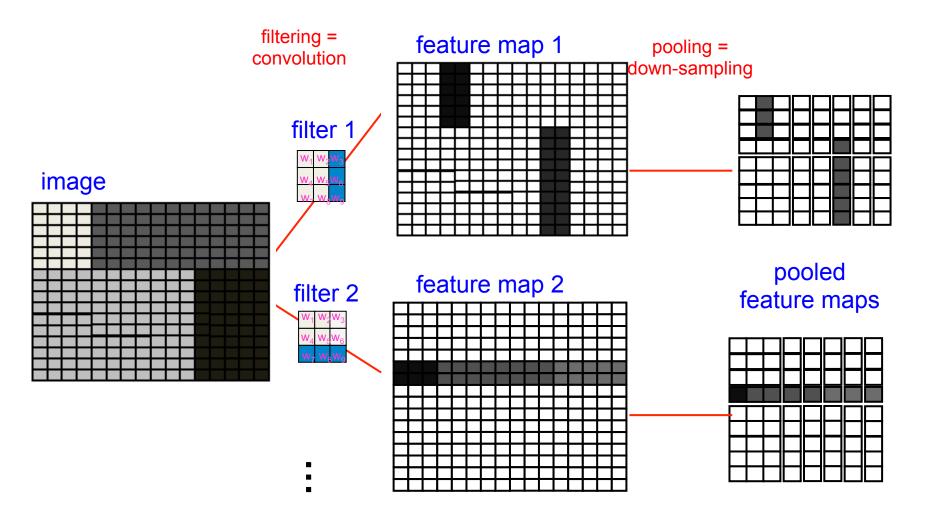
The results form again an image called feature map (=activation map) which shows at which position the feature is present.

#### feature/activation map





# Convolutional networks use neighborhood information and replicated local feature extraction

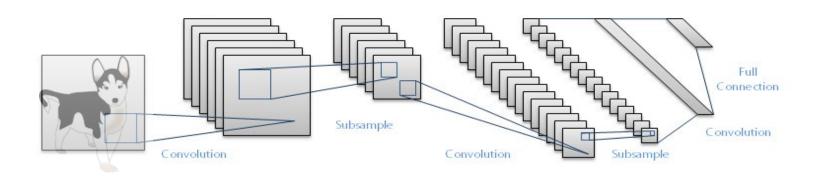


The weights of each filter are randomly initiated and then adapted during the training.

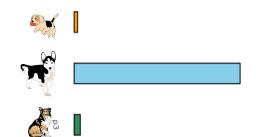
## Putting it all together

#### Feature Extraction

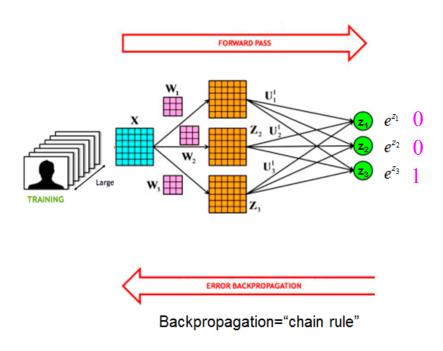
#### Classification



Output probability for class



### Training of a CNN is based on gradient backpropagation

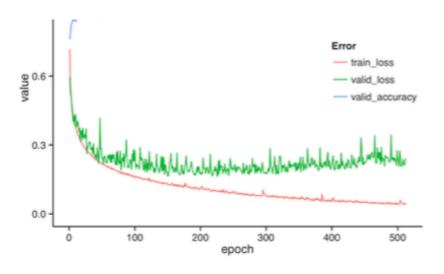


Loss-function:

**L=distance(**truth, output(w))

#### Minimize Loss Function:

$$w_i^{(t)} = w_i^{(t-1)} - l^{(t)} \frac{\partial L(w)}{\partial w_i} \bigg|_{w_i = w_i^{(t-1)}}$$



# A straight forward application to phenotype classification

### Dataset: BBBC022v1 "Cell Painting Assay"

|          | Hoechst    | Concanavalin<br>A     | SYTO 14    | WGA +<br>Phalloidin                                                 | MitoTracker<br>DeepRed |
|----------|------------|-----------------------|------------|---------------------------------------------------------------------|------------------------|
| Staining | Nuclei     | Endoplasmic reticulum | Nucleoli   | Membrane /<br>Golgi / F-actin                                       | Mitochondria           |
|          | 387/447 nm | 472/520 nm            | 531/593 nm | 562/642 nm                                                          | 628/692 nm             |
| Class 0  | 0          |                       |            |                                                                     |                        |
| Class 1  |            | * OFF                 |            | 6.10<br>3.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.0 |                        |
| Class 2  |            |                       |            |                                                                     |                        |
| Class 3  |            | A.                    | A.         |                                                                     |                        |

#### **Compound classes:**

0 DMSO,

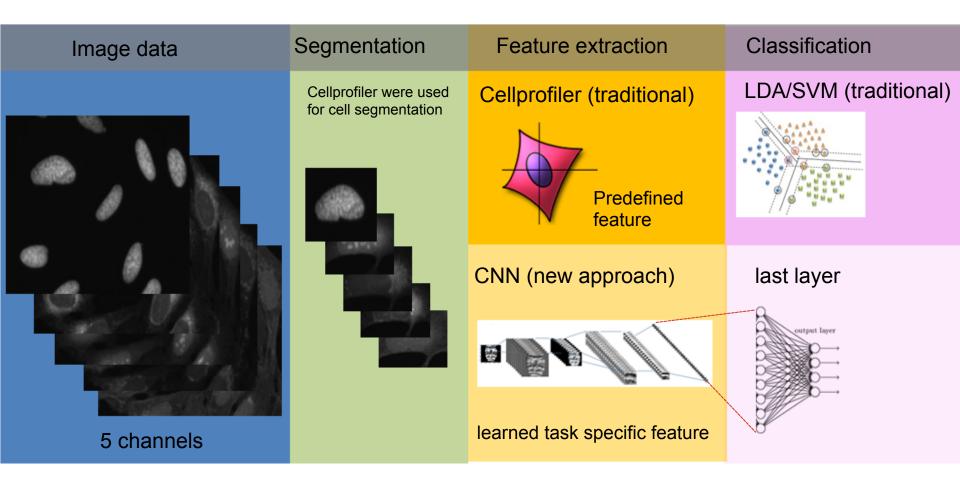
1 e.g. Paclitaxel

2 e.g. Metoclopramide

3 e.g. Digoxin

# Data Split 52'000 segmented cells (using Cellprofiler) 20% testing

#### The workflow

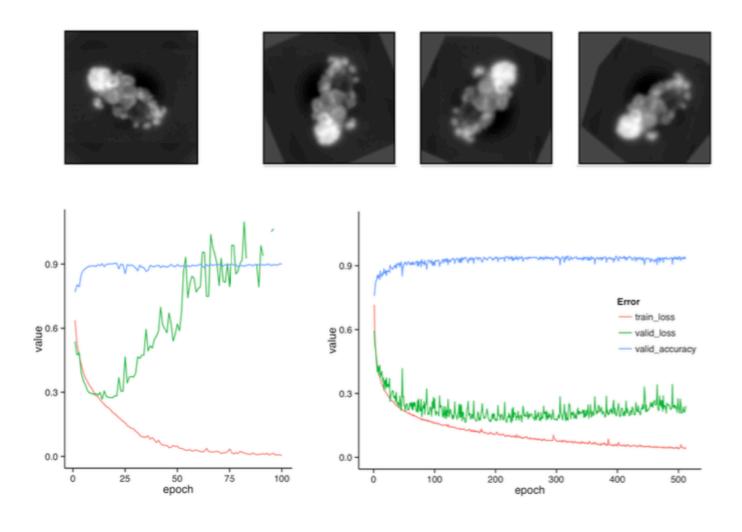


#### Definition of the network

| 0   input   5x72x72                                                            |
|--------------------------------------------------------------------------------|
| 1   conv1   32x70x70  <br>  2   conv11   32x68x68  <br>  3   pool1   32x34x34  |
| 4   conv2   64x32x32  <br>  5   conv22   64x30x30  <br>  6   pool2   64x15x15  |
| 7   conv3   128x13x13  <br>  8   conv33   128x11x11  <br>  9   pool3   128x6x6 |
| 10   hidden1   200                                                             |
| 16   output   4                                                                |

Inspired by the Oxfordnet, the 2<sup>nd</sup> best submission of the 2014 image net competition.

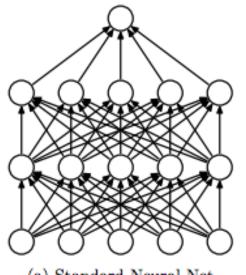
## Making the most of your data: augmentation



Dürr, O., and Sick, B. Single-cell phenotype classification using deep convolutional neural networks. Journal of biomolecular screening 21, 9 (2016), 998-1003

## Making the most of your data: Dropout





(a) Standard Neural Net

(b) After applying dropout.

At each training step we remove random nodes with a probability of p.

- Sparse version of the full net
- In each training step we train another NN model
- Dropout prevents co-adaptation

At testing no dropout

Dropout can also be used later for assigning confidence!

### Comparison with Cell Profiler

|           | DMSO (True) | Cluster A (True) | Cluster B (True) | Cluster C (True) |
|-----------|-------------|------------------|------------------|------------------|
| CNN       |             |                  |                  |                  |
| DMSO      | 7775        | 13               | 208              | 0                |
| Cluster A | 28          | 382              | 23               | 1                |
| Cluster B | 414         | 8                | 1657             | 0                |
| Cluster C | 0           | 0                | 0                | 81               |
| LDA       |             |                  |                  |                  |
| DMSO      | 7949        | 20               | 542              | 0                |
| Cluster A | 15          | 323              | 35               | 12               |
| Cluster B | 251         | 60               | 1310             | 1                |
| Cluster C | 2           | 0                | 1                | 69               |

Overall accuracy: CNN 93.4% [93.0%, 93.9%], LDA 91.1% [90.5%,91.6%], SVM 87.6% [88.2%,87.0%]

Conclusion: Deep Learning applicable for phenotype classification in HCS. Better accuracy and no need for hand crafted features.

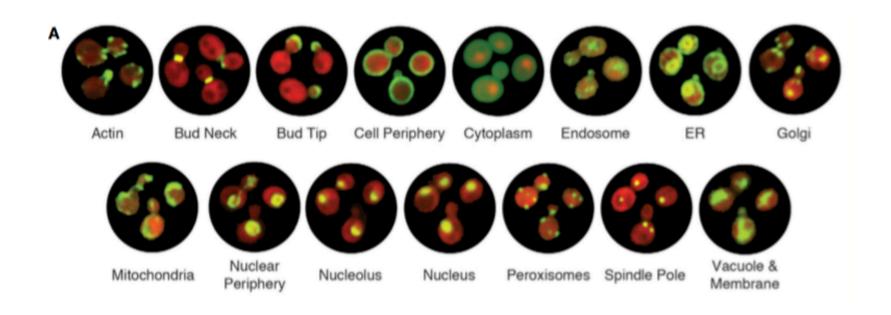
# Challenges in High Content Screening

### Challenges in High Content Screening

- Data is abundant / labels are scarce
  - Millions of Cells but only hundreds / thousands of labeled cells
- Heterogeneity of the data
  - Do we really have all relevant phenotypes in the training set?
- We will address the following points:
  - Overview w/o labeled cells
  - How many labeled cells are necessary?
  - Approaches to reduce the number of labeled cells
  - How to assign and use uncertainties

#### Definition of data set

- 19 Classes
- 2 Channels
- Data (all available from <a href="https://github.com/okraus/DeepLoc">https://github.com/okraus/DeepLoc</a>)
  - 21882 64x64x2 segmented images in training set
  - 4491, 4516 for validation and testing



### Overview of your data

- Visualization to get first impression
- At the beginning you have no labels
  - You can't train a NN
- T-SNE on
  - Autoencoder
    - See Poster
  - Canned network VGG16 / FaceNet

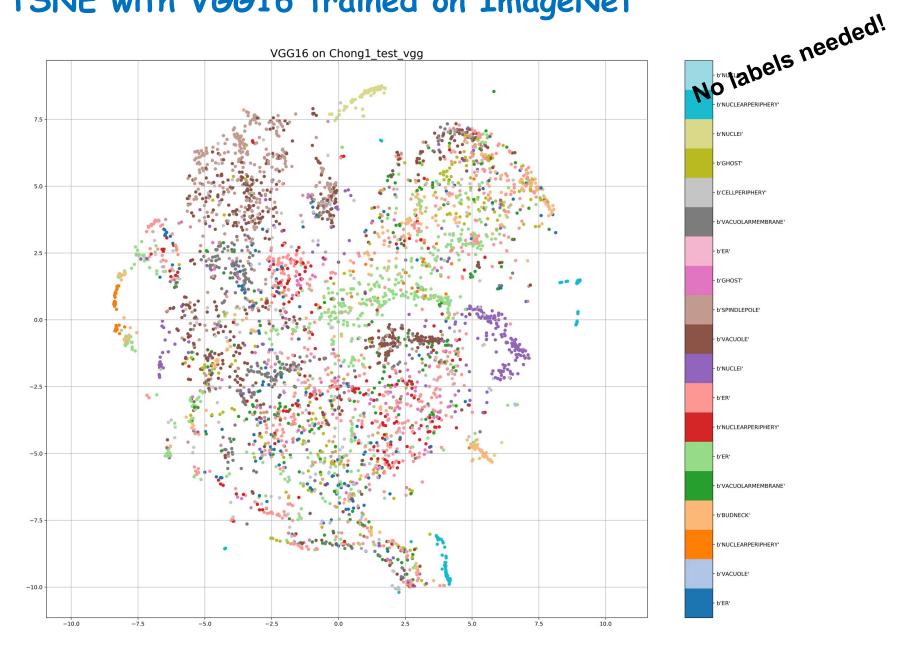
Network trained on ImageNet





4096 dimensional feature vector as input for t-SNE visualization

## TSNE with VGG16 trained on ImageNet

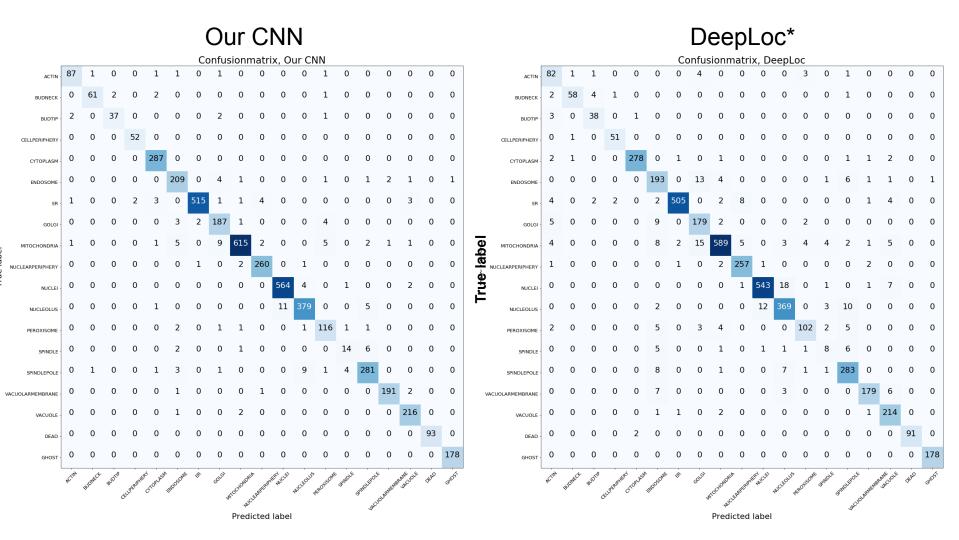


#### Definition of our CNN

| Conv2D      | (None, | 64, 64, | 32) | 1184    |
|-------------|--------|---------|-----|---------|
| Batch       | (None, | 64, 64, | 32) | 128     |
| Conv2D      | (None, | 64, 64, | 32) | 9248    |
| Batch       | (None, | 64, 64, | 32) | 128     |
| MaxPooling2 | (None, | 32, 32, | 32) | 0       |
|             |        |         |     |         |
| Conv2D      | (None, | 32, 32, | 64) | 18496   |
| Batch       | (None, | 32, 32, | 64) | 256     |
| Conv2D      | (None, | 32, 32, | 64) | 36928   |
| Batch       | (None, | 32, 32, | 64) | 256     |
| MaxPooling2 | (None, | 16, 16, | 64) | 0       |
|             |        |         |     |         |
| Flatten     | (None, | 16384)  |     | 0       |
| Dense       | (None, | 200)    |     | 3277000 |
| Batch       | (None, | 200)    |     | 800     |
| Dropout     | (None, | 200)    |     | 0       |
| Softmax     | (None, | 19)     |     | 3819    |
|             |        |         |     |         |

Approx. 3 Mio. Parameters, 10 Mio. Oren Kraus

## Results



Overall acc: 96.3% [95.7%,96.8%]

Overall acc: 93.5% [92.7%, 94.2%]

#### How much data do we need need?



For a small network with only 3420 images or 180 images per phenotype, more than 90% accuracy is reached (with augmentation)

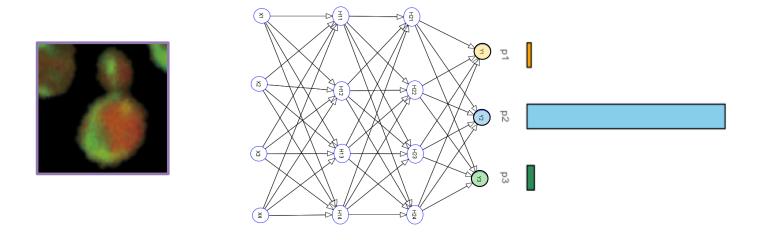
# Quantifying Uncertainty

## Why do we want probability estimates?

- There are so many cells
  - Only include cell for which the classifier is sure.
- Condense to one value per compound.
  - Use averages weighted with confidence
- Cells for which the classifier is unsure might hint towards novel or rare phenotypes

## Don't we have probabilities anyway?

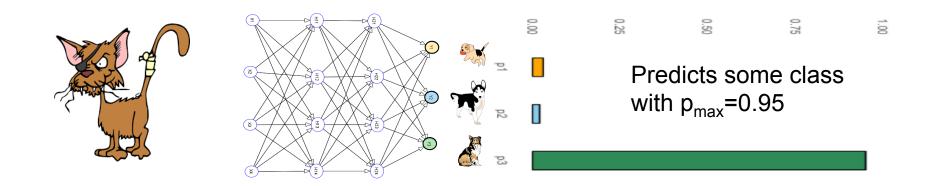
 Why don't take the output of the softmax as an estimate for uncertainty?



- These are probabilities (in a mathematical sense) but do not reflect the models / classifiers knowledge or ignorance.
- They don't have error bars!

### A first thought experiment

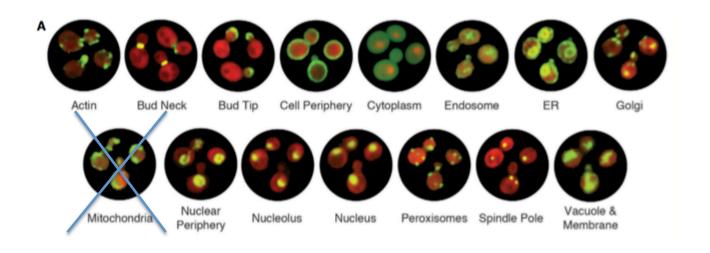
- Suppose you train a classifier on dogs only and show it a cat.
- What will be the result?



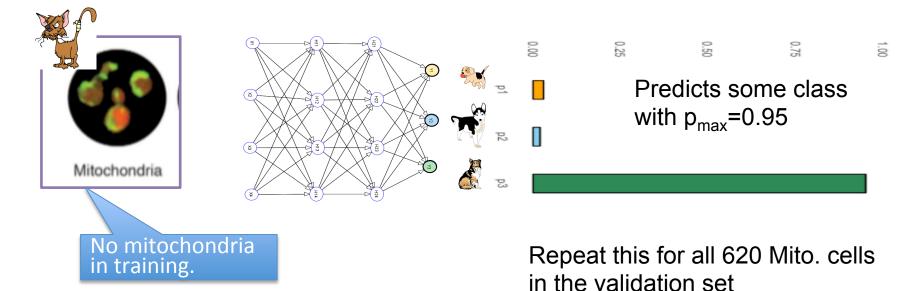
- How can that be?
  - Forced to classify as a dog.
    - If it's a dog, than most probably a colly
  - No confidence of the prediction given

### A first experiment

- Let's do the experiment (with our data)
  - We remove a Mitochondria phenotype (cat) from the training set
  - Train the classifier w/o Mitochondria
  - Show Mitochondria (from validation set) to the trained classifier
    - It should tell you that it is unsure

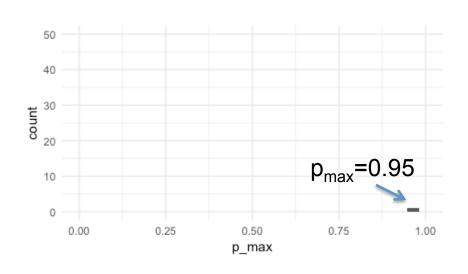


#### Results for the removed class

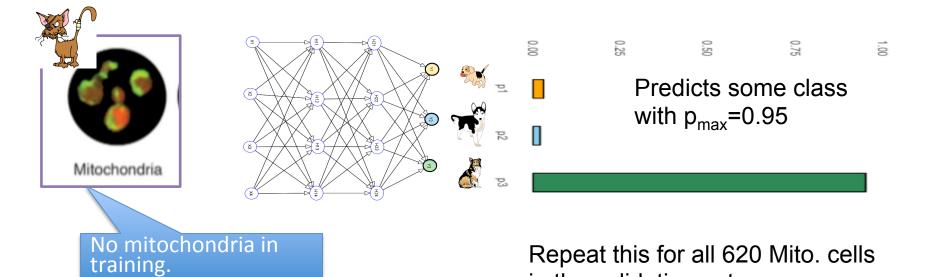


106 of 620 cells are from a class scored with over 90%!

Not enough to have point estimates, we want error bars...

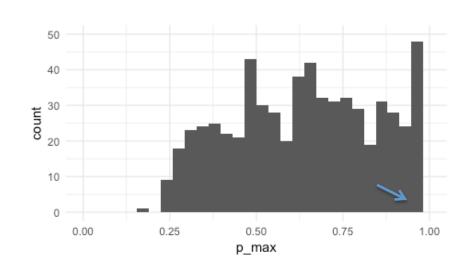


#### Results for the removed class



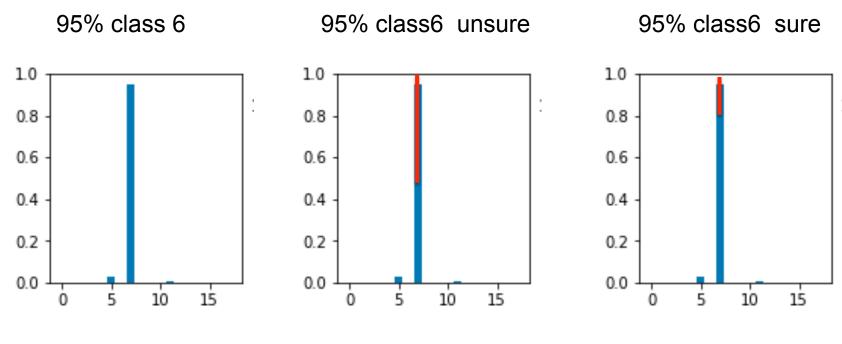
106 of 620 cells are from a class scored with over 90%!

Not enough to have point estimates, we want error bars...



in the validation set

#### We want error bars (or even better a distribution)



# How to get error bars? What would an experimenter do?

Go in lab and repeat!

#### What would a kaggle script kid do?

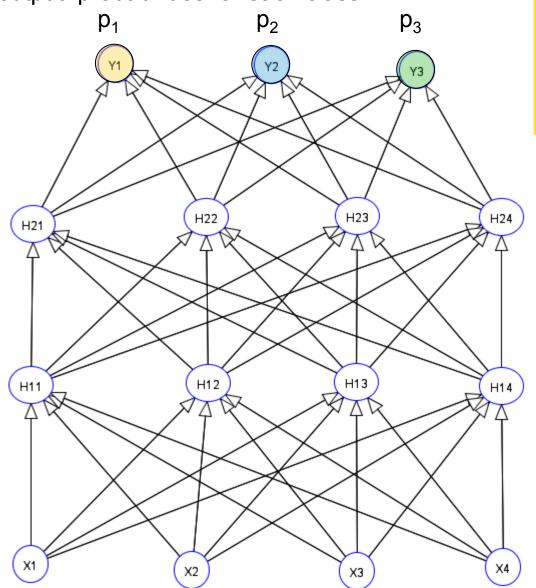
Simply spin up 100 AWS instances and repeat (train and predict)

#### What would a computer scientist / statistician do?

• ...

#### ...Remember Dropout?

output: probabilities for each class



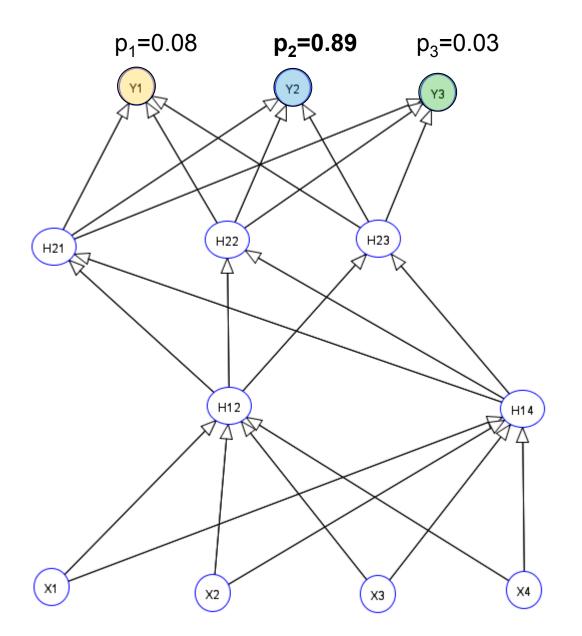


Done in training anyway

input: image pixel values

## Use dropout also during testing





output depends on dropout

stochastic dropout of units

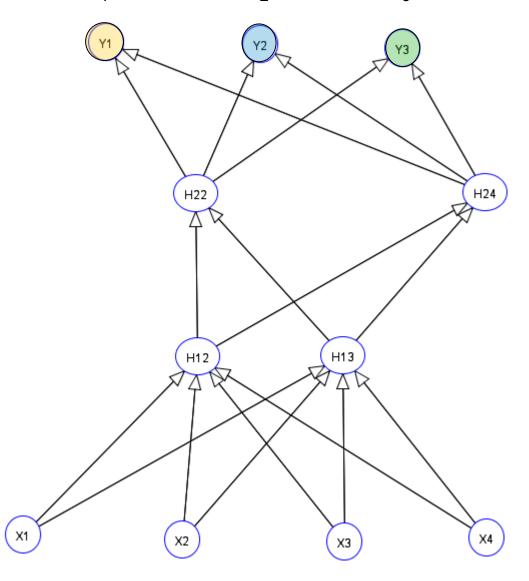
same input

# RUN 2

 $p_1 = 0.11$ 

 $p_2 = 0.81$ 

 $p_3 = 0.08$ 



output depends on dropout

stochastic dropout of units

same input

# RUN 3

 $p_1=0.03$   $p_2=0.94$   $p_3=0.03$ 

output depends on dropout

H23 H24 H21 H11 H14

stochastic dropout of units

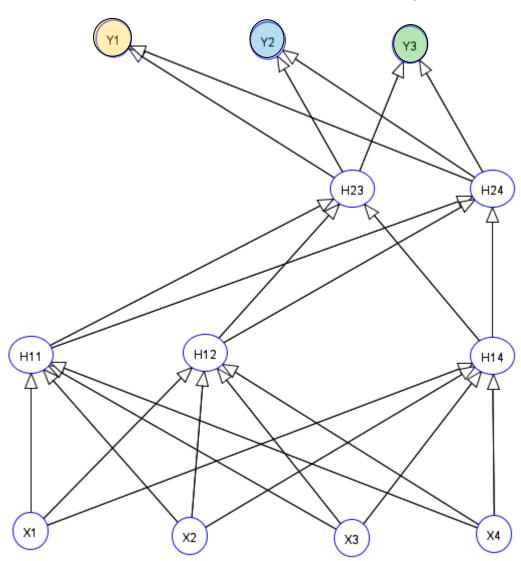
same input

# RUN 4

 $p_1 = 0.16$ 

 $p_2 = 0.78$ 

 $p_3 = 0.06$ 



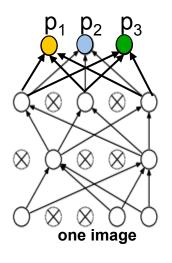
output depends on dropout

stochastic dropout of units

same input

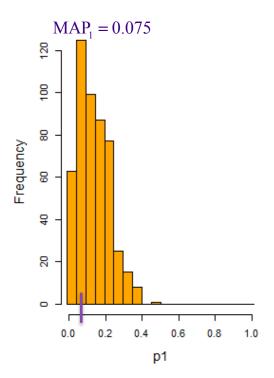
# ...Repeat 1000 times

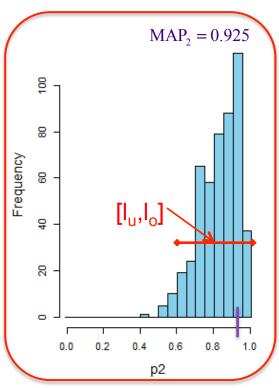
#### Distributions of predicted probabilities by dropout during test time

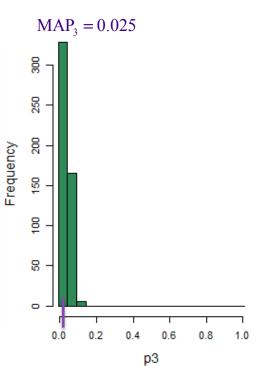


The class with highest probability at modus (MAP) chosen as predicted class.

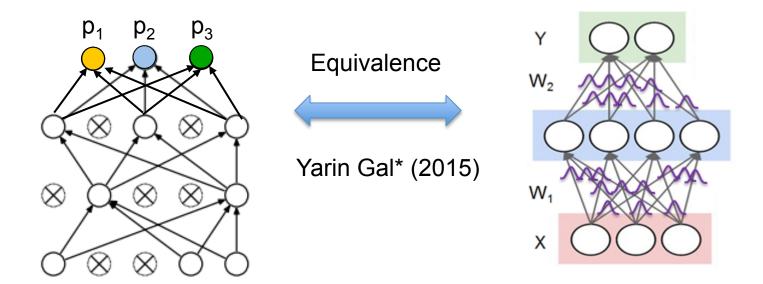
Use 66% CI [I<sub>u</sub>,I<sub>o</sub>] around MAP for confidence of the predicted probability.







#### Does this really make sense?



#### **MC-Dropout**

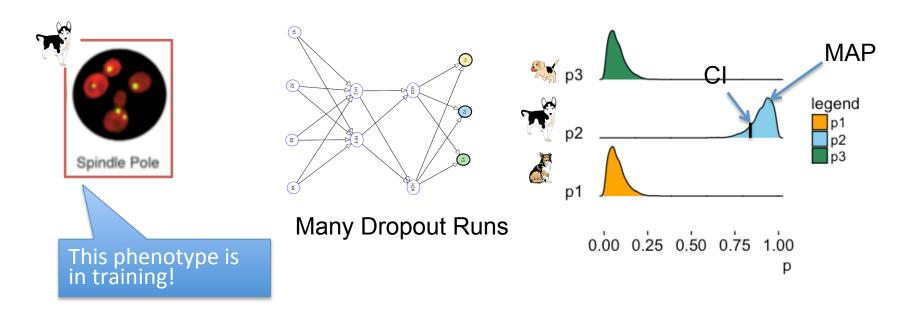
At each training and testing step we remove random nodes with a probability p

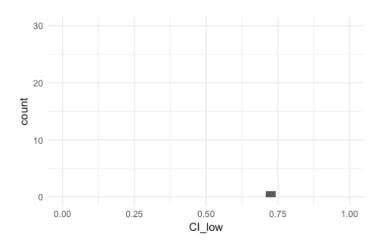
#### **Bayesian Neural Networks**

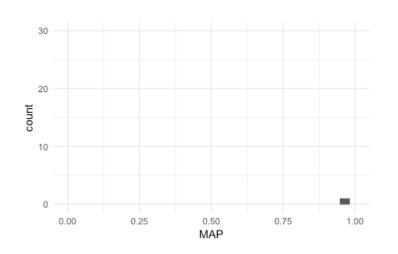
Provides predictive probability distribution.

Get new experiments by simply doing dropout, also at testing.

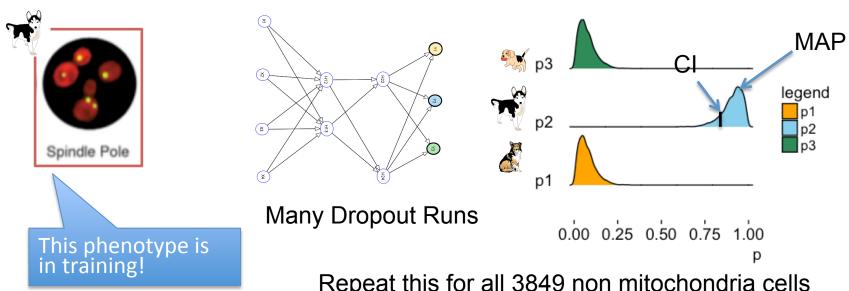
## Phenotype in training

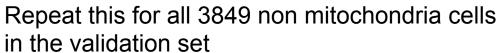


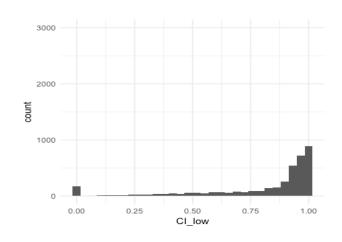


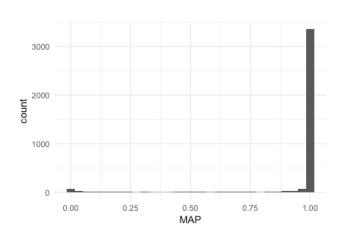


## Phenotype in training

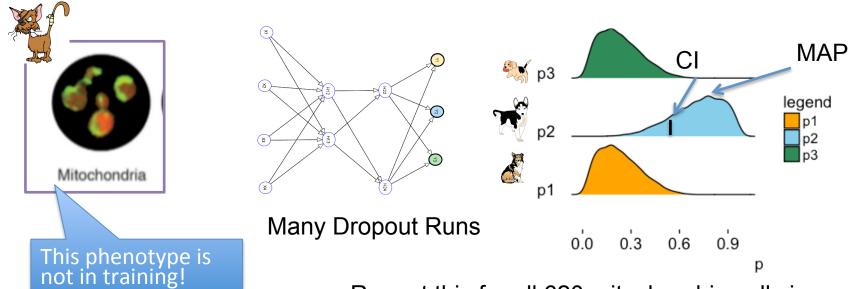




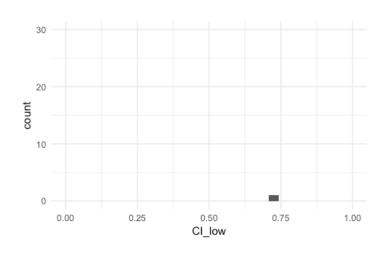


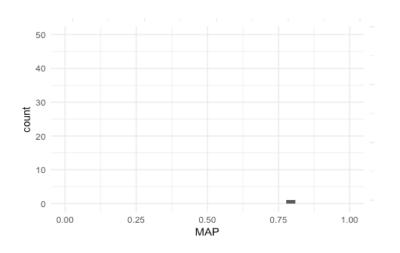


## Phenotype not in training

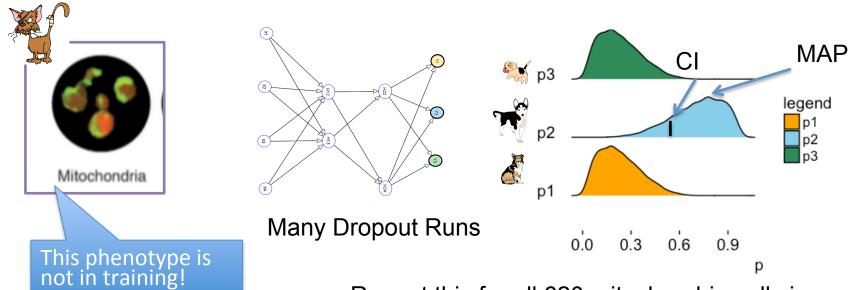


Repeat this for all 620 mitochondria cells in the validation set

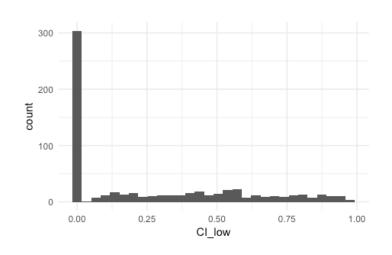


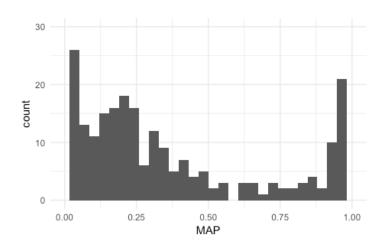


## Phenotype not in training



Repeat this for all 620 mitochondria cells in the validation set

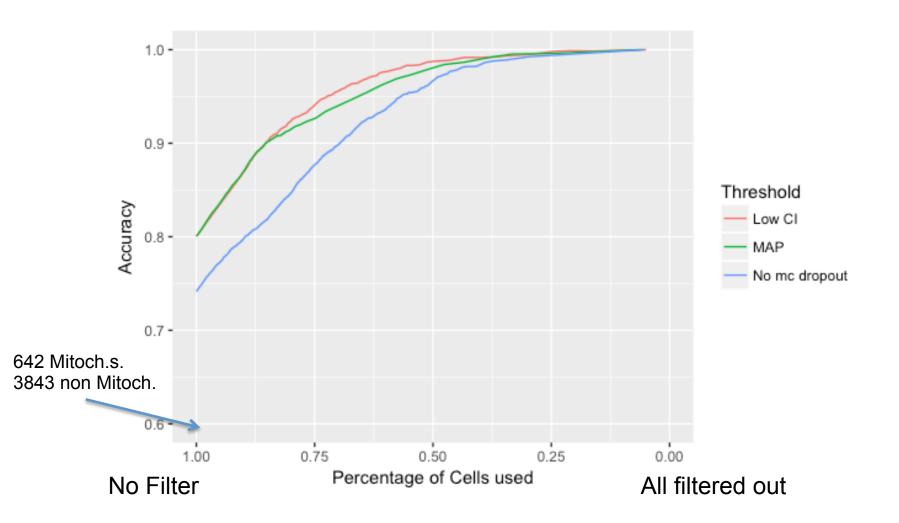




#### Comparison

lower CI

- Use MC-Dropout: the lower CI as filter
- Use MC-Dropout: MAP as filter
- Use a traditional approach and maximal value of p as filter



#### Conclusion

- Deep Learning works for single cell phenotype classification (at least for the assays seen)
  - No hand crafting of features needed
- Dropout in forward pass can be used quantify model uncertainty (basically for free) and boosts performance

## Thank you!

Zürcher Hochschule für Angewandte Wissenschaften









Vasily Tolkachev



Beate Sick

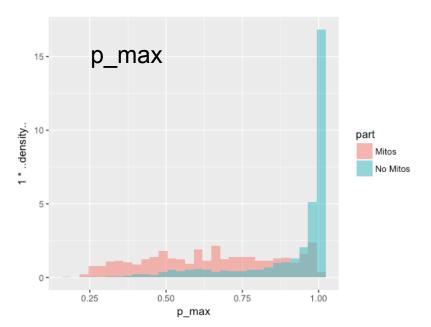
This work has been partly funded by the CTI grant: "DeepCells"

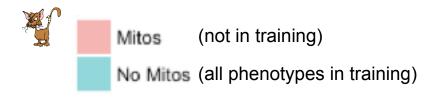


# Backup

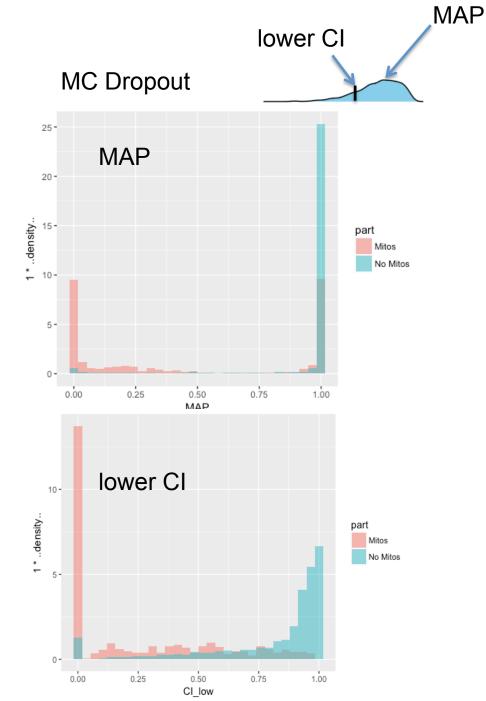
#### Comparison

#### No MC Dropout



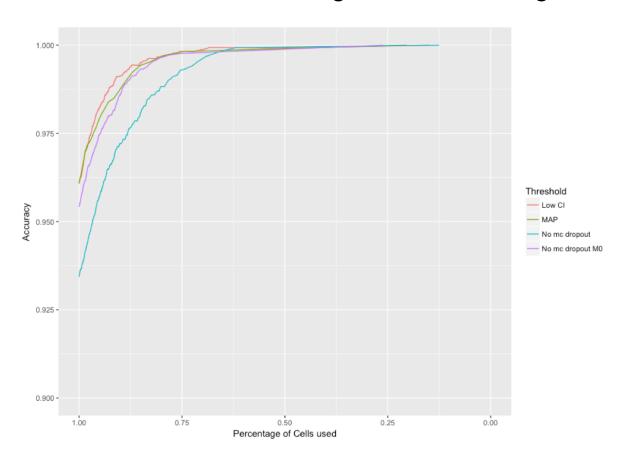


With MC-Dropout, lower CI can be used as filter.



## Result on training with all phenotypes

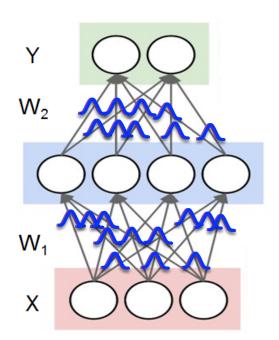
Now we include mitochondria again in the training



- Doing several forward passes increases performance for free
- Consistent with
  - Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning <a href="https://arxiv.org/abs/1506.02142">https://arxiv.org/abs/1506.02142</a>

## Idea of Bayesian Network

- Motivation
  - Weights of a network are random (next run other weights)
- Principle Idea
  - Choose these networks as probabilistic models: weights have a distribution (aka Bayesian Neural Network)

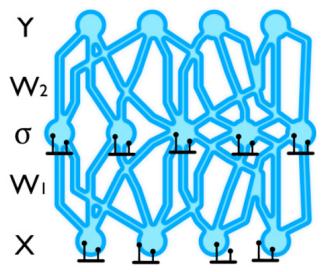


Learned in training 
$$p(W_1 | \mathbf{X}, \mathbf{Y}) \quad p(\mathbf{Y} | W_1, \mathbf{X})$$

Prediction 
$$p(Y|X) = \int p(Y|X,W) \cdot p(W) dW$$
 or sample!

#### Pure man's Bayesian Neural Network

- Bayesian networks are hard to train.
- Dropout can be seen as a (variational approximation) of a simple Bayesian Neural Network



Weights have independent Bernoulli Distributions.

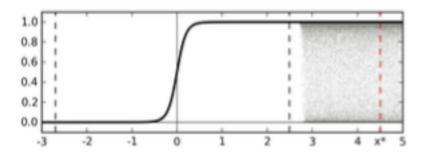
#### **Uncertainty estimates for free (basically)**

- Estimation of weights: just do standard NN training with dropout
- Sampling: simply keep dropping out nodes MC-dropout

## Don't we have this already?



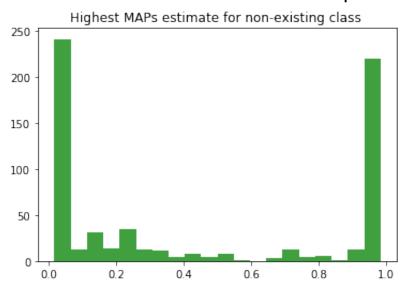
Softmax input as a function of data x



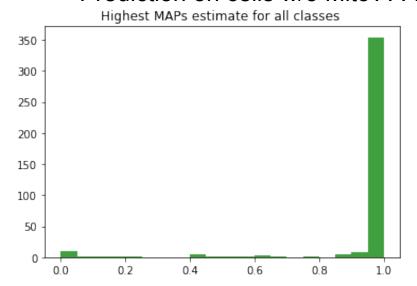
Softmax output as a function of data x

#### [validation set]

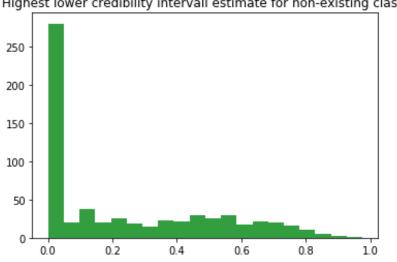
#### Prediction on mito "cats|



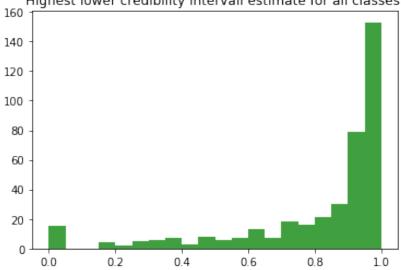
#### Prediction on cells w/o Mito????



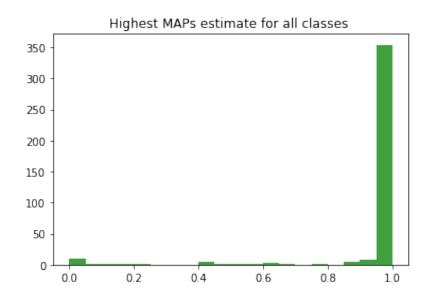
Highest lower credibility intervall estimate for non-existing class

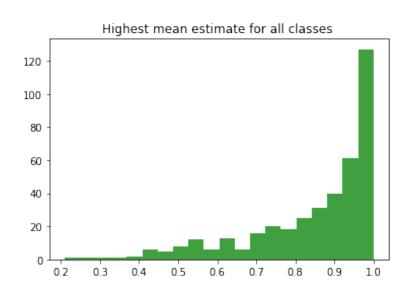


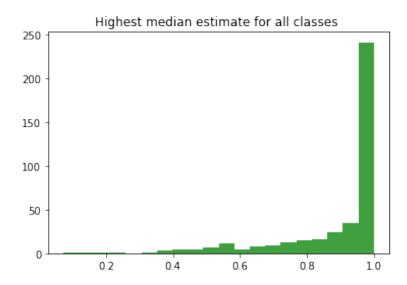
Highest lower credibility intervall estimate for all classes

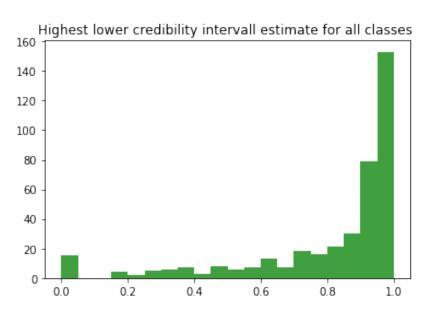


## Validation set w/o non-existing classes









# Other methods to reduce the number of labeled data [outlook]

- Metric Embedding "cell2vec"
  - Train a network trained for metric embedding (similar objects are close to each other)
  - Special loss functions
    - Contrastive Loss, Triplet Loss, Center Loss, ...
  - State of the art in face recognition
    - Trained on millions (MSCeleb-1M, open) and 100 of millions (closed, source) of examples
  - Issues
    - FaceNet not good for cells (see tSNE)
    - Training needs (too?) much labeled data
      - See Deep Metric Network on HCI (biorxiv.org 2017/07/10/161422)
- Semi-supervised learning
  - Ladder Network (still working on it)
  - GAN, VAE
- Question: Is labeling 200 cells per class so bad after all?

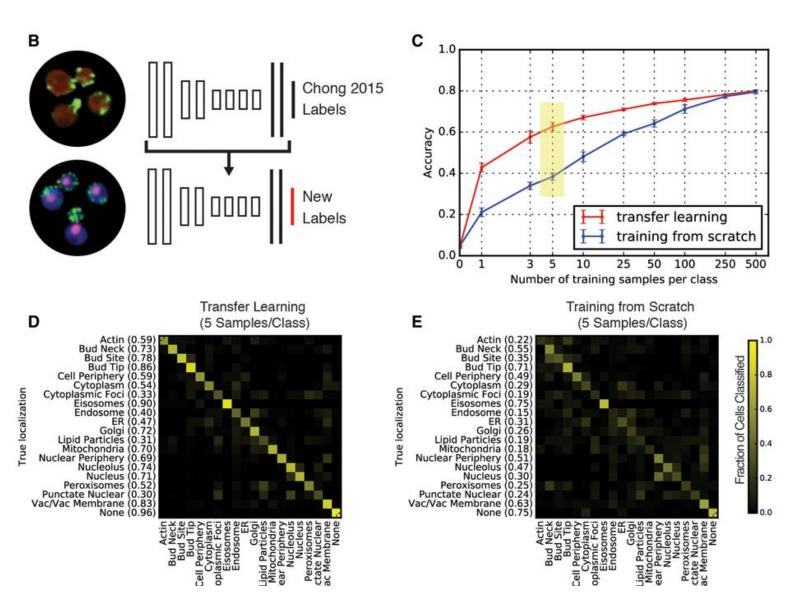
#### Approaches to reduce the number of labeled data

- Transfer learning [needs trained network]
  - Train a network on a similar dataset
  - Fine-tune this network new dataset



- Label propagation
  - Use network to predict unlabeled cells, and then use those

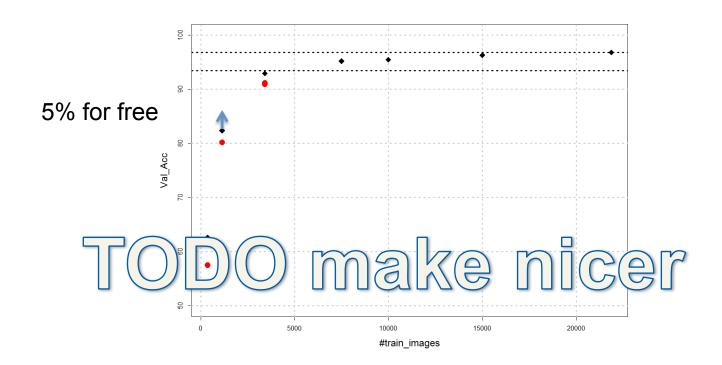
## Transfer learning



Oren Z Kraus et al. Mol Syst Biol 2017;13:924

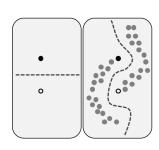
#### Label propagation

- Train classifier on 1140 random cells from training set → 81% validation accuracy
- Apply classifier again on training set
- Take best 40% best predictions of each class (4143 new pseudo labeled cells)
- Train network again including pseudo labeled cells →86%



#### Other methods to reduce the number of labeled data

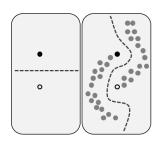
- Transfer learning
  - Use a network trained on a similar task and only retrain the last few layers. For HCS done in (Kraus et. al. 2017)
- Metric Embedding "cell2vec"
  - Train a network trained for metric embedding (similar objects are close to each other).
  - State of the art in face recognition
    - Trained on millions (MSCeleb-1M, open source) and 100 of millions (closed source) of examples
  - Issues
    - Training needs (too?) much labeled data
      - See Deep Metric Network on HCI (biorxiv.org 2017/07/10/161422)
- Semi-supervised learning
  - Ladder Network (still working on it)
  - GAN, VAE



Question: Is labeling 200 cells per class so bad after all?

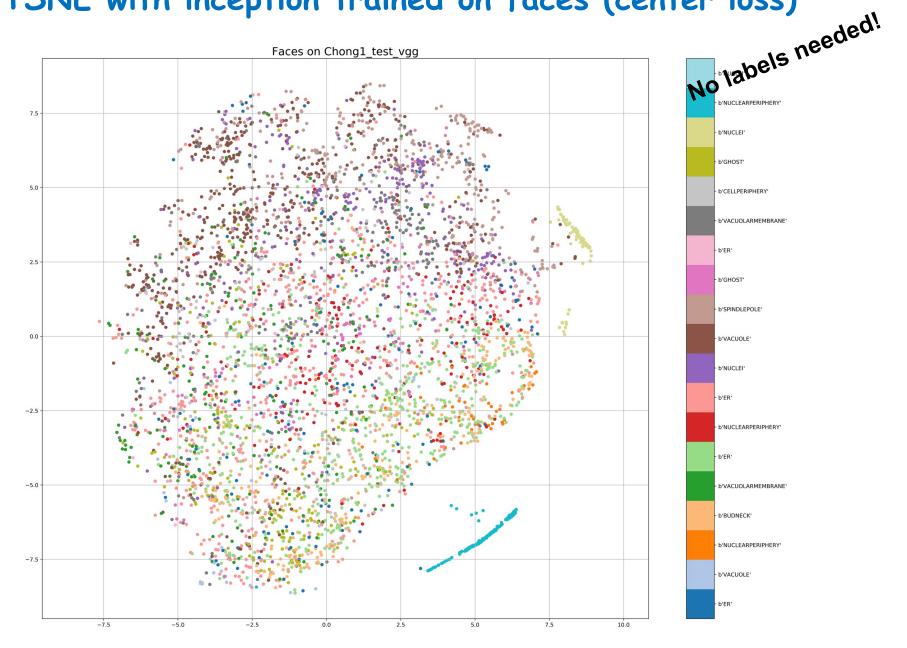
#### Other methods to reduce the number of labeled data

- Transfer learning
  - Use a network trained on a similar task and only retrain the last few layers. For HCS done in (Kraus et. al. 2017)
- Semi-supervised learning
  - Ladder Network (still working on it)
  - GAN, VAE



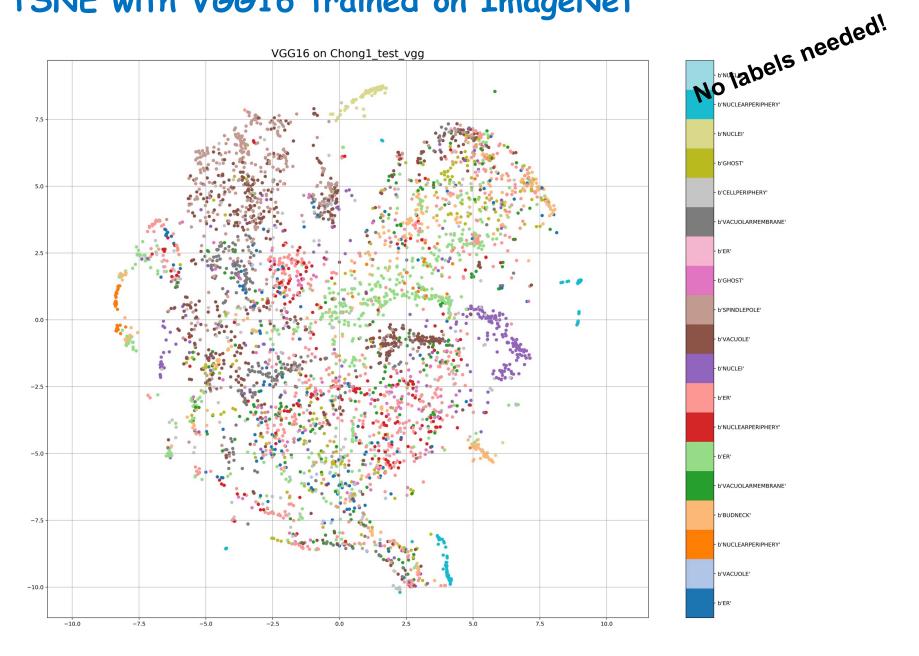
Question: Is labeling 200 cells per class so bad after all?

## TSNE with inception trained on faces (center loss)



KNN accuracy 47% (learned with 4000 examples). Model from: <a href="https://github.com/davidsandberg/facenet/">https://github.com/davidsandberg/facenet/</a>

## TSNE with VGG16 trained on ImageNet



KNN accuracy 60% (learned with 4000 examples). Model from keras