Machine Intelligence:: Deep Learning
Week 4

Oliver Diirr

Institut fur Datenanalyse und Prozessdesign
Zurcher Hochschule fur Angewandte Wissenschaften

Winterthur, 12. March. 2019

rrrrrrrrrrrrrrrr
eeeeeeeeeeeeeee

rrrrrrrrrrrrrrrr
eeeeeeeeeeeeeeeee

Outline Zh

« Homework: Questions and results

 Tricks of the trade
« Batchnorm

« Backpropagation

« Motivation of convolutional neural networks (CNNSs)

« What is convolution?

« How is convolution performed over several channels/stack of images?
* How does a classical CNN look like?

« Do a CNN yourself

We will go from fully connected NNs to CNNs

Fully connected Neural Networks (fcNN) without and with hidden layers:

hidden layer 1 hidden layer 2 hidden layer 3

input layer input layer
N
output layer = < output layer
: A
Convolutional Neural Network:
input conv1 pool1 conv2 pool2 layer3 output
—
1
]
]
.
]
L _J,J Full
I //JU I ! C onnection
. "-l||'-'.1ll|]-]")
Convolution

C onvolution _ onvolution

Image credits: http://neuralnetworksanddeeplearning.com/chap6.html, http://www.cemetech.net/projects/ee/scouter/thesis.pdf

At the end of the day

Develop a DL model to solve this task:

For a given image from the internet, decide which out of 8 celebrities is
on the image.

Example images:

Label: Steve Jobs (entrepreneur) Label: Emma Stone (actress)
Traing data Traing data Traing data Traing data Traing data Traing data Traing data Traing data
- |
=
\ e , i r.
! .4 \ - ¥ |
- LA . - 4= .
Traing data Tramg data Tramg data Traing data Traing data Traing data Tralng data Tramg data
. 3 - ALk 4
Pod*puc) \
r o~~~
-
Traing data Traing data Tralng data Traung data

Traing data Traing data Traing data Traing data

Eav'.- ? ;a‘ ﬁ

Homework

Question in home work:
Which activation function should we use? Does it matter?

Lo sigmoid " ReLU
. O'(Z) :1+1e_; . R(z) =max(0, z)

06 6

04 s

02 2

00

0
-10 -5 0 5 10 -10 -3 0 5 10

Activation
function

f_

§

Question in home work: Dropout - does it help?

» After each weight update, we randomly “delete” a certain percentage
of neurons, which will not be updated in the next step — than repeat.

* In each training step we optimize a slightly different NN model.

(a) Standard Neural Net (b) After applying dropout.

Question in home work: Should we allow the NN to normalize
the data between layers (batch_norm)? Does it matter?

A
e
t‘%(‘
0;0

XY
(X
4
PN
g

N\

input layer

Y
@

‘. output layer

hidden\layer 1 hiddeh layer 2

function where the gradient
is not to small.

Should we allow the NN to normalize
intermediate data (activations), so
that they have mean=0 and sd=17?

Afctiv%pion
unc IOV

/|

Home work - main result

With this small training set of 4000 images and 100 epochs training we get the best test
daccuracy of ~92% when Working with random initialization (reducing weights if number of input data increases),
Relu, dropout and BN (here BN does not improve things — in many applications it does!).

val_acc

0.900

0.800

0.700

0.500

0.400

0.300

Why did ReLU help so much. Why is it a bad idea to have too high weights

—

0.000

Name Smoothed Value Step
batch_dropout 09172
dropout 0.9283

relu 0.9250
sigmoid 0.8989
QO sigmoid_inito 0.1122

09150
0.9267
0.9250
0.8967
0.1067

98.00
98.00
98.00
98.00
98.00

10.00

20.00 30.00 40.00 50.00 60.00

Time

SatMar 11, 15:41:35
Sat Mar 11, 15:39:08
Fri Mar 10, 13:46:57

Sat Mar 11, 153421
SatMar 11,15:27:34

70.00

Relative
1mi2s
S1s

49s

80.00 90.00 100.0

Backpropagation

Slide Credit to Elvis Murina for the great animations

10

Motivation:
The forward and the backward pass

https://google-developers.appspot.com/machine-learning/crash-course/backprop-scroll/

| E& N i
| S S ke

11

Chain rule recap

If we have two functions f,g
y = f(x) and

7= g(y)
then y and z are dependent variables.
And by the chain rule:

dz 0dy 0z

—_— K —

ax Ox oy

12

Gradient flow in a computational graph: local junction

-z activations z=f(xy) and
L=f(2)
“local gradient”
DS
Z
oL
0z
/;7

/
¥
4
,’
2
" "
4
4
AN ¥ I l l
\\ V2
~, 4
~, ,/
Sa. %
~, /,
\\ V2
~, 4
\s ,/
\\ V2
~, 4
\\ ,/

is modified by local gradient

[llustration: http://cs231n.stanford.edu/slides/winter1516 lecture4.pdf

Example

f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=-+4

oL
Oz

gradients

=> Multiplication do a switch

Forward pass

Training data: Initial
x; =1 weights: _ _ 1
Xy = 2 wy = 1 p(y 1|X) 1 + e~ (x1*wi+x2xwy+b)
Y1 = 1 1 Wy = 2
b =-5

17

Backward pass

Training data:

Initial
xp =1 weights:
Xy =2 w; =1
y1=1 1 w, = 2

ply =1|X) =

1

1 + e—(xl*wl+x2*wz+b)

:
0.5 = b af =ph: af _1_ af _ 1 gradients
e Srarhigg T higy f=Zag="z | "
_ of of _ a9 _ 4 _ of _
f—a+b,£ 1,£ f—e,ﬁ—e f—log(a),ﬁ——

Forward pass

Training data: Initial
x; =1 weights: _ _ 1
Xy = 2 wy = 1 p(y 1|X) 1 + e~ (x1*wi+x2xwy+b)
Y1 = 1 1 Wy = 2

b =-5

oL oL oL

dients:— = —0.5;—=—1;—=—-0.5
475 gradtents: G, "Iw, '9b
Update of the weights: = 0.5
JaL
Wl(t+1) = Wl(t) —T1* a—wl =1—-05+% (—05) = 1.25
oL
WZ(t+1) - WZ(t) - T] * a_\/VZ - 2 - 05 * (_1) - 25

oL
b(t+1) = b(t) —1n* 3D = —-5—-0.5%* (—05) = —4.75 19

Side remark:

loss

y=r () =80
_/.

A

a_h
dz

« Some DL frameworks (e.g. Torch) do not do symbolic differentiation.
For these for each operation needs to store only
— The actual value y coming in and the value of derivative oy

s MultiplyGate(object):
lef forward(x,y):
\\)(Z = X*y
N self.x = x # must keep these around!
|:7/* \ = . self.y = y
o~/
return z
y def backward(dz):

dx = self.y * dz # [dz/dx * dL/dz]
dy = self.x * dz # [dz/dy * dL/dz]
return [dx, dy]

[llustration: http://cs231n.stanford.edu/slides/winter1516 lecture4.pdf

20

Further References / Summary

 For a more in depth treatment have a look at
— Lecture 4 of http://cs231n.stanford.edu/
— Slides http://cs231n.stanford.edu/slides/winter1516 lecture4.pdf

« Gradient flow is important for learning: remember!

> forward pass
< backward pass

<E)h_agah) oh
dy 9y 9z Jz

multiplied by the local

gradient

21

Consequences of the chain rule

Bad idea: initializing all weights with the same value

hidden hidden

layer 1 layer 2
—— W -

yd DY 2 ya \.'
Input Wy \gz: /) é {/
7\ - -
(} I .
\x} J (Zz \z:z {/ f, P = ;-e .
0 - - Zle () _ ..(t-1) (t) (3C(W)
(xy s y DY N w. =W, —-& —
\"2/ 3 >/ 5, =" ; ’ ow
T = - Y P b=
\ X3) <D Vsl DY B
\f;j/ 2) 2/) .
f'/ N Ny N 14 : chain rule:
\ eee) /‘_‘\ /<_\ Z A
>f< ‘:\...) (.../I‘ (> B =— oC oC op; 0z,,, Vs, | 0z,
/ \ -/ N - z =
\Xn) =T T ;e awz”l current NN values apk cv 622’” cs 8’)}2’" cv aZl” ‘cv awzn cv
R, & .

|) ()

Zly/ Iy

z=b+2 (%) y=/(2)

Forward pass: initialize all weights with the same value
= all units get the same values y; = f(z;) = f(b + X; x;w;)
= ... all outputs are the same.. (initializing all weights=0 will give all units the value 0!)

Backward pass: all weights and units have same values & all functions same
= all gradients are the same

= all weights get the same update and get again the same value!

= no learning

Bad idea: initializing with high values

hidden hidden

layer 1 layer 2

DN I D
i Wl =l
{ X1 />\ /\. . -ef-.
= & %) "3
*2) ST < T
/‘\ \éj{/ \éﬁ{/ P2 = ie;‘,
& 5] 51
" & @
NG n M e
D) N > @ "
NG < e DY

b3l ol

z=b+2 (xm) y=/(2)

Initialize weights with partly large values.
= large absolute z-values
= flat parts of activation function

= According chain rule we multiply with a—y 0

1
T sigmoid
— 1
h% 0.5
l+e
0 -
z —

= gradient is zero we cannot update the weights = no learning

N

_ oC(w
W@ = W g (W)
ow

Pl

What is the default initializer in Keras?

Also in conv layer ‘glorot_uniform’
Dense https://keras.io/layers/core/ is used as default initializer. [source]

\

keras.layers.Dense(units, activation=None, use_bias=True, kernel initializer=‘glorot uniform', bias_i
q b

Recommended 2010 by Glorot & Bengio
http://proceedings.mir.press/v9/glorot10a/glorot10a.pdf

glorot_uniform
glorot_uniform(seed=None)

Glorot uniform initializer, also called Xavier uniform initializer.

It draws samples from a uniform distribution within [-limit, limit] where 1limit is
sqrt(6 / (fan_in + fan_out)) where fan_in isthe number of input units in the weight tensor and

fan_out isthe number utput units in the weight tensor.

guarantees random small numbers

25

Batch Normalization*

Not a regularisation per se, but speeds up learning in practice
Data fluctuates around different means with different variances in

the layers _/_‘ ‘ A

Problematic for non-linarites which have sweet spot around 0
Or RelLus with activation < 0 = dying gradient
Too much changes down stream

*

loffe, Szegedy, 2015) Batch Normalization. Accelerating Deep Network Training by Reducing Internal Covariate Shift 26

What is the idea of Batch-Normalization (BN)

BN rescales the signal
allowing to shift it into the
region of the activation

function where the gradient
is not to small.

Activation
function

=

27

Batch Normalization

|ldea: Allow before each activation (non-linear transformation) to

standardize the ingoing signal, but also allow to learn redo (partly)
the standardization if it is not beneficial.

A BN layer performs a 2-step procedure with a and 8 as
learnable parameter:

~ r — av €ZT =0
Step1: T = gbatch() avg(X)
Stdevbatch (iL‘) + € stdev(x) =1
- |
Step2: BN(xz) =aZ + f a learned
L learned

The learned parameters o and 3 determine how strictly the
standardization is done. If the learned a=stdev(x) and the
learned B=avg(x), then the standardization performed in step 1
is undone (for € = 0) in step 2 and BN(x)=x.

28

Batch Normalization is beneficial in many NN
After BN the input to the activation function is in the sweet spot

Observed distributions of signal after BN before going into the activation layer.

0.9F
0.8
0.7f
0.6
0.5
0.4f
0.3
0.2
0.1

0 x s .
-10 -5 1& 5 10 e
0

When using BN consider the following:

Using a higher learning rate might work better

Use less regularization, e.g. reduce dropout probability

In the linear transformation the biases can be dropped (step 2 takes care of the shift)
In case of RelLu only the shift 3 in steps 2 need to be learned (o can be dropped)

Image credits: Martin Gorner:
https://docs.google.com/presentation/d/e/2PACX-1vRouwj 3cYsmLrNNI3Ug5gv5-
hYp QFdeoan2GIxKglZRSejozruAbVVOIMXBoPsINB7Jw92vJo2EAM/pub?slide=id.g187d73109b 1 2921

29

Summary

Fully Connected Network

p=softmax(b® + f(b@ + f(b() + x(MW(1) W) W)

« Gradient Flow in Network
* Tricks:
— RelLU instead of sigmoid activation
— Regularization: early stopping, dropout (no detailed knowledge needed)
— Batchnormalization for faster training (you just need to know how to apply it)
— [Better random initialization]

Next :
— Convolutional Neural Networks
* The network starting the current hype in 2012

2N

Convolutional Neural Networks

31

Today: We will go from fully connected NNs to CNNs

Fully connected Neural Networks (fcNN) without and with hidden layers:

hidden layer 1 hidden layer 2 hidden layer 3

input layer input layer
N
output layer = < output layer
: A
Convolutional Neural Network:
input conv1 pool1 conv2 pool2 layer3 output
—
1
|
|
.
|
L _J,J Full
I //JU I ! C onnection
. "-l||'-'.1ll|]-]")
Convolution

_ onvolution _ onvolution

Image credits: http://neuralnetworksanddeeplearning.com/chap6.html, http://www.cemetech.net/projects/ee/scouter/thesis.pdf

32

Live Demo

http://cs231n.stanford.edu/

33

History, milestones of CNN

1980 Introduced by Kunihiko Fukushima
1998 LeCun (Backpropagation)

Many contests won (IDSIA Jurgen Schmidhuber and Dan
Ciresan et al.)

2011& 2014 MINST Handwritten Dataset

201X Chinese Handwritten Character

2011 German Traffic Signs

ImageNet Success Story
« Alex Net (2012) winning solution of ImageNet...

Why DL: Imagenet 2012, 2013, 2014, 2015

1000 classes
1 Mio samples

\FEgl) A
N W y A
container s|
ip
iger cat lifeboat
tabby amphibian

79% ¢
* Traditional CV Deep Leaming Human: 5% misclassification
70%
60%
o 50% ¢
L]
T 40%
e ‘ ° . —— Only one non-CNN
W 30% 4 . . / approach in 2013
. <«
20%
0 GooglLeNet 6.7%
19 02 /‘ L

2010 2011/ 2012 2013 2014

A. Krizhevsky 2015: It gets tougher
first CNN in 2012 4.95% Microsoft (Feb 6 surpassing human performance 5.1%)
Und es hat zoom gemacht 4.8% Google (Feb 11) —> further improved to 3.6 (Dec)?

4.58% Baidu (May 11 banned due too many submissions)
3.57% Microsoft (Resnet winner 2015)

35

Project: Speaker Diarization (Who spoke when)

« Deep Learning can be used for audio

* While the big players solve speech recognition, we focus on a
different problem to predict who spoke when

| I
| max

: ' ’

I 11: dense (#N_) J :

I s

I | :

: : 0: dense (#10N_/2)] {

: - | { bels
: : son)] !

: — :

! 8: batch-norm (=10 oa=0.1)] :

: ' ’

| 7: dense (#10N_)] :

I . I

| |

| I

« Several project and bachelor thesis

Lukic, Yanick; Vogt, Carlo; Durr, Oliver; Stadelmann, Thilo (2016). Speaker Identification and Clustering using Convolutional
Neural Networks. In: Proceedings of IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2016)

36

How stupid is the machine IT (revisited)

Training v=0 Trainina v=N Training v=0 ainina v=1 Trainina v=1 Training v=1

f' mm t'w m Aligned
S
0

Also for FCNN

Trainina v=5

R

Aligned & Shuffeld

Guess the performance?

Eigenfaces Fisher SVM

Reshuffeled 0.7349 0.9163 0.9023
Original 0.7349 0.9163 0.9023

The previous algorithms are not robust against translations and
don‘t care about the locality of the pixels! 37

Convolution extracts local information using few weights

FULLY CONNECTED NEURAL NET LOCALLY CONNECTED NEURAL NET

Example: 1000x1000 image
1M hidden units
‘ 10°12 parameters!

\/\Each of these neural net

~™(O<—units (neurons) extracts
from different positions
of the input image
information about the presence of the
same feature type, e.g. an edge.

- Spatial correlation is local
- Better to put resources elsewhere!

Shared weights:

by using the same weights for each patch of the image we need much less
parameters than in the fully connected NN and get from each patch the same
kind of local feature information such as the presence of a edge.

38

CNN Ingredient I: Convolution

What is convolution?

35

40

41

45

50

40

40

42

46

52

42

46

50

55

55

48

52

56

58

60

56

60

65

70

75

0|1
>< ololo
0o

The 9 weights
W are called
kernel (or filter)

42

The weights are not fixed, they are
learned!

Gimp documentation: http://docs.gimp.org/en/plug-in-convmatrix.html

CNN Ingredient I: Convolution

padding no padding

The same weights are slid over the image

lllustration: https://github.com/vdumoulin/conv_arithmetic

40

CNN: local connectivity and weight sharing

feature maps

In a locally connected network the calculation rule

z = b+ XW,

/

Corresponds to convolution of a filter with the image
and the pattern of weights represent a filter.

The filter is applied at each position of the image and it
can be shown that the result is maximal if the image
pattern corresponds to the weight pattern.

The results form again an image called feature map
(=activation map) which shows at which position the
feature is present.

feature/activation map

ima

&

41

Example of designed Kernel / Filter

Edge enhance
Filter

But again!
The weights are not fixed. They are learned!

If time: http://setosa.io/ev/image-kernels/

Gimp documentation: http://docs.gimp.org/en/plug-in-convmatrix.html

One kernel or filter searches for specific local feature

image patch
ofofo o [o 30 |
0ofo|o [0 |50] 50
ofo]o [20]50 0
ofo]o [s0]so0 0
0o[o]o [50]50 0
0o|o]o [50]s0 0
o[ofo [s0|s0fo [0

field

Pixel representation of the receptive

image patch
0 0 0 0 0 0
40 | 0 0 0 0 0
40 | 0 4010 0 0 0
40 | 20 0 0 0 0
0 50 0 0 0 0
0 0 5010 0 0 0
251 25| 0 500 0 0

Pixel representation of receptive field

filter/kernel: curve detector

X

0(0]0 0 30 | O
0(0]0 30 | O 0
0|00 }30 |0 0 0
0(0[0}30 |0 0 0
0(0[0}30 |0 0 0
0(0[0}30 |0 0 0
0(0[0]O 0 0 0

Pixel representation of filter

=6600

filter/kernel: curve detector

k

0

0

30

0

0

30

30

30

o|lo|lOo|lOo|O| O

30

o|o|lOo|O| O

o|lo|lOo|O|O|O)| O

o|lo|lo|lOo|O| O

0

0

0

o|lo|lOo|lOC|O| O

Pixel representation of filter

We get a large resulting value if the filter resembles the pattern in

the image patch on which the filter was applied.

credits: https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/ 43

Example of learning filters

First Layer (11,11,3)

Examples of the 11x11x3 filters learned (Taken from Krizhevsky et al. 2012). Looks pretty much like old fashioned
filters.

Exercise: Artstyle Lover

input feature map pooled output
value
N
filter ~ convolution flattining & fully

pooling connected

Open NB in: https://github.com/tensorchiefs/dl_book/blob/master/chapter 02/nb_ch02 03.ipynb

45

Maxpooling Building Block

Input C1 20x42x42 S2 20x14x14 C3 100x10x10 S4 100x5x5 H5 200x1 L6 6x1
46x46

4x4
2X2
20! 30 Simply join e.g. 2x2 adjacent
> pixels in one.
112| 37

Hinton: ,The pooling operation used in convolutional neural networks is a big
mistake and the fact that it works so well is a disaster”

46

Propagating the features down

filtering =
convolution

filter 1

image

filter 2

N

N

Slide thanks to Beate

feature map 1

pooling =
down-sampling

£ fiftid

feature map 2

Finding Features (convolution)

g &

pooled
feature maps

e

i

Reducing Image size (pooling)

—

These two steps can be iterated

A simplified view: hierarchy of features

| B,: eye feature map
,;_,H \ ‘J:B;:hair feature map

[
i T i e

/

I
J g\WZ
ooy

H H H H
§;§
H

3|
/

C2: Trump feature map (eyes, hair, no mustache)

S) D e T T s e
=k ** S I N Filter cascade across different
[N N S S LSS N . channels can capture relative position
: - 7 TN of different features in input image
A: input image (| N | I pu ge.
B, N Einstein-face-filter will have a high
B,:mustache N value at expected mustache position.
feature map T N
C, C,: Einstein-face feature map

(Eyes, hair and a mustache)

Animated convolution with 3 input channels

W4, 4, 2]

Animation credits: M.Gorner, https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist/#10

49

Stacking it together filters are rank 3 tensors

Filters always convolution output
Image stack depth of the activation maps
// \ input volume
3x6x5x5 filter sets
28 I o
height “Iq height
28 width w 24
> width
de3pth Convolve the filter with the image derth
i.e. “slide over the image spatially,
computing dot products at each position” Output size in case of

6 5x5x3 filter
no zero-padding

Convention: This is called adding 6 filters stride=1

Output: 24x24x6

50

Do the math

Keras code:

model = Sequential()

model.add(Convolution2D (3297 (3, 3), input shape=(28, 28, 1)))

Input (None, 28, 28, 1)

Layer (type) Output Shape

convZd_1 (Conv2D) (None, 28, 28, 32)

Can you explain 3207

51

Do the math

Keras code:

model = Sequential()
model.add(Convolution2D(16, (3,3))

(None, 14, 14, 8)

max_pooling2d 1 (MaxPooling2 (None, 14, 14, 8)

conv2d_3 (Conv2D)

(None,

14,

14,

16)

52

Typical shape of a classical CNN

Convolution with an increasing
number of filters/kernels

Input
shallow
image

7X7x20

14x14x12

28x28x3
Spatial resolution is decreased e.g. via
max-pooling while more abstract image
features are detected in deeper layers.

flatten

/-' 980D output

1x1x980=7x7x20

53

A classical CNN has fc layers at the end

> pbird
l =0
I 0
o
] I Lo sunset [p_ ..
)
B, = B A |o ~o
° o >
—]) ~No pdog
]] o o
| [+ [+}
° ° > p
o o cat
. . [+} [+}
convolution + max pooling vec | o \3
nonlinearity ‘ o
l |
convolution + pooling layers fully connected layers Nx binary classification

In a classical CNN we start with convolution layers and end with fc layers.

The task of the convolutional layers is to extract useful features from the image
which might be appear at arbitrary positions in the image.

The task of the fc layer is to use these extracted features for classification.

Image credits:
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/

54

Keras: A high level APT with best practice defaults

1. Define Network

!

2. Compile Network

'

3. Fit Network

!

4. Evaluate Network

!

5. Make Predictions

Number filter/feature maps (activation
maps) in first hidden layers

—> model = Sequential()

this applies 32 convolutyon filters of size 3x3 each.

model.add(ConvolutionZD(32,(3, 3) border_mode='same', input_shape=(28, 28, 1)))
model.add(Activation('relu’))

model.add(Flatten()) <€ Will arrange the 32x28x28 = 25088 neurons, that are
located in 32 feature maps of dim 28x28, in one vector.

model .add(Dense(10))
model.add(Activation('softmax"))

model.summary ()

Layer (type) output Shape Param # Connected to
:onvolutionzdizzzConv;;u;ionza) (;;::, 28j=;;, 32;---=;;; N convolut;;nzd_in;:t_z[e]E;] "=
activation_ 3 (Activation) (None, 28, 28, 32) 0 convolution2d 2[0@][@]

flatten 2 (Flatten) (None, 25088) 0 activation_3[@][0]

dense_2 (Dense) (None, 10) 250890 flatten_2[0][9]

activation_4 (Activation) (None, 10) 2 dense 2[0][0]

55

Exercise on setting up a simple CNN in keras

Check out the architecture of the CNN described in “live cnn in browser”

https://transcranial.github.io/keras-js/#/mnist-cnn

And fill in the pieces to get a Keras code for a model with this architecture write a digit \ 3
Check out the default parameters and the keras syntax starting from: \ ’
https://keras.io/layers/convolutional/ https://keras.io/layers/core/ or google... S
: Y * . e EEEEEEEEESHEEans
. BEESEBEEAEEEEREEEB
model = Sequential ()
model.add (Conv2D(filters= ..., =23 ’E{_}_**
kernel size=(..., ...), MWJ — — :
: — EEEEBEFENEHMHEEKHEEIN
input shape=(..., ..., ...)) EEEEEEEEEEEEEE
model.add (Activation('..."))
model.add (Conv2D(filters= ..., < -
kernel size=(..., ...))
model.add (Activation(...))

mode 1l
mode 1
mode 1
model

model .
model.
model.
model.

(
.add (MaxPooling2D (pool size=(..., ...)))
.add (Dropout (...))
.add (Flatten ())
.add (Dense(...))

(

(

(

(

add (Activation('..."))

add (Dropout (...))

add (Dense (...))

add (Activation ('softmax'))

56

Exercise on setting up a simple CNN in keras

Check out the architecture of the CNN described in “live cnn in browser”

And fill in the pieces to get a Keras code for a model with this architecture

Solution:

model

model.

model . (
model . (
model. (
model . (
model . (
.add (Flatten())
(
(
(
(
(

model

model.
model .
model .
model.
model.

= Sequential ()
add (Conv2D(filters=32,

kernel size=(3, 3),

input shape=(28,28,1))

add (Activation('relu'))

add (Conv2D (32, (3, 3)))

add (Activation('relu'))

add (MaxPooling2D (pool size=(2,
add (Dropout (0.25))

add (Dense (128))

add (Activation('relu'))
add (Dropout (0.5))

add (Dense (num classes))
add (Activation ('softmax'))

2)))

3]

=] = = et B
Sk > el -
SEEEEBSEEBFIERS2E

S =,

UYL
J
)

EE E EBEEESFEHEEEHEEN
3 :
ElF kIS EIE E EIE E FE Bl

57

Appearance of activation/feature maps in different layers

pool pool pool
activation act|vat|on activation activation activation activation

after RELU after RELU after RELU after RELU after RELU after RELY| TlAttEN,
activation = activation activation , activation activation , activation add fc layer

after COﬂV after conv after, conv\l/ after, conv\l/ after, conv\l/ after con l/
‘1’ ‘1’ 10 classes

-

“
-~

L |

o
0 (1 I

Eairplane

b

[| i
‘("dl‘. L | I'A

i
TTILEGHEEE G

-
=
=
Lz —
ey

-

Activation maps give insight on the spatial positions where the filter pattern was
found in the input one layer below (in higher layers activation maps have no easy interpretation)
-> only the activation maps in the first hidden layer correspond directly to features
of the input image.

http://cs231n.stanford.edu/ See next lecture for understanding higher layers.

Exercise: use CNN for mnist classification

* Work through the instructions in
07 and 08 CNN Exercises in day4
and use the ipython notebooks that
are referred to.

59

Wrapping up today's story
Why going from fully connected NN to convolutional NN?

We need to learn the features that a image is composed of.

The classification should not depend so much on the location of the
object in the image

We want to exploit the information that is contained in the
neighborhood structure of pixels in a image.

60

What kind of tasks can be tackled by CNNs?

Convolutional Neural Nets are used for detecting patterns in images,
videos, sounds and texts.

Where are CNNs used already?

* Recommendation at Spotify, Amazon ... QHI* THATE) VoW,
(http:/benanne.github.io/2014/08/05/spotify-cnns.html) P‘Zgi%l[,

» Google, Facebook for image interpretation [~ 5 ‘;
e.g. PlaNet—Photo Geolocation

(http://arxiv.org/abs/1602.05314)

* Who else is using CNNs?

(https://www.quora.com/Apart-from-Google-Facebook-who-is-

commercially-using-deep-recurrent-convolutional-neural-networks)

Espotiy amazon Google facebook -

61

Homework: Do some real stuff

Team-up for your first real DL project:

Develop a DL model to solve this task:

For a given image, decide which out of
8 celebrities is on the image.

Data:

For each of the 8 celebrities you get 250
images in the training data set, 50 images
in the validation data set and 50 images in
test data set.

Special challenge:

The images come from the OXFORD VGG
Face dataset. The images were derived

from the internet and automatically labeled.

The data set contains also mislabeled
images or ambiguous images.

Example images:

Label: Steve Jobs (entrepreneur)

Traing data

ramg data Traing data

Traing data Tnmg data Tralng data

9

Traing data Traing data

. m
-4

Label: Emma Stone (actress)

Traing data Traing data Traing data Traing data
N

14y

nmg dah Traing data Tramg data Traing dan

ﬁlﬂ* TS

Traing data

%

Traing data

E

Tral ng data

l

‘-

Traing data

!

Traing d1h

V-,

=

S

ramg data Traing data

Tramg data

b

62

