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Outline

• Homework: Questions and results

• Tricks of the trade

• Batchnorm

• Backpropagation 

• Motivation of convolutional neural networks (CNNs)

• What is convolution?

• How is convolution performed over several channels/stack of images?

• How does a classical CNN look like?

• Do a CNN yourself
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We will go from fully connected NNs to CNNs

input conv1 pool1 conv2 pool2 layer3 output

Image credits: http://neuralnetworksanddeeplearning.com/chap6.html, http://www.cemetech.net/projects/ee/scouter/thesis.pdf 

Convolutional Neural Network:

Fully connected Neural Networks (fcNN) without and with hidden layers:
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At the end of the day
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Develop a DL model to solve this task:

For a given image from the internet, decide which out of  8 celebrities is 
on the image.

Example images:

Label: Steve Jobs (entrepreneur) Label: Emma Stone (actress)



Homework



Question in home work: 
Which activation function should we use? Does it matter?
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Question in home work: Dropout – does it help?

• After each weight update, we randomly “delete” a certain percentage 
of neurons, which will not be updated in the next step – than repeat.

• In each training step we optimize a slightly different NN model.
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Question in home work: Should we allow the NN to normalize 
the data between layers (batch_norm)? Does it matter?

8

Should we allow the NN to normalize 
intermediate data (activations), so 
that they have mean=0 and sd=1?



Home work – main result

With this small training set of 4000 images and 100 epochs training we get the best test 
accuracy of ~92% when working with random initialization (reducing weights if number of input data increases), 
ReLu, dropout and BN (here BN does not improve things – in many applications it does!).

Why did ReLU help so much. Why is it a bad idea to have too high weights
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Backpropagation
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Slide Credit to Elvis Murina for the great animations



Motivation:
The forward and the backward pass

• https://google-developers.appspot.com/machine-learning/crash-course/backprop-scroll/
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Chain rule recap
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• If we have two functions f,g
𝑦 = 𝑓 𝑥 	𝑎𝑛𝑑
z = 𝑔 𝑦
then y and z are dependent variables.

• And by the chain rule:
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f

activations

gradients

“local gradient”

Gradient flow in a computational graph: local junction

Illustration: http://cs231n.stanford.edu/slides/winter1516_lecture4.pdf

is modified by local gradient 

= ∂ f
∂y

z = 𝑓 x, 𝑦 	𝑎𝑛𝑑	
L = 𝑓 𝑧   



Example

èMultiplication do a switch
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f

activations

gradients

“local gradient”
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Forward pass 
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Backward pass
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Forward pass 
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Side remark: 

• Some DL frameworks (e.g. Torch) do not do symbolic differentiation. 
For these for each operation needs to store only
– The actual value y coming in and the value of derivative 
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g z = g(y)y = f (x)

∂h
∂z

∂g
∂y y

loss…

Illustration: http://cs231n.stanford.edu/slides/winter1516_lecture4.pdf



Further References / Summary

• For a more in depth treatment have a look at
– Lecture 4 of  http://cs231n.stanford.edu/
– Slides http://cs231n.stanford.edu/slides/winter1516_lecture4.pdf 

• Gradient flow is important for learning: remember!
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g lossz = g(y)y = f (x)

∂h
∂z

∂h
∂y

= ∂g
∂y

∂h
∂z

The	incoming	gradient	is	
multiplied	by	the	local	

gradient	

…Data

forward pass
backward pass

…



Consequences of the chain rule



Bad idea: initializing all weights with the same value 

Forward pass: initialize all weights with the same value
⇒ all units get the same values 𝑦l = 𝑓(𝑧l) = 𝑓(𝑏 + ∑ 𝑥n𝑤n)�

n
⇒ … all outputs are the same.. (Initializing all weights=0 will give all units the value 0!)

Backward pass: all weights and units have same values & all functions same
⇒	 all gradients are the same 
⇒	 all  weights get the same update and get again the same value! 
⇒	 no learning
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Bad idea: initializing with high values

Initialize weights with partly large values.
⇒	large absolute z-values 
⇒	flat parts of activation function

⇒	According chain rule we multiply with +.
+,
≈ 0

⇒	gradient is zero we cannot update the weights ⇒	 no learning
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What is the default initializer in Keras? 

https://keras.io/layers/core/
Also in conv layer ‘glorot_uniform’  

is used as default initializer.

guarantees random small numbers

Recommended 2010 by Glorot & Bengio
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
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Batch Normalization*

• Not a regularisation per se, but speeds up learning in practice 
• Data fluctuates around different means with different variances in 

the layers 

• Problematic for non-linarites which have sweet spot around 0
• Or ReLus with activation < 0 è dying gradient
• Too much changes down stream 

* (Ioffe, Szegedy, 2015) Batch Normalization. Accelerating Deep Network Training by Reducing Internal Covariate Shift 26



What is the idea of Batch-Normalization (BN)

BN	rescales	the	signal	
allowing	to	shift	it	into	the	
region	of	the	activation	

function	where	the	gradient	
is	not	to	small.

27



Batch Normalization

• Idea: Allow before each activation (non-linear transformation) to 
standardize the ingoing signal, but also allow to learn redo (partly) 
the standardization if it is not beneficial.
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A BN layer performs a 2-step procedure with a and b as 
learnable parameter:

The learned parameters a and b determine how strictly the 
standardization is done. If the learned a=stdev(x) and the 
learned b=avg(x),	then the standardization performed in step 1 
is undone (for 𝜀 ≈ 0) in step 2 and BN(x)=x. 

Step 1:

Step 2:

ˆ( ) 0avg x =

ˆstdev( ) 1x =

 learneda

 learnedb



Batch Normalization is beneficial in many NN
After BN the input to the activation function is in the sweet spot

29

00

Image credits: Martin  Gorner:
https://docs.google.com/presentation/d/e/2PACX-1vRouwj_3cYsmLrNNI3Uq5gv5-
hYp_QFdeoan2GlxKgIZRSejozruAbVV0IMXBoPsINB7Jw92vJo2EAM/pub?slide=id.g187d73109b_1_2921

Observed distributions of signal after BN before going into the activation layer.

When using BN consider the following:
• Using a higher learning rate might work better
• Use less regularization, e.g. reduce dropout probability
• In the linear transformation the biases can be dropped (step 2 takes care of the shift)
• In case of ReLu only the shift b in steps 2 need to be learned (a can be dropped)



Summary

Fully Connected Network 

• Gradient Flow in Network
• Tricks:

– ReLU instead of sigmoid activation
– Regularization: early stopping, dropout (no detailed knowledge needed)
– Batchnormalization for faster training (you just need to know how to apply it)
– [Better random initialization] 

Next :
– Convolutional Neural Networks

• The network starting the current hype in 2012

30

p=softmax(b(3) + f(b(2) + f(b(1) + x(1)W(1)) W(2)) W(3))



Convolutional Neural Networks

31



Today: We will go from fully connected NNs to CNNs

input conv1 pool1 conv2 pool2 layer3 output

Image credits: http://neuralnetworksanddeeplearning.com/chap6.html, http://www.cemetech.net/projects/ee/scouter/thesis.pdf 

Convolutional Neural Network:

Fully connected Neural Networks (fcNN) without and with hidden layers:
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Live Demo

http://cs231n.stanford.edu/ 
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History, milestones of CNN

• 1980 Introduced by Kunihiko Fukushima 

• 1998 LeCun (Backpropagation)

• Many contests won (IDSIA Jürgen Schmidhuber and Dan 
Ciresan et al.)

• 2011& 2014 MINST Handwritten Dataset 
• 201X Chinese Handwritten Character
• 2011 German Traffic Signs

• ImageNet Success Story
• Alex Net (2012) winning solution of ImageNet…



Why DL: Imagenet 2012, 2013, 2014, 2015
1000  classes
1 Mio samples …
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Project: Speaker Diarization (Who spoke when)

• Deep Learning can be used for audio
• While the big players solve speech recognition, we focus on a 

different problem to predict who spoke when

• Several project and bachelor thesis

36

Lukic, Yanick; Vogt, Carlo; Dürr, Oliver; Stadelmann, Thilo (2016). Speaker Identification and Clustering using Convolutional 
Neural Networks. In: Proceedings of IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2016)



How stupid is the machine II (revisited)

Aligned

Aligned & Shuffeld

Guess the performance?

The previous algorithms are not robust against translations and
don‘t care about the locality of the pixels! 37

Also for FCNN



Shared weights: 
by using the same weights for each patch of the image we need much less 
parameters than in the fully connected NN and get from each patch the same 
kind of local feature information such as the presence of a edge.

Each of these neural net 
units (neurons) extracts 
from different positions 
of the input image

information about the presence of the 
same feature type, e.g. an edge.

Convolution extracts local information using few weights
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CNN Ingredient I: Convolution 

What is convolution?

The 9 weights
Wij are called
kernel (or filter)

The weights are not fixed, they are
learned!

Gimp documentation: http://docs.gimp.org/en/plug-in-convmatrix.html



CNN Ingredient I: Convolution 

Illustration: https://github.com/vdumoulin/conv_arithmetic

The same weights are slid over the image

40

no paddingpadding



CNN: local connectivity and weight sharing 
feature maps 

The	results	form	again	an	image	called	feature	map	
(=activation	map)	which	shows	at	which	position	the	
feature	is	present.

In	a	locally	connected	network	the	calculation	rule

Corresponds	to	convolution	of	a	filter	with	the	image
and	the	pattern	of	weights	represent	a	filter.

The	filter	is	applied	at	each	position	of	the	image	and	it	
can	be	shown	that	the	result	is	maximal	if	the	image	
pattern	corresponds	to	the	weight	pattern.

image

w1 w2 w3

w4 w5 w6

w7 w8 w9

0.9 -0.9 -0.9

0.9 -0.9 -0.9

0.9 -0.9 -0.9

feature/activation map
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Example of designed Kernel / Filter

But again!
The weights are not fixed. They are learned!

Gimp documentation: http://docs.gimp.org/en/plug-in-convmatrix.html

Edge enhance
Filter

If time: http://setosa.io/ev/image-kernels/



One kernel or filter searches for specific local feature

filter/kernel: curve detectorimage patch

image patch

We get a large resulting value if the filter resembles the pattern in 
the image patch on which the filter was applied.

credits: https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/ 43

filter/kernel: curve detector

=6600

=0



Example of learning filters

Examples of the 11x11x3 filters learned (Taken from  Krizhevsky et al. 2012). Looks pretty much like old fashioned
filters.

First Layer (11,11,3)
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Exercise: Artstyle Lover

Open NB in: https://github.com/tensorchiefs/dl_book/blob/master/chapter_02/nb_ch02_03.ipynb



Maxpooling Building Block

ü üü ü

Simply join e.g. 2x2 adjacent
pixels in one.

Hinton:	„The	pooling operation used in	convolutional neural networks is a	big
mistake and the fact that it works so	well is a	disaster“

46

4x4

2x2

ü



Propagating the features down

feature map 1

filter 1

filter 2 feature map 2

…

pooled 
feature maps

pooling =
down-sampling

filtering =
convolution

image

Finding Features (convolution) Reducing Image size (pooling)

These two steps can be iterated Slide thanks to Beate



A simplified view: hierarchy of features

B1:mustache 
feature map

B2: eye feature map

C2: Trump feature map (eyes, hair, no mustache)

B1
A: input image

48

C1 C1: Einstein-face feature map
(Eyes, hair and a mustache)

B3: hair feature map

Filter cascade  across different 
channels can capture relative position 
of different features in input image.
Einstein-face-filter will have a high 
value at expected mustache position.



Animated convolution with 3 input channels

Animation credits: M.Gorner, https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist/#10
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Stacking it together filters are rank 3 tensors

3

28 width

28

depth

height

28x28x3
image stack

3x6x5x5 filter sets

Filters always 
extend the full

depth of the 
input volume

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products at each position”

6
depth

24
width

24
height

Output size in case of
6 5x5x3 filter 
no zero-padding
stride=1

Output: 24x24x6

convolution output
feature maps

activation maps

50

Convention: This is called adding 6 filters



Keras code:

model = Sequential() 
model.add(Convolution2D(32, (3, 3), input_shape=(28, 28, 1)))

Input (None, 28, 28, 1)
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Do the math 

We	add	32	
convolutional	
filters	(3x3)

Can	you	explain	320?



Keras code:

model = Sequential() 

model.add(Convolution2D(16, (3,3))

(None, 14, 14, 8)
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Do the math 

Can	you	explain	
1168?



Typical shape of a classical CNN

Input
shallow
image

980D output

53

28x28x3
14x14x12

7x7x20

1x1x980=7x7x20

Spatial resolution is decreased e.g. via 
max-pooling while more abstract image 
features are detected in deeper layers. 

Convolution with an increasing 
number of filters/kernels

flatten



A classical CNN has fc layers at the end

Image credits:
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/

In a classical CNN we start with convolution layers and end with fc layers.

The task of the convolutional layers is to extract useful features from the image 
which might be appear at arbitrary positions in the image.

The task of the fc layer is to use these extracted features for classification.
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Keras: A high level API with best practice defaults

55

Number filter/feature maps (activation 
maps) in first hidden layers

Will arrange the 32x28x28 = 25088 neurons, that are 
located in 32 feature maps of dim 28x28, in one vector.

)(



Exercise on setting up a simple CNN in keras
Check out the architecture of the CNN described in “live cnn in browser” 

https://transcranial.github.io/keras-js/#/mnist-cnn

And fill in the pieces to get a Keras code for a model with  this architecture

56

model = Sequential()
model.add(Conv2D(filters= ..., 

kernel_size=(..., ...), 
input_shape=(..., ..., ...))

model.add(Activation('...'))
model.add(Conv2D(filters= ..., 

kernel_size=(..., ...))
model.add(Activation(...))
model.add(MaxPooling2D(pool_size=(..., ...)))
model.add(Dropout(...))
model.add(Flatten())
model.add(Dense(...))
model.add(Activation('...'))
model.add(Dropout(...))
model.add(Dense(...))
model.add(Activation('softmax'))

Check out the default parameters and the keras syntax starting from: 

https://keras.io/layers/convolutional/ https://keras.io/layers/core/ or google…

write a digit



Exercise on setting up a simple CNN in keras
Check out the architecture of the CNN described in “live cnn in browser” 
And fill in the pieces to get a Keras code for a model with  this architecture
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model = Sequential()
model.add(Conv2D(filters=32, 

kernel_size=(3, 3), 
input_shape=(28,28,1))

model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))

Solution:



Appearance of activation/feature maps in different layers

activation 
after conv

activation 
after RELU

pool pool pool

Activation maps give insight on the spatial positions where the filter pattern was 
found in the input one layer below (in higher layers activation maps have no easy interpretation)
-> only the activation maps in the first hidden layer correspond directly to features 
of the input image.

See next lecture for understanding higher layers. 58

flatten,
add fc layer

10 classes

softmax

http://cs231n.stanford.edu/

activation 
after conv

activation 
after conv

activation 
after conv

activation 
after conv

activation 
after conv

activation 
after RELU

activation 
after RELU

activation 
after RELU

activation 
after RELU

activation 
after RELU



Exercise: use CNN for mnist classification

• Work through the instructions in
07 and 08 CNN Exercises in day4
and use the ipython notebooks that 
are referred to.
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Wrapping up today’s story
Why going from fully connected NN to convolutional NN?

• We need to learn the features that a image is composed of.

• The classification should not depend so much on the location of the 
object in the image

• We want to exploit the information that is contained in the 
neighborhood structure of pixels in a image.
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What kind of tasks can be tackled by CNNs?

Where are CNNs used already?
• Recommendation at Spotify, Amazon …

(http://benanne.github.io/2014/08/05/spotify-cnns.html)

• Google, Facebook for image interpretation
e.g. PlaNet—Photo Geolocation 

(http://arxiv.org/abs/1602.05314)

• Who else is using CNNs?
(https://www.quora.com/Apart-from-Google-Facebook-who-is-
commercially-using-deep-recurrent-convolutional-neural-networks)

Convolutional Neural Nets are used for detecting patterns in images, 
videos, sounds and texts.

…
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Homework: Do some real stuff
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Team-up for your first real DL project:

Develop a DL model to solve this task:

For a given image, decide which out of 
8 celebrities is on the image.

Data:
For each of the 8 celebrities you get 250 
images in the training data set, 50 images 
in the validation data set and 50 images in 
test data set.

Special challenge:
The images come from the OXFORD VGG 
Face dataset. The images were derived 
from the internet and automatically labeled. 
The data set contains also mislabeled 
images or ambiguous images. 

Example images:

Label: Steve Jobs (entrepreneur)

Label: Emma Stone (actress)


