
Machine Intelligence:: Deep Learning 
Week 3

Oliver Dürr

Institut für Datenanalyse und Prozessdesign
Zürcher Hochschule für Angewandte Wissenschaften

Winterthur, 5. March. 2019

2



Organizational Issues: Projects

• Projects (2-3 People)

• Presented on the last day
– Spotlight talk (5 Minutes)
– Poster

• Topics
– You can choose a topic of your own (have to be discussed with us latest 

by week4 week5)
– Possible Topics

• Take part in a Kaggle Competition (e.g. Leaf Classification / Dogs vs. Cats)
• Overview of google ml learning cloud for deep learning
• Datasets e.g. http://www.vision.ee.ethz.ch/en/datasets/

• Please talk to us until week 4 à 5 
• Q&A Session 1h in week 7

3



Organizational Issues: Times

• Next  times  (total 30 minutes break in between, possible different 
breaks)
– 09:10 – 10:30  (We start 10 past 9)
– 11:00 – 12:40

• Please interrupt us if something is unclear!

4



Learning Objectives

• Increase our knowledge in TF

• Foundations of DL
– Loss Function (what to minimize)

• Cross entropy loss for multinomial logistic regression
• Two principles to construct loss functions

– Maximum Likelihood Principle
– Cross Entropy 

– Deep Neural Networks
• Fully Connected Networks with hidden layers

– Gradient Descent 
• How to calculate the weights efficiently

5



Biological Interpretation

• In popular media neural networks are often described as a computer 
model of the human brain. 

Images from: http://cs231n.github.io/neural-networks-1/

DL loosely inspired by how the brain works. 
Biological neurons are much more 
complicated.

6



Multinomial Logistic Regression

7



Multinomial logistic regression

• Logistic Regression outputs prob. for class 1
– So far we can classify into two classes

• We now want to classify more than 2 classes

8



Exercise: The MNIST Data Set

• MNIST the drosophila of all DL-Data sets
– 50000 handwritten digits to be classified into 10 classes (0-9)

9

Input tensors: are flattened to 28*28=768 pixels

Image credit: https://www.tensorflow.org/versions/r0.10/images/MNIST-Matrix.png



Multinomial Logistic Regression

10

2	instead	of	
768

3 instead	of	
10

W23

b3



Multinominal Regression

  
P(Y = 1| X = x) = 1

1+ exp(−z)
=

exp( xiWii∑ )

1+ exp( xiWii∑ )
∝ exp( xiWii∑ )

W11

W12
  
p1 = P(Y1 = 1| X = x) ∝ exp( xiWi1 + b1i∑ ) p1 =

exp( xiWi1 + b1i∑ )

exp( xiWij + bji∑ )
j∑

  
p2 = P(Y2 = 1| X = x) ∝ exp( xiWi2i∑ + b2 )

pi = 1
i=1
∑

Binary Case

More than one class

Normalisation

W12 = reads „from node 2 to 1“

Multinomial case: just another non-linearity softmax

called logit

11

b

b1

b2

  
p1 = P(Y1 = 1| X = x) =

exp( xiWi1 + b1i∑ )

exp( xiWij + bji∑ )
j∑ = softmax( xiWi1 + b1i∑ )



ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

ú
ú
ú

û

ù

ê
ê
ê

ë

é

ú
ú
ú

û

ù

ê
ê
ê

ë

é

3231

2221

1211

3231

2221

1211

333231

232221

131211

cc
cc
cc

bb
bb
bb

x
aaa
aaa
aaa

32332232123132

31332132113131

32232222122122

31232122112121

32132212121112

31132112111111

bababac
bababac
bababac
bababac
bababac
bababac

++=

++=

++=

++=

++=

++=

A     ´ B     = C
(m ´ n) ´ (n ´ p) = (m ´ p)

We can only multiply matrices if their dimensions are compatible.

32

3 1 7
8 2 4x
æ ö

= ç ÷
è ø

B
   A1x2 = 0 3( )    

C1x3 = A1x2 ⋅B2x3 = 24 6 12( )

Example:

A3x3 ´ B3x2 = C3x2

Recap: Matrix Multiplication aka dot-product of matrices

12



GPUs love matrices (or tensors)

13
  
p1 = P(Y1 = 1| X = x) =

exp( xiWi1 + b1i∑ )

exp( xiWij + bji∑ )
j∑ = softmax( xiWi1 + b1i∑ )



• Input x = (1,2)

• W =  1 2 3
4 5 6

• b = (1,2,3)

• Calculate the output using numpy:
• Hints:
• x = np.asarray([[1,2]]) #

• np.matmul(.,.) # Matrix multiplication

• np.exp(.) # Exponential

• np.sum(.) # Sum 

• #Result: array([[3.29320439e-04, 1.79802867e-02, 9.81690393e-01]])

14

Your turn



GPUs love matrices: Use the source luke

…
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)

15

Data is usually processed in (mini-) batches. Instead of X being a 28*28=784 long 
vector, we use a batch (e.g. size 100)

Mini	batch	size	
at	runtime

2	instead	
of	768

3 instead	
of	10

W23

b3



GPUs love matrices:

16

y = tf.nn.softmax(tf.matmul(x, W) + b)

Y

Slide Credit: Martin Gröner TensorFlow and DL without a PhD https://docs.google.com/presentation/d/1TVixw6ItiZ8igjp6U17tcgoFrLSaHWQmMOwjlgQY9co/pub?slide=id.g110257a6da_0_431



Loss for multinomial regression

loss = − 1
N

log(pmodel (y
(i ) | x(i );θ ))

n=1

N

∑ = − 1
N

log
i∈All ones
∑ (p1(x

(i ) )) + log
i∈All zeros
∑ (p0 (x

(i ) ))
⎛

⎝⎜
⎞

⎠⎟

Training Examples Y=1
or Y=0

N Training Examples classes (1,2,3,…,K)

Output of last layer

pi

loss = − 1
N

log(pmodel (y
(i ) | x(i );θ ))

n=1

N

∑ = − 1
N

log
i∈yj=1
∑ (p1(x

(i ) )) + log
i∈yj=2
∑ (p2 (x

(i ) ))+ ...+ log
i∈yj=K
∑ (pK (x

(i ) ))
⎛

⎝
⎜

⎞

⎠
⎟

Example: Look at class of single training example. Say it’s 
Dejan, if classified correctly p_dejan = 1 è Loss = 0. Real bad 
classifier put’s p_dejan=0 è Loss = Inf.

loss = − 1
N

log(pmodel (y
(i ) | x(i );θ ))

n=1

N

∑

This	is	the	prob.	the	model	evaluates	
for	the	true	class	y(i)	of	training	

example	x(i)

17



One more Trick: Loss function 
with indicator function

18

  
−N ⋅ loss = log

i∈y j=1
∑ ( p1(x( i) )) + log

i∈y j=2
∑ ( p2(x( i) ))+ ...+ log

i∈y j=K
∑ ( pK (x( i) )) = y( i)

true
i=1

N

∑ log( p(x( i) )) = y( i)
true

i=1

N

∑ log( yi )

one-hot-
encoded

A one-hot-encoded y picks the right class, form all of the K different classes.

For MNIST K=10, so why calculate, 9 logs and through them away? 
(Parallel executions)  

See later crossentropy and KL-Distance 
between 𝑦( and 𝑝(𝑥 ( )

i i



Training Neural Networks: Split of the data

For	neural	networks	usually	no	cross-validation	is	done	(due	to	long	learning	
times).

For	our	use	case	(4000	images)
• Training	set	3000,	Test	set	1000	
• 20%	of	the	Training	set	is	taken	as	Validation	Set

Training set (ca. 60%) Validation set 
(ca. 20%)

Test set (ca. 20%) Insidious	form	of	“testing	on	
training	data”:	do	many	

repeated	optimization	trials	on	
same	validation	set.

19



Stochastic gradient descent 

• The loss function

• A particular weight is updated using the partial derivative of the loss 
function (the sum) w.r.t θi

• The sum is taken over the whole training set of size N. Often the 
training set is split into mini-batches size of e.g.  bs=128 (*)

• These mini-batches are processed one after another
• When all examples have been processed once, we speak of one 

epoch being finished
• For a new epoch one often reshuffles the data

• The batch size is chosen so that input tensor fits on the GPU. 

loss = − 1
N

log(pmodel (y
(i ) | x(i );θ ))

n=1

N

∑

θi

20(*) For some purists only when bs=1 is called stochastic gradient descent



Exercise: The MNIST Data Set

Input tensors

One minibatch has dimension (128, 28, 28, 1) (batch, x,y, color) 

or (128, 784) flattened

Image credit: https://www.tensorflow.org/versions/r0.10/images/MNIST-Matrix.png 21



Finish the code in the notebook: Multinomial Logistic Regression
• Think about the trick how the loss is calculated!

• Compare the loss and accuracy in the validation set with the loss in the training set. 
Why is there such a difference?

• Question: How many parameters do we have?

Exercise: Implement multinomial logistic regression

  
p j =

exp( xiWij + bji∑ )

exp( xiWiji∑ )
j∑ = softmax(xW+b)( ) j

Hints:

22



• We have
• For W 28*28*10 = 7840 Parameter
• For b 10 Parameter
• Together 7850 Parameters

• Trick with the loss function [Blackboard]
• loss = tf.reduce_mean(-tf.reduce_sum(y_true * tf.log(y_pred), reduction_indices=[1]))

• See: 
https://github.com/tensorchiefs/dl_course/blob/master/notebooks
/05_Multinomial_Logistic_Regression_solution.ipynb

• https://github.com/tensorchiefs/dl_course/blob/master/notebooks_misc/Explanation_o
f_loss.ipynb

SOLUTION

23



Alternative solution

w = tf.Variable(tf.random_normal([784, 10], stddev=0.01))
b = tf.Variable(tf.zeros([10])) 
z = tf.matmul(x,w)+b #aka logits
loss = tf.reduce_mean(

tf.nn.softmax_cross_entropy_with_logits(labels=y_true,logits=z)
)

#Old Solution
prob = tf.nn.softmax(z)
loss_old = tf.reduce_mean(-tf.reduce_sum(y_true * tf.log(prob), 
reduction_indices=[1]))

For numerical stability, one should use 
tf.nn.softmax_cross_entropy_with_logits

There is also a sparse version (no one hot encoded needed)
tf.nn.sparse_softmax_cross_entropy_with_logits

26



Now we are well prepared to 
entre the realm of deep 
learning

27



28



Today: Fully Connected Networks

We started with....

1-D Logistic Regression

Real	networks	of	
course	are	larger.	
But	this	captures	
the	basic	structure

29

We finished with....
Multinomial Logistic Regression



Networks with hidden layers

30



Limitations of (multinomial) logistics regression 

Linear Boundary! 

Logistic regression in NN speak: “no hidden layer”

Network taken from

31



32

Neural Network with hidden units

• Go to http://playground.tensorflow.org (https://goo.gl/VR3db5) and train a neural 
network for the data:

• Start with 0 hidden layers. Increase the number of hidden layers to one, what do you 
observe? 

• Now go to here (https://goo.gl/XwLRKB) and increase the number of neurons in the 
hidden layer. What do you observe?



33

Results

• 0 hidden layers, only a single line

• Many neurons in a hidden layer à also complicated functions



34

Results (cont)



One hidden Layer

35

A network with one hidden layer is a universal function approximator!

http://cs231n.github.io/neural-networks-1/



Brief History of Machine Learning (supervised learning)

Taken from  http://www.erogol.com/brief-history-machine-learning/

NN now called 
Deep Learning

Now: Neural Networks (outlook to deep learning)

With 1 hidden layer36



Examples of deep architectures

Original Resnet had 152 Layers: https://arxiv.org/abs/1512.03385
37



Why going deep: Experimental evidence

Number of Layers

The test set accuracy consistently increases with increasing depth. Just 
increasing model size does not yield the same performance.

Taken from: http://www.deeplearningbook.org/contents/mlp.html
38



Why Deep: Hierarchy of learned features in Object 
Detection

39



Why deeper (summary)?

• If a network with one hidden layer is a universal function approximator, why 
bother to go deeper?
– Step functions are universal function approximators, too. Would you use them?

• Representational power: 
– There is experimental evidence that a 3 layered network needs less weights in 

total than a network with one hidden layer. 
– Theoretically backed for some functions 

• For some applications as image classification there is a natural hierarchy of 
features to be learned

• More details see: http://cs231n.github.io/neural-networks-1/#power and 
references therein.

• Still active research area and not solved yet
– Novel approach Tishby information plane, see e.g. his talk at Yandex

https://www.youtube.com/watch?v=bLqJHjXihK8

40



More than one layer

We have all the building blocks
• Use outputs as new inputs
• At the end use multin. logistic regression
• Names:

• Fully connected network
• Multi Layer Perceptron (MLP)

41



Summary

p1 =
exp( W1i xi + b1i∑ )
exp( Wijxi + bii∑ )
j∑

Softmax in last layer

Logistic Regression 
in hidden layers

f (z) = exp(z)
1+ exp(z)

z = x1W1 + x2W2 + b =Wx + b

Other activation 
functions for the hidden 
layers (see later)

42



43

A network for classifying digits

Im
ag

es
 2

8x
28

 =
78

4

500 50 10 Number of Nodes

x(1)

x(2)

x(N)

…

Number of weights to fit:
(785 * 500) + (501 * 50) +(51 * 10) = 418'060

Sketch of the network (not all nodes shown)

Task: Have a look at the notebook: fcn_MNIST
and complete “your  code here” parts



Results

44

We get an accuracy of about 89% on the validation set.
Training error and loss approach zero. Validation error and loss increase with 
time (overfitting).



Summary

• Where do we stand?
– In Principle we now can use deep networks
– There are some tricks, we learn shortly.
– To understand those tricks we have to get an understanding how 

learning works…

• Learning / gradient flow
– Nowadays networks are learnt with gradient descent
– For each weight a gradient w.r.t. loss is calculated and the weights are 

adapted
– As we see a gradient signal flows from the loss to the input  

45



Layer / chain structure of networks

Simple chaining

p1

p2

x1
(2) = f ( Wi,1

(1) xi
(1)

i∑ + b1)

x1
(1)

x2
(1)

p3

p=softmax(b(3) + W(3) f(b(2) + W(2) f(b(1) + W(1)x(1))))

W(1) W(2) W(3)

46



Backpropagation

47

Slide Credit to Elvis Murina for the great animations



Motivation:
The forward and the backward pass

• https://google-developers.appspot.com/machine-learning/crash-course/backprop-scroll/

48



Chain rule recap

49

• If we have two functions f,g
𝑦 = 𝑓 𝑥 	𝑎𝑛𝑑
z = 𝑔 𝑦
then y and z are dependent variables.

• And by the chain rule:
56
57
= 58

57
	∗ 56

58

f
zy

g
x

zy
f g

x

𝜕𝑧
𝜕𝑥

= 𝜕𝑧
𝜕𝑦

𝜕𝑦
𝜕𝑥 *



Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201627

f

activations

gradients

“local gradient”

Gradient flow in a computational graph: local junction

Illustration: http://cs231n.stanford.edu/slides/winter1516_lecture4.pdf

is modified by local gradient 

= ∂ f
∂y

z = 𝑓 x, 𝑦 	𝑎𝑛𝑑	
L = 𝑓 𝑧   



Example

èMultiplication do a switch

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201627

f

activations

gradients

“local gradient”

1

∂(α + β )
∂α

= 1 ∂(α *β )
∂α

= β



Forward pass 

54

𝑥?

𝑤?

*

𝑥A

𝑤A

*

𝑏

+ * 		exp(𝑖𝑛)	 + 	
1
𝑖𝑛

		log(𝑖𝑛)	

−1 1

*

𝑦?

Loss

𝑝 𝑦 = 1 𝑋 =
1

1 + 𝑒M(7N∗ONP7Q∗OQPR)

𝜕𝐿
𝜕𝑤?

=	? ;
𝜕𝐿
𝜕𝑤A

=	? ;
𝜕𝐿
𝜕𝑏

=	?

1

2

-5

2

1

1

1

4 0 0 1 2 0.5 -0.69 -0.69
*

−1

0.69

Training data:
𝑥? = 1
𝑥A = 2
𝑦? = 1

𝑥?

𝑥A

				1

𝑤?
𝑤A
	𝑏

Loss

Initial 
weights:

𝑤? = 1
𝑤A = 2
𝑏	 = −5



Backward pass

55

𝑥?

𝑤?

*

𝑥A

𝑤A

*

𝑏

+ * 		exp(𝑖𝑛)	 + 	
1
𝑖𝑛

		log(𝑖𝑛)	

−1 1

*

𝑦?

Loss

𝑝 𝑦 = 1 𝑋 =
1

1 + 𝑒M(7N∗ONP7Q∗OQPR)

1

2

-5

2

1

1

1

4 0 0 1 2 0.5 -0.69 -0.69
*

−1

0.69

𝑓 = 𝑎 ∗ 𝑏	; 	
𝜕𝑓
𝜕𝑎	

= 𝑏	; 	
𝜕𝑓
𝜕𝑏	

= 𝑎

𝑓 = 𝑎 + 𝑏	; 	
𝜕𝑓
𝜕𝑎	

= 1	; 	
𝜕𝑓
𝜕𝑏	

= 1 𝑓 = 𝑒V;	
𝜕𝑓
𝜕𝑎	

= 𝑒V

𝑓 =
1
𝑎
;	
𝜕𝑓
𝜕𝑎	

= −
1
𝑎A

𝑓 = log 𝑎 ;	
𝜕𝑓
𝜕𝑎	

= 	
1
𝑎

1

𝜕𝐿
𝜕𝐿	

= 1
𝜕𝐿

𝜕𝑛𝑒𝑤	
=

𝜕𝑥
𝜕𝑙𝑜𝑐𝑎𝑙	

∗
𝜕𝐿
𝜕𝑜𝑙𝑑	

= −1 ∗ 1 = −1

-1

𝜕𝐿
𝜕𝑛𝑒𝑤	

=
𝜕𝑥

𝜕𝑙𝑜𝑐𝑎𝑙	
∗
𝜕𝐿
𝜕𝑜𝑙𝑑	

= 1 ∗ −1 = −1

-1

𝜕𝐿
𝜕𝑛𝑒𝑤	

=
𝜕𝑥

𝜕𝑙𝑜𝑐𝑎𝑙	
∗
𝜕𝐿
𝜕𝑜𝑙𝑑	

=
1
0.5

∗ −1 = −2

-2

𝜕𝐿
𝜕𝑛𝑒𝑤	

=
𝜕𝑥

𝜕𝑙𝑜𝑐𝑎𝑙	
∗
𝜕𝐿
𝜕𝑜𝑙𝑑	

= −
1
2A

∗ −2 = 0.5

0.5

𝜕𝐿
𝜕𝑛𝑒𝑤	

=
𝜕𝑥

𝜕𝑙𝑜𝑐𝑎𝑙	
∗
𝜕𝐿
𝜕𝑜𝑙𝑑	

= 1 ∗ 0.5 = 0.5

0.5

𝜕𝐿
𝜕𝑛𝑒𝑤	

=
𝜕𝑥

𝜕𝑙𝑜𝑐𝑎𝑙	
∗
𝜕𝐿
𝜕𝑜𝑙𝑑	

= 𝑒\ ∗ 0.5 = 0.5

0.5

𝜕𝐿
𝜕𝑛𝑒𝑤	

=
𝜕𝑥

𝜕𝑙𝑜𝑐𝑎𝑙	
∗
𝜕𝐿
𝜕𝑜𝑙𝑑	

− 1 ∗ 0.5 = −0.5

-0.5

𝜕𝐿
𝜕𝑛𝑒𝑤	

=
𝜕𝑥

𝜕𝑙𝑜𝑐𝑎𝑙	
∗
𝜕𝐿
𝜕𝑜𝑙𝑑	

= 1 ∗ −0.5 = −0.5

-0.5

-0.5

-0.5

𝜕𝐿
𝜕𝑛𝑒𝑤	

=
𝜕𝑥

𝜕𝑙𝑜𝑐𝑎𝑙	
∗
𝜕𝐿
𝜕𝑜𝑙𝑑	

= 2 ∗ −0.5 = −1
-1

𝜕𝐿
𝜕𝑛𝑒𝑤	

=
𝜕𝑥

𝜕𝑙𝑜𝑐𝑎𝑙	
∗
𝜕𝐿
𝜕𝑜𝑙𝑑	

= 1 ∗ −0.5 = −0.5

-0.5

Training data:
𝑥? = 1
𝑥A = 2
𝑦? = 1

Initial 
weights:

𝑤? = 1
𝑤A = 2
𝑏	 = −5



Forward pass 

56

𝑥?

𝑤?

*

𝑥A

𝑤A

*

𝑏

+ * 		exp(𝑖𝑛)	 + 	
1
𝑖𝑛

		log(𝑖𝑛)	

−1 1

*

𝑦?

Loss

𝑝 𝑦 = 1 𝑋 =
1

1 + 𝑒M(7N∗ONP7Q∗OQPR)

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠:
𝜕𝐿
𝜕𝑤?

= −0.5;
𝜕𝐿
𝜕𝑤A

= −1	;
𝜕𝐿
𝜕𝑏

= −0.5

1.25

2.5

-4.75

2

1

1

1.25

5 1.5 -
1.5

0.22 1.22 0.82 -0.20 -0.20
*

−1

0.20

Update	of	the	weights:	η = 0.5

𝑤?(kP?) = 𝑤?(k) − η ∗
5l
5ON

= 1 − 0.5 ∗ −0.5 = 1.25

𝑤A(kP?) = 𝑤A(k) − η ∗
5l
5OQ

= 2 − 0.5 ∗ −1 = 2.5

𝑏(kP?) = 𝑏(k) − η ∗
5l
5R
= −5 − 0.5 ∗ −0.5 = −4.75

Training data:
𝑥? = 1
𝑥A = 2
𝑦? = 1

Initial 
weights:

𝑤? = 1
𝑤A = 2
𝑏	 = −5



Side remark: 

• Some DL frameworks (e.g. Torch) do not do symbolic differentiation. 
For these for each operation needs to store only
– The actual value y coming in and the value of derivative 

57

g z = g(y)y = f (x)

∂h
∂z

∂g
∂y y

loss…

Illustration: http://cs231n.stanford.edu/slides/winter1516_lecture4.pdf



Further References / Summary

• For a more in depth treatment have a look at
– Lecture 4 of  http://cs231n.stanford.edu/
– Slides http://cs231n.stanford.edu/slides/winter1516_lecture4.pdf 

• Gradient flow is important for learning: remember!

58

g lossz = g(y)y = f (x)

∂h
∂z

∂h
∂y

= ∂g
∂y

∂h
∂z

The	incoming	gradient	is	
multiplied	by	the	local	

gradient	

…Data

forward pass
backward pass

…



Tricks of the trade

59



2012 2013 2014 2015 2016

CNN 1980 
Fukushima 

LeNet 1998	
Yann	LeCun

ImageNet
AlexNet
Krizhevsky, Hinton 

German Traffic Sign 2011
Ciresan, Schmidhuber

VGG16 Inception

SVM

DeepFace

Convolutional Architectures (CNNs)

Hot 
in ML

LSTM	1997	
Hochreiter,	Schmidhuber

Adagrad

Generative Models:

Bagging / Boosting

Artstyle Transf

Deep Learning 

Unsupervised 
Pre-training
DNN 2006

Other Breakthroughs / Architectures 
Subjective Selection 

Reinforcement Learning: DeepQ AlphaGO

VAE GAN

Dropout

BatchNorm

DeepDream

2012 2013 2014 2015 2016

Basic Building Blocks 
of modern DL-Architectures

FC	1986
Rumelhart,...	

Partly CNN: Auto. Captions Draw

ResNet

Neural Networks 

Research Topics

60

ReLU (AlexNet)

Tricks of the Trade
Weight initialization 



Activation Functions

61



Backpropagation through sigmoid

62Slide from: CS231  

Gradients are killed, when not in active 
region! Slow learning!



Different activations in inner layers

N-D log regression

f (z) =
exp(z)
1+ exp(z)
max(0, z)

⎧

⎨
⎪

⎩
⎪

z = x1W1 + x2W2 + b =Wx + b

Activation function a.k.a. 
Nonlinearity f(z)

Motivation: 
Green:
logistic regression.
Red:
ReLU faster
convergence

Source: 
Alexnet
Krizhevsky et al 2012

There are other alternatives besides 
sigmoid and ReLU. 

Currently ReLU is standard  

63



Backpropagation through ReLU

64Slide from: CS231  

Gradients are killed, only when x < 0



An activation which never gets killed…

• Why just don’t take identity?

65

x

Gradient is always 1f(x)

𝑥(?)𝑊(?)𝑊(A) 𝑊(o) = 𝑥(?)𝑊

If you multiply two matrices 𝐴 ⋅ 𝐵 you 
get a new matrix.

𝑝 = softmax(𝑥(?)𝑓(𝑊(?))𝑓(𝑊(A))𝑓(𝑊(o)))



Other activations

66Slide from: CS231  

Not really established 



Initialization

67



Initialization of weights: Experiment

68
See: https://github.com/tensorchiefs/dl_course/blob/master/notesbooks_misc/weight_initialization.ipynb
Weights are initialized with N(0, sigma)



Different Initialization: Performance

69
Learning happens only for sigma=0.1!  Random loss is –ln(1/10)=2.302



Reason for not learning

• Activation values vanished or explode 
• No learning since gradient is also vanishing

– Grad ~ x and thus also near 0

• Historical anecdote
– Deep Learning started 2006 when Hinton et. all managed to train deep 

networks unsupervised pre-training
– Later it turned out that random initialization with the same weight would 

yield similar results

• For ReLU: He et al., http://arxiv.org/abs/1502.01852
– sigma = np.sqrt(2. / fan_in)
– fan_in number of incomming weights (100 in our example)
– bias to zero

70



Regularization

71



Regularisation

Having more parameters than examples è overfitting becomes a real 
problem 

Several solutions (selection, for complete treatment DL-book chapter 7)
• Early stopping
• Dropout 
• Not covered today

– Penalties on parameter norm (L1, L2 a.k.a. weight decay) 
– Parameter tying and sharing (in the next lectures)

• Very powerful for special domains
– Time signals èRNN
– Image like data èCNN

– Dataset Augmentation (in CNN lecture)
– Semi-supervised learning (use unlabelled data)

72



Early stopping

• Simply stop (or use the parameters of the network) when validation 
loss is minimal (hope for the best for the test-set)

• In practice 
– Needs a validation set not used to update the weights
– Save model weights at different epochs (checkpoints)  
– Plot and decide which checkpoint to use (or continue training)

Stop here
Use these weights

73



Early stopping (intuition)

• Early stopping can be seen as a from of regularization
• The optimization procedure cannot explore the whole parameter 

space 
• Cannot adopt too much on the training set

74



Dropout

• Dropout is a simple and relatively recent regularization technique 
(Srivastava et al. 2014) which is already widely used.

• It forces the network to learn redundant features
• It averages over many networks

Figure: from paper

Dropout during 
training.

Technically: 
add a layer 
killing neurons 
with prob. p

75



Dropout: training / testing 

• At test time we (usually) want deterministic predictions
– Later in the course we use them to make stochastic predictions

• Weights (connections) need to be downweighted by p 
– During training the connections have not been present with prob. p, they 

would thus be too strong if always present in test time 

Figure: from paper

• Alternative approach (inverted dropout)
– Upweight the weights by W/p during training (see also: 

http://cs231n.github.io/neural-networks-2/) 
– No scaling needed at test-time

76



Higher level libraries 

• Including all the logging and regularisation would require to write lot 
of code

• There is a multitude of libraries (currently too many!) which help you 
with training and setting up the networks

• Libraries make use of the Lego like block structure of networks

77



Have a look at 

https://github.com/tensorchief
s/dl_course_2018/blob/master/
docs/keras-short-intro.pdf

78



Example in Keras

model = Sequential() #We start to build the model in a sequence
model.add(Dense(500, batch_input_shape=(None, 
784),activity_regularizer=activity_l2(lambd)))
model.add(Dropout(0.5))
model.add(BatchNormalization())
model.add(Activation('relu'))

model.add(Dense(50,activity_regularizer=activity_l2(lambd)))
model.add(Dropout(0.5))
model.add(BatchNormalization())
model.add(Activation('relu'))

model.add(Dense(10, activation='softmax',activity_regularizer=activity_l2(lambd)))
# Finishing
model.compile(loss='categorical_crossentropy',

optimizer='adadelta',
metrics=['accuracy'])

# Training
history = model.fit(X[0:2400], 

convertToOneHot(y[0:2400],10), 
nb_epoch=500, 
batch_size=128, 
#callbacks=[tensorboard],
validation_data=[X[2400:3000], convertToOneHot(y[2400:3000],10)])

79



Backup

80



Why the hack they call it 
cross entropy?

81



Entropy and Cross Entropy

• The central loss function for classification is called 
cross entropy, why?

• This is a different viewpoint to the max-likelihood approach, we just 
had

• Let’s start by defining the (information) entropy
– It’s somewhat like the amount of surprise you get from a sample.
– Let’s first do an simple example

82Image: Wikipedia



Information Content of a single outcome

• 4 Balls each with same probability  25%

• How can your friend ask you which ball you picked, with minimum 
number of questions?

83

Let’s say we have a red ball.
Two questions need to be ask.

Coding for red ball (yes=1)
10 // Information content 2 bits

Coding for orange (your turn)
00 // Information content 2 bits

Example form https://www.quora.com/Whats-an-intuitive-way-to-think-of-cross-entropy 



Information Content of a single outcome

• 4 Balls each with different probability 50%, 25%, 12.5%, 12.5%

• How can your friend ask you which ball you picked, with minimum 
number of questions (on average)?

84

Let’s say we have a blue ball.
One questions need to be ask.

Coding for blue ball (yes=1)
1 // Information content 1 bit

Coding for red (2 questions)
01 // Information content 2 bit

Coding for green (your turn)
001 // Information content 3 bit

Example form https://www.quora.com/Whats-an-intuitive-way-to-think-of-cross-entropy 



Information content

85

On average:
½*1+1/4*2+1/4*3=1.75 bits on average



Information Content

• For that easy example, we found the best coding by hand.
• Let’s define the (self-) information (Turns out to be the minimal 

coding length “Shannon's source coding theorem”)

• Requirement for Information (or surpirse)
– 𝑝( the  probability of event i (or prob. that symbol i occurs) 
– Seldom examples should have more surprise. 

• 𝐼(𝑝() should be monotonic decreasing function 
– Information should be non-negative 

• 𝐼 𝑝( ≥ 0
– Uninformative, or sure events should have no Information

• 𝐼 𝑝( = 0
– Information of independent events 𝑖, 𝑗	should add up

• 𝐼 𝑝((,w) = 𝐼 𝑝(𝑝w = 𝐼 𝑝( + 𝐼(𝑝w)

• è𝑰 𝒑 = − 𝐥𝐨𝐠𝟐 𝒑
– (defined up to basis), 2 is often chosen

86



Information Content à Entropy 

• Entropy (average Information Content)
– 𝐻 𝑝 = ∑𝑝(𝐼(𝑝() = −∑𝑝( logA(𝑝()

87

𝐻 𝑋 = 2 𝐻 𝑋 = 0.5 + 0.25*2+0.25*3=1.75

In general: Maximal Entropy if uniform, minimal if peaked (see also in physical Systems)

− logA 0.25 = 2

− logA 0.5 =1

− logA 0.25 =2

− logA 0.125 =3



Cross Entropy

• If we know the distribution p, we can find the best coding and need 
H bits on average

• If we have a “wrong” distribution q how many bits do we need on 
average

– 𝐻 𝑝, 𝑞 = −∑𝑝(𝑙𝑜𝑔2 𝑞( ≥ 𝐻 𝑝

• Example, we think symbols come uniform distributed q. But they 
come (0.5,0.25,0.125,0.125)

88

𝐻 𝑝, 𝑞 = 0.5	2 + 0.25	2 + 0.125	 ∗ 2 + 0.125	2 = 2 > 1.75

Optimal Coding Scheme 
for Uniform q



KL-Divergence 

• If we have a “wrong” distribution q how many bits do we have more 
than the minimal possible amount 𝐻(𝑝)

– 𝐷�l(𝑝||𝑞) = 𝐻 𝑝, 𝑞 − 𝐻 𝑝 ≥ 0

• Example, we think symbols come uniform distributed q. But they 
come (0.5,0.25,0.125,0.125)

89

𝐷 𝑝, 𝑞 = 𝐻 𝑝, 𝑞 − 𝐻 𝑝 = 2 − 1.75 = 0.25

Optimal Coding Scheme 
for Uniform q



Cross Entropy in DL

90

𝐻 𝑝, 𝑞 = −∑𝑝(𝑙𝑛𝑞( (for one example of the training set) 

𝐻 𝑝, 𝑞 = −∑∑𝑝(
(w)𝑙𝑛𝑞(

w (for the training set)

We minimize the cross entropy by changing q, the minimum is reached when 
q is identical to distribution of real labels p

Alternatively we could also minimize the KL-Divergence



Further Resources (cross entropy and information theory)

• https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/
• https://www.quora.com/Whats-an-intuitive-way-to-think-of-cross-

entropy 
• https://www.khanacademy.org/computing/computer-

science/informationtheory/moderninfotheory/v/information-entropy
• https://medium.com/swlh/shannon-entropy-in-the-context-of-

machine-learning-and-ai-24aee2709e32

91


