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Organizational Issues: Projects

Projects (2-3 People)

Presented on the last day
— Spotlight talk (5 Minutes)
— Poster
Topics
— You can choose a topic of your own (have to be discussed with us latest
by week4- weekd)

— Possible Topics
« Take part in a Kaggle Competition (e.g. Leaf Classification / Dogs vs. Cats)
» Overview of google ml learning cloud for deep learning
» Datasets e.g. http://www.vision.ee.ethz.ch/en/datasets/

Please talk to us until week 4= 5
Q&A Session 1h in week 7



Organizational Issues: Times

 Next times (total 30 minutes break in between, possible different
breaks)

— 09:10 - 10:30 (We start 10 past 9)
— 11:00 - 12:40

» Please interrupt us if something is unclear!



Learning Objectives

* Increase our knowledge in TF

 Foundations of DL

— Loss Function (what to minimize)
» Cross entropy loss for multinomial logistic regression
» Two principles to construct loss functions
— Maximum Likelihood Principle
— Cross Entropy
— Deep Neural Networks
* Fully Connected Networks with hidden layers

— Gradient Descent
* How to calculate the weights efficiently



Biological Interpretation

* In popular media neural networks are often described as a computer
model of the human brain.
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DL loosely inspired by how the brain works.
Biological neurons are much more
complicated.

Images from: http://cs231n.github.io/neural-networks-1/



Multinomial Logistic Regression



Multinomial logistic regression

» Logistic Regression outputs prob. for class 1
— So far we can classify into two classes

We now want to classify more than 2 classes



Exercise: The MNIST Data Set

 MNIST the drosophila of all DL-Data sets
— 50000 handwritten digits to be classified into 10 classes (0-9)
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Input tensors: are flattened to 28*28=768 pixels

Image credit: https://www.tensorflow.org/versions/r0.10/images/MNIST-Matrix.png




Multinomial Logistic Regression

Input Layer

Hidden Layer

Output Layer

OO0
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Multinominal Regression
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Recap: Matrix Multiplication aka dot-product of matrices

We can only multiply matrices if their dimensions are compatible.

A x B = C
(Mmxn)x(nxp)=(mxp)

A X B.,.

all al2 al3 bll b12

a31 a32 a33 b31 b32_

Example:

A= ( D) By = (8

a, a4, ay|X b21 bzz —

Cll = allbll +a12b21 +al3b31

C3 2
X C\, = a,by, +a,,b,, +a;b;,
C%l C32_ C; = a31bll T a32b21 T a33b31

7
4

Cy, = a31b12 + a3zb22 + a33b32

] C1x3:A1x2'B2x3:( 24 6 12)
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Your turn

* Inputx=(1,2)

- w=(, ¢ o)
.+ b=(1,2,3)

« Calculate the output using numpy:

* Hints:

* x = np.asarray ([[1,2]1]) #

* np.matmul (.,.) # Matrix multiplication
* np.exp(.) # Exponential

e np.sum(.) # Sum

* #Result: array([[3.29320439e-04, 1.79802867e-02, 9.81690393e-01]])



GPUs love matrices: Use the source luke

= tf.placeholder(tf.float32, [None, 784])
= tf.Variable(tf.zeros([784, 10]))

= tf.Variable(tf.zeros([10]))

= tf.nn.softmax(tf.matmul (x, W) + b)

O =2 X

Data is usually processed in (mini-) batches. Instead of X being a 28*28=784 long
vector, we use a batch (e.g. size 100)

23



GPUs love matrices:
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Loss for multinomial regression

Training Examples Y=1
or Y=0

1 x I ]
loss = =— 2 102(Pus (7" 1:0))
n=1

IOSS=—%210g(pmodd(y(”|x(”;9))=—%£ 2, log(p(x™) + X log(po(x(”)))

n=1 i€All ones i€All zeros

N Training Examples classes (1,2,3,...,K)

1oss=—%210g(pmodd<y(“lx“’;e)):—%{ Y log(p,(x?) + D, log(p,(x N+t D, 1og<pK(x(f>>>]

n=1 iey;=l1 i€y;=2 iey;=K

Frel Layer (Mutiomel Rgresson) Ol 009 Output of last layer

Example: Look at class of single training example. Say it's
Dejan, if classified correctly p_dejan = 1 =» Loss = 0. Real bad
classifier put’'s p_dejan=0 = Loss = Inf.

P;

0 o 17



One more Trick: Loss function
with indicator function

A one-hot-encoded y picks the right class, form all of the K different classes.

For MNIST K=10, so why calculate, 9 logs and through them away?
(Parallel executions)

—N-loss= Y, log(p,(x™) + D, log(p,(x"N+...+ Y, log(p, (x")=D»" log(p(x")=> " log(y)
jey =1 . i=1

ieyj=2 ieyJ:K i=1 =
encoded

€y .
J

D Ve P p(x)
¢ (lags one-het 7 _g
R P loss =L S o plx?)
2 Y | 2 -///’L/////// | c
7 7 1 Y See later crossentropy and KL-Distance
—> > between y; and p(x®)
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Training Neural Networks: Split of the data

For neural networks usually no cross-validation is done (due to long learning
times).

For our use case (4000 images)
* Training set 3000, Test set 1000
e 20% of the Training set is taken as Validation Set

Training set (ca. 60%) Validation set | SR Insidious form of “testing on
(ca. 20%) .. ”.
training data”: do many

repeated optimization trials on
same validation set.

19



Stochastic gradient descent

The loss function
1 > i i
loss = —ﬁz{log( PP 1x";0))
n=1

« A particular weight is updated using the partial derivative of the loss
function (the sum) w.r.t 6,

« The sum is taken over the whole training set of size N. Often the
training set is split into mini-batches size of e.g. bs=128 (*)

 These mini-batches are processed one after another

 When all examples have been processed once, we speak of one
epoch being finished

* For a new epoch one often reshuffles the data

* The batch size is chosen so that input tensor fits on the GPU.

(*) For some purists only when bs=1 is called stochastic gradient descent 20



Exercise: The MNIST Data Set

0 ( 0 ( 0 0 0 0 ) 0 0 )
0 | 0 l 0 0 0 0 ) 0 0 )
0 ( 0 ( 0 6 - 0 ) 0 0 )
0 ( 0 ( o B B 0 ) 0 0 )
0 ( 0 ( o B B 0 ) 0 0 )
0 ( 0 ( 0 5 . 4 ) 0 0 )
— 0 ( 0 ( 0 0 1 A4 ) 0 0 )
o 0 ( 0 ( 0 0 . 4 ) 0 0 )
0 ( 0 ( 0 0 B 7 ) 0 0 )
0 ( 0 ( 0 0 1 £} ) 0 0 )
0 ( 0 ( 0 0 9 1 1 0 0 )
0 ( 0 ( 0 0 3 kY 1 0 0 )
0 ( 0 l 0 0 0 0 ) 0 0 )
[ 0 ( 0 l 0 0 0 0 0 0 0 ) ]

Input tensors
One minibatch has dimension (128, 28, 28, 1) (batch, x,y, color)

or (128, 784) flattened

Image credit: https://www.tensorflow.org/versions/r0.10/images/MNIST-Matrix.png 21



Exercise: Implement multinomial logistic regression

Finish the code in the notebook: Multinomial Logistic Regression

Think about the trick how the loss is calculated!

Compare the loss and accuracy in the validation set with the loss in the training set.
Why is there such a difference?

Question: How many parameters do we have?

Hints:

W +b.
p,= exp(zl_ Wy +h) = (softmaX(XW+b))
2. exp(X 5, +b)

J
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SOLUTION

« We have

e For W 28*28*10 = 7840 Parameter
e For b 10 Parameter
* Together 7850 Parameters

» Trick with the loss function [Blackboard]

loss = tf.reduce mean(-tf.reduce sum(y true * tf.log(y pred), reduction indices=[1]))

* See:
https://github.com/tensorchiefs/dl course/blob/master/notebooks

/05 Multinomial Logistic Regression solution.ipynb

* https://github.com/tensorchiefs/dl course/blob/master/notebooks misc/Explanation c
f loss.ipynb

23



Alternative solution

i, =4 CE CWelitaRel ke (e iF et clenyie TalaiainiE Il (L7 S e L R = SiEE O IS0, (OHE)S)
b = tf.Variable (tf.zeros ([10]))
z = tf.matmul (x,w)+b #aka logits
@S, = Tt B cECiEE mS BN
tf.nn.softmax cross entropy with logits(labels=y true, logits=z)

)

#01d Solution

prob = tf.nn.softmax(z)

lieis Sie 1l d =l ec ditleciime sint (s ec d Hiec s U = UIcEe A - Lo ([0 olollly
rediictongsnchitecis =1l Fg

For numerical stability, one should use
tf.nn.softmax cross entropy with logits

There is also a sparse version (no one hot encoded needed)
tf.nn.sparse softmax cross entropy with logits

7R/



Now we are well prepared to
entre the realm of deep
learning



- memegene




Today: Fully Connected Networks

the basic structure

O Input Layer
O Hidden Layer
O Output Layer

We finished with....
Multinomial Logistic Regression

(<)L, = We started with....
0 b

1-D Logistic Regression
29



Networks with hidden layers



Limitations of (multinomial) logistics regression

Logistic regression in NN speak: “no hidden layer”

\‘) lterations Learning rate Activation Regularization Regularization rate Problem type
>l

000,000 0.03 v Sigmoid v None v 0 v Classification  ~
DATA FEATURES + — 0 HIDDEN LAYERS OUTPUT
Which dataset do Which properties Test loss 0.701
you want to use? do you want to Training loss 0.696

feed in?

X,

x2
Ratio of training to
test data: 50% 50 .
PY X A .
* % o
Noise: 0 aiiele oo
o A e .
y '.‘:‘ ¢ 9
.
Batch size: 10 LA ot
—e
REGENERATE

Colors shows
data, neuron and
weight values.

[ Show test data Discretize output

Network taken from Linear Boundary!

31



Neural Network with hidden units

Go to http://playground.tensorflow.org (https://goo.gl/VR3db5) and train a neural
network for the data:

Start with 0 hidden layers. Increase the number of hidden layers to one, what do you
observe?

Now go to here (https://goo.gl/XwLRKB) and increase the number of neurons in the
hidden layer. What do you observe?

32



Results

* 0 hidden layers, only a single line

« Many neurons in a hidden layer - also complicated functions

FEATURES 1 HIDDEN LAYER
Which properties do
you want to feed in? -
3 neurons
X, P e e 4
-~~
—~—
~~~~~~
______
X, pem—mE T e—— ’
\\\\\\
\\\\\\
\~\~
————————— p
from one neuron

OUTPUT

Test loss 0.012

Training loss 0.008

—~
Colors shows

data, neuron and

weight values

33



Results (cont)

FEATURES + — 2 HIDDEN LAYERS OUTPUT
Which properties do l 1 Test loss 0.016
you want fo feed in? Y — n & Training loss 0.003

3 neurons 2 neurons

\\ \\
2 NS a—— The outputs are
= T R mixed with varying
) weights, shown
by the thickness
x; This is the output of the lines.
from one neuron.
Hover to see it
larger.
XX,
sin(X,)
Colors shows
sin(X,)

weight values.

] Show test data

data, neuron and |1 cl' 1‘

[[] Discretize output

34



One hidden Layer

Input Layer

Hidden Layer

OO0

Output Layer

A network with one hidden layer is a universal function approximator!

3 hidden neurons 6 hidden neurons 20 hidden neurons

http://cs231n.github.io/neural-networks-1/ 35



Brief History of Machine Learning (supervised learning)

Now: Neural Networks (outlook to deep learning)

NN now called
Deep Learning

Vapnik, Cortes
% J.R. Quinlan
o Breiman
3
8‘ Freund, Schapire /
s y
2
© /
9 Linnainmaa 1970
.g Werbos
0] /
\%@ o Decision Tree, ID3
o o° & il
NG N
& &
o & LeCun
& Perceptron N Rumelhart, Hinton, Williams
. - Hetch, Nielsen
Hochreiter et. al.
Hinton
Bengio
Neural Netwo','ks : J. Schmidhuber LeCun
B > S IDSIA Andrew Ng.
Created by erogol
1 1 ' I ' ' ' ' I ' d L
1960 1965 1970 1975 1980 1985 1990 1995 2000 20 2010 2015

Taken from http://www.erogol.com/brief-history-machine-learning/ With 1 hidden Iay%



Examples of deep architectures
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Why going deep: Experimental evidence

Test accuracy (percent)

3 4 5 6 7 8 9 10 11

Number of Layers

The test set accuracy consistently increases with increasing depth. Just
increasing model size does not yield the same performance.

Taken from: http://www.deeplearningbook.org/contents/mlp.html

38



Why Deep: Hierarchy of learned features in Object
Detection

DEEP NEURAL NETWORK (DNN)

Application components:

Task objective
e.g. ldentify face
Training data
10-100M images
Network architecture
~10 layers
1B parameters
Result Learning algorithm
~30 Exaflops
~30 GPU days

@ANVIDIA.




Why deeper (summary)?

If a network with one hidden layer is a universal function approximator, why
bother to go deeper?
— Step functions are universal function approximators, too. Would you use them?

Representational power:

— There is experimental evidence that a 3 layered network needs less weights in
total than a network with one hidden layer.

— Theoretically backed for some functions

For some applications as image classification there is a natural hierarchy of
features to be learned

More details see: http://cs231n.qgithub.io/neural-networks-1/#power and
references therein.
Still active research area and not solved yet

— Novel approach Tishby information plane, see e.g. his talk at Yandex
https://www.youtube.com/watch?v=bLqJH|XihK8

40



More than one layer

We have all the building blocks
« Use outputs as new inputs
« At the end use multin. logistic regression
 Names:
* Fully connected network
» Multi Layer Perceptron (MLP)

Q Input Layer
Q Hidden Layer
O Output Layer

e
KPS 2K
TS
Vs o e

Ve G//" V

41



Summary
Softmax in last layer

B eXP(ZiWuxi +b;)
b Zjexp(zivvijxi +b,)

Input Layer

Hidden Layer

Output Layer

O OO

Logistic Regression

in hidden layers exp(z) Other activation

= functions for the hidden
[+exp(z) layers (see later)

z=xW,+x,W,+b=Wx+b

42



A network for classifying digits

x(1)

Sketch of the network (not all nodes shown)

Layer L,

=784

Images 28x28

l

hW,b(X)

l

+1 LayerL,

+1
Layer L,

Layer L,

500 50 10 Number of Nodes

Number of weights to fit:
(785 * 500) + (501 * 50) +(51 * 10) = 418'060

Task: Have a look at the notebook: fcn_MNIST
and complete “your code here” parts

43



Results

08 |1

06 | -
B—

04} .
— fr loss
— fr_acc

0.2} q
— val_loss
— val_acc

00 1 ! e

0 50 100 150 200

epochs

We get an accuracy of about 89% on the validation set.
Training error and loss approach zero. Validation error and loss increase with
time (overfitting).



Summary

Where do we stand?
— In Principle we now can use deep networks
— There are some tricks, we learn shortly.

— To understand those tricks we have to get an understanding how
learning works...

Learning / gradient flow
— Nowadays networks are learnt with gradient descent

— For each weight a gradient w.r.t. loss is calculated and the weights are
adapted

— As we see a gradient signal flows from the loss to the input

45



Layer / chain structure of networks

2 1 1
X = f(EZ_Wifl)xi( "+b,)

O Input Layer
Q Hidden Layer
O Output Layer

Simple chaining
p=softmax(b® + WG f(b@ + W@ f(b() + W(nx(1)))

46



Backpropagation

Slide Credit to Elvis Murina for the great animations

47



Motivation:
The forward and the backward pass

https://google-developers.appspot.com/machine-learning/crash-course/backprop-scroll/

| E& N i
| S S ke

48



Chain rule recap

If we have two functions f,g
y = f(x) and

7= g(y)
then y and z are dependent variables.
And by the chain rule:

dz 0y 0z

—_— K —

ax  Ox oy

49



Gradient flow in a computational graph: local junction

-z activations z=f(xy) and
L=f(2)
“local gradient”
DS
Z
oL
0z
/;7

/
¥
4
,’
2
" "
4
4
AN ¥ I l l
\\ V2
~, 4
~, ,/
Sa. %
~, /,
\\ V2
~, 4
\s ,/
\\ V2
~, 4
\\ ,/

is modified by local gradient

[llustration: http://cs231n.stanford.edu/slides/winter1516 lecture4.pdf




Example

f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=-+4

oL
Oz

gradients

=> Multiplication do a switch



Forward pass

Training data: Initial
x; =1 weights: _ _ 1
Xy = 2 wy = 1 p(y 1|X) 1 + e~ (x1*wi+x2xwy+b)
Y1 = 1 1 Wy = 2
b =-5

54



Backward pass

Training data:

Initial
xp =1 weights:
Xy =2 w; =1
y1=1 1 w, = 2

ply =1|X) =

1

1 + e—(xl*wl+x2*wz+b)

:
0.5 = b af =ph: af _1_ af _ 1 gradients
e Srarhigg T higy f=Zag="z | "
_ of of _ a9 _ 4 _ of _
f—a+b,£ 1,£ f—e,ﬁ—e f—log(a),ﬁ——




Forward pass

Training data: Initial
x; =1 weights: _ _ 1
Xy = 2 wy = 1 p(y 1|X) 1 + e~ (x1*wi+x2xwy+b)
Y1 = 1 1 Wy = 2

b =-5

oL oL oL

dients:— = —0.5;—=—1;—=—-0.5
475 gradtents: G, "Iw, '9b
Update of the weights: = 0.5
JaL
Wl(t+1) = Wl(t) —T1* a—wl =1—-05+% (—05) = 1.25
oL
WZ(t+1) - WZ(t) - T] * a_\/VZ - 2 - 05 * (_1) - 25

oL
b(t+1) = b(t) —1n* 3D = —-5—-0.5%* (—05) = —4.75 56



Side remark:

loss

y=r () =80
\_/.

A

a_h
dz

« Some DL frameworks (e.g. Torch) do not do symbolic differentiation.
For these for each operation needs to store only
— The actual value y coming in and the value of derivative oy

s MultiplyGate(object):
lef forward(x,y):
\\)( Z = X*y
N self.x = x # must keep these around!
|:7/* \ = . self.y = y
o~/
return z
y def backward(dz):

dx = self.y * dz # [dz/dx * dL/dz]
dy = self.x * dz # [dz/dy * dL/dz]
return [dx, dy]

[llustration: http://cs231n.stanford.edu/slides/winter1516 lecture4.pdf
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Further References / Summary

 For a more in depth treatment have a look at
— Lecture 4 of http://cs231n.stanford.edu/
— Slides http://cs231n.stanford.edu/slides/winter1516 lecture4.pdf

« Gradient flow is important for learning: remember!

> forward pass
< backward pass

<E)h_agah ) oh
dy 9y 9z Jz

multiplied by the local

gradient
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Tricks of the trade



Research Topics

Basic Building Blocks

- i DeepFace DeepDream
of modern DL-Architectures German Traffic Sign 2011
Convolutional Architectures (CNNs) Ciresan, Schmidhuber Artstyle Transf

ImageNet
AlexNet VGG16 Inception ResNet

CNN 1980 LeNet 1998 Krizhewsky, Hinton ‘ ‘ |

Fukushima Yann LeCun

Ll 2012 — 2013 — 2014 - 2015 - 2016

Other Breakthroughs / Architectures
Subjective Selection

Partly CNN: Auto. Captions Draw
LSTM 1997 U sod
Hochreiter, Schmidhub nsupervise
OENTERen > | pre-training Weight initialization ~ Dropout
DNN 2006 ReLU (AlexNet) BatchNorm
FC 1986 Adagrad

Rumelhart,...
AL 2012 — 2013 ™ 2014 - 2015 - 2016
b
Generative Models: VAE GAN

Hot
in ML

— Neural Networks SVM

—— Bagging / Boosting —— Deep Learning ——
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Activation Functions



Backpropagation through sigmoid

X
oL 0o OL|
dzr Oz do
What
What
What

|
\

/ \

sigmoid
gate

‘\ /

Slide from: CS231

o(z) =1/(1+e77)
oL
oo e .

nappens when x = -107?
nappens when x = 07?
nappens when x = 10?

+/
064

o8t /

/
04F
J 4

L

.....

10

Gradients are killed, when not in active

region! Slow learning!
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Different activations in inner layers

N-D log regression Activation function a.k.a.
) Nonlinearity f(z)
exp(z) Motivation:
fz)=1 l+exp(z) Green: .
logistic regression.
max(0,) - Red
RelLU faster
z=xW,+x,W, +b=Wx+b convergence
— S There are other alternatives besides
sigmoid and RelLU.
Aede T Source:
s 1 o i et Gt o 12012 Currently ReLU is standard

training error rate on CIFAR-10 six times faster
than an equivalent network with tanh neurons

63



Backpropagation through RelLU

/

N\

X ,' RelU \ o(z) = max(0, z)
- N' gate ' -
OL Oo OL| oL
oz - Oz do \ / %
What happens when x = -107?
What happens when x = 07?
What happens when x = 107?

Slide from: CS231

10 }

..........

L A
-10

Gradients are killed, only when x <0
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An activation which never gets killed...

* Why just don'’t take identity?

£(x)

Gradient is always 1

Input Layer

Hidden Layer

Output Layer

OO0

p = softmax(x (D f (WD) f (WD) f (W ®))

xOWOWR wd = O

If you multiply two matrices A - B you
get a new matrix.
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Other activations

Activation Functions

Leaky ReLU
f(z) = max(0.01z, z)

Slide from: CS231

[Mass et al., 2013]
[He et al., 2015]
- Does not saturate
- Computationally efficient
- Converges much faster than
sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Parametric Rectifier (PReLU)
f(z) = max(azx, )

p

backprop into \alpha
(parameter)

Not really established
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Initialization



Initialization of weights: Experiment

Layer (type) Output Shape Param # Connected to
dense_1 (Dense)  (Nome, 100) 78500 demse_imput_1{01{0] |
dense_2 (Dense) (None, 100) 10100 dense_1(0][0]
dense_3 (Dense) (None, 100) 10100 dense_2(0][0]
dense_4 (Dense) (None, 100) 10100 dense_3[(0][0]
dense_5 (Dense) (None, 100) 10100 dense_4[(0][0]
dense_6 (Dense) (None, 100) 10100 dense_5([0][(0]
dense_7 (Dense) (None, 100) 10100 dense_6[0][0]
dense_8 (Dense) (None, 100) 10100 dense_7(0][0]
dense_9 (Dense) (None, 100) 10100 dense_8(0][0]
dense_10 (Dense) (None, 10) 1010 dense_9(0][0]

Total params: 160,310
Trainable params: 160,310
Non-trainable params: 0

Weights are initialized with N(0, sigma)

See: https://github.com/tensorchiefs/dl course/blob/master/notesbooks misc/weight initialization.ipynb
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Different Initialization: Performance

val_acc

Name Smoothed

0.800 ®
relu_0.001 0.1067
relu_0.01 0.1233 0.700
relu_0.1 0.8855 0.500
relu_1.0 0.1017

0.300

relu_10 0.09000

0.C00 20.00 40.00 60.00 80.00 100.0

Name Smoothed *
D relu0001 2300 =

relu_0.01 2.300 800

rel 0.1  0.01836 400

relu1.0 1457 N )

relu_10 14.48

0.C00 20.00 40.00 60.00 80.00 100.0

Learning happens only for sigma=0.1! Random loss is —In(1/10)=2.302
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Reason for not learning

Activation values vanished or explode

No learning since gradient is also vanishing
— Grad ~ x and thus also near 0

Historical anecdote

— Deep Learning started 2006 when Hinton et. all managed to train deep
networks unsupervised pre-training

— Later it turned out that random initialization with the same weight would
yield similar results

For ReLU: He et al., http://arxiv.org/abs/1502.01852

— sigma = np.sqrt(2. / fan_in)

— fan_in number of incomming weights (100 in our example)
— bias to zero
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Regularization
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Regularisation

Having more parameters than examples = overfitting becomes a real
problem

Several solutions (selection, for complete treatment DL-book chapter 7)
« Early stopping

* Dropout

* Not covered today

— Penalties on parameter norm (L1, L2 a.k.a. weight decay)

— Parameter tying and sharing (in the next lectures)

» Very powerful for special domains
— Time signals =*RNN
— Image like data = CNN

— Dataset Augmentation (in CNN lecture)
— Semi-supervised learning (use unlabelled data)




Early stopping

Simply stop (or use the parameters of the network) when validation
loss is minimal (hope for the best for the test-set)

0.6

0-5 ‘k/////,q
04} E. .
03T Stop here
osl _ Use these weights
01} — ftr_loss |
— val_loss

0.0 '

0 100 200 300 400 500 600

epochs

* |In practice
— Needs a validation set not used to update the weights
— Save model weights at different epochs (checkpoints)

— Plot and decide which checkpoint to use (or continue training) .



Early stopping (intuition)

« Early stopping can be seen as a from of regularization

* The optimization procedure cannot explore the whole parameter
space

« Cannot adopt too much on the training set
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Dropout

Dropout is a simple and relatively recent regularization technique

(Srivastava et al. 2014) which is already widely used.

Dropout during
training.

Technically:
add a layer
killing neurons
with prob. p

Figure: from paper

{
»

A
\J

’

//

{ )
':.‘.
7

)
4‘\

X
A
P\

@
Y

vl’
H
%

K&

W

D
(X8

,:
//
,:
J
{

'¢/'
1A
7%
(/S
;
Xte
x

A\
%

iy
‘,«}’5
s
'4‘,;"«
]
S

(a) Standard Neural Net

It forces the network to learn redundant features
It averages over many networks

(b) After applying dropout.
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Dropout: training / testing

At test time we (usually) want deterministic predictions
— Later in the course we use them to make stochastic predictions
Weights (connections) need to be downweighted by p

— During training the connections have not been present with prob. p, they
would thus be too strong if always present in test time

w PW
Present with Always
probability p present - f

(a) At training time (b) At test time 'gure. from paper

Alternative approach (inverted dropout)

— Upweight the weights by W/p during training (see also:
http://cs231n.github.io/neural-networks-2/)

— No scaling needed at test-time
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Higher level libraries

* Including all the logging and regularisation would require to write lot
of code

* There is a multitude of libraries (currently too many!) which help you
with training and setting up the networks

« Libraries make use of the Lego like block structure of networks

w;/
’3‘(\‘?’&{

e @S
<
e

tput layer
input layer

hidden layer 1 hidden layer 2

/
J
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Have a look at

https://github.com/tensorchief
s/dl course 2018/blob/master/

docs/keras-short-intro.pdf



Example in Keras

model
model

= Sequential () #We start to build the model in a sequence
.add (Dense (500, batch input shape=(None,

784) ,activity regularizer=activity 12 (lambd)))

model
model

model.

model.
model.

model

model.

model

model

.add (Dropout (0.5))
.add (BatchNormalization())
add (Activation('relu'))

add
add
.add
add

Dense (50, activity regularizer=activity 12 (lambd)))
Dropout (0.5))

BatchNormalization())

Activation('relu'))

o~ o~ o~ o~

.add (Dense (10, activation='softmax',activity regularizer=activity 12 (lambd)))
# Finishing

-compale (foss=Necategorlcal crossentropy’,
optimizer="'adadelta',
metrics=['accuracy'])

# Training
history = model.fit (X[0:2400],

convertToOneHot (y[0:2400],10),

nb epoch=500,

Sl clal s iRzic =08}

#callbacks=[tensorboard],

validation data=[X[2400:3000], convertToOneHot (y[2400:3000],10)1])
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Backup



Why the hack they call it
cross entropy?



Entropy and Cross Entropy

« The central loss function for classification is called
cross entropy, why?

« This is a different viewpoint to the max-likelihood approach, we just
had

« Let’s start by defining the (information) entropy
— It's somewhat like the amount of surprise you get from a sample.

— Let’s first do an simple example

Image: Wikipedia
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Information Content of a single outcome

« 4 Balls each with same probability 25%

 How can your friend ask you which ball you picked, with minimum
number of questions?

Let’'s say we have a red ball.

Is it either bl d? :
siteither blue orre Two questions need to be ask.

Yes No
ls it blue? ls it green? Coding for red ball (yes=1)
ves / “No Yes / \No 10 // Information content 2 bits
Y J Coding for orange (your turn)

00 // Information content 2 bits

Example form https://www.quora.com/Whats-an-intuitive-way-to-think-of-cross-entropy 83



Information Content of a single outcome

« 4 Balls each with different probability 50%, 25%, 12.5%, 12.5%

A

 How can your friend ask you which ball you picked, with minimum
number of questions (on average)?
Let’'s say we have a blue ball.

ls it blue? One questions need to be ask.
Yes No
Is it red? Coding for blue ball (yes=1)
- Yes /\No 1 /I Information content 1 bit
Q Is itéreen? _ _
Yes /\ No Coding for red (2 questions)

01 // Information content 2 bit

Coding for green (your turn)
001 // Information content 3 bit

Example form https://www.quora.com/Whats-an-intuitive-way-to-think-of-cross-entropy
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Information content

Is it blue?
/e}// \\No
- N

W/ Is it red?

Yes NO
¥

- Is it green?

Yemo

- W/

On average:

2" 1+1/4*2+1/4*3=1.75 bits on average
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Information Content

« For that easy example, we found the best coding by hand.

« Let’s define the (self-) information (Turns out to be the minimal
coding length “Shannon's source coding theorem”)

« Requirement for Information (or surpirse)
— p; the probability of event i (or prob. that symbol i occurs)

— Seldom examples should have more surprise.
* I(p;) should be monotonic decreasing function

— Information should be non-negative
* I(p)) =0

— Uninformative, or sure events should have no Information
* I(p)) =0

— Information of independent events i, j should add up

« I(pajy) =1(pip;) = 1) +1(p))
« DI(p) = —log,(p)

— (defined up to basis), 2 is often chosen

86



Information Content > Entropy

« Entropy (average Information Content)
- H(p) = Xpil (pi)) = —Xpilogz(p:)

Is it either blue or red? Is it blue?

Yes .~ ™. _No Yes_ ..No
Is it blue? Is if‘g:reen? —1log, 0.5 =1 ~ IsitAred?
ves /\No Yes /"\No 52 v ves /\No
» ) N .,/ _.‘
o - _ log 0.25 =2 Is it green?
2 Y A
—log, 0.25 =2 e’

—Jlogz 0.125 =3
CH(X) =2 H(X) = 0.5+ 0.25*2+0.25*3=1.75

<« S
S

<
@4 S
o

« 4
PR o
o

N
gt o
o
o p
o

<

=

In general: Maximal Entropy if uniform, minimal if peaked (see also in physical Systems)
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Cross Entropy

« |f we know the distribution p, we can find the best coding and need
H bits on average

» |f we have a “wrong” distribution g how many bits do we need on
average

— H(p,q) = —Ypilog2(q;) = H(p)

« Example, we think symbols come uniform distributed q. But they
come (0.5,0.25,0.125,0.125)

Is it either blue or red?
Yes No

Is it blue? Isit green? H(p,q) =052+0.252+0.125 *2+0.1252=2 > 1.75

Yes No Yes No
"’/ R

Optimal Coding Scheme
for Uniform q
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KL-Divergence

If we have a “wrong” distribution g how many bits do we have more
than the minimal possible amount H(p)

— Dk (pllg) =H(p,q) —H(p) =0

Example, we think symbols come uniform distributed q. But they
come (0.5,0.25,0.125,0.125)

Is it either blue or red?

Yes No D(p,q) =H(p,q) —H(p) =2—-1.75=0.25

Is it t;lue? Isit éreen?
Yes / “\No Yes No

w

Optimal Coding Scheme
for Uniform q
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Cross Entropy in DL

D Y /r D ? (}((")) — ?
L/ 1 7::‘/‘ Varx— he ¢ L/ _;ﬂ
3 T 2
(Nl //idvadara Z ~///////////‘
7 1 Y
f—t> f—o=>

H(p,q) = —Y.p;Inq; (for one example of the training set)
H(p,q) = —ZZpi(j)lnqij (for the training set)

We minimize the cross entropy by changing q, the minimum is reached when
g is identical to distribution of real labels p

Alternatively we could also minimize the KL-Divergence
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Further Resources (cross entropy and information theory)

« https://rdipietro.qithub.io/friendly-intro-to-cross-entropy-loss/

» https://www.quora.com/Whats-an-intuitive-way-to-think-of-cross-
entropy

» https://www.khanacademy.org/computing/computer-
science/informationtheory/moderninfotheory/v/information-entropy

« https://medium.com/swilh/shannon-entropy-in-the-context-of-
machine-learning-and-ai-24aee2709e32
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