Machine Intelligence:: Deep Learning Week 3

Oliver Dürr
Institut für Datenanalyse und Prozessdesign
Zürcher Hochschule für Angewandte Wissenschaften

Winterthur, 5. March. 2019

Organizational Issues: Projects

- Projects (2-3 People)
- Presented on the last day
- Spotlight talk (5 Minutes)
- Poster
- Topics
- You can choose a topic of your own (have to be discussed with us latest by week4-week5)
- Possible Topics
- Take part in a Kaggle Competition (e.g. Leaf Classification / Dogs vs. Cats)
- Overview of google ml learning cloud for deep learning
- Datasets e.g. http://www.vision.ee.ethz.ch/en/datasets/
- Please talk to us until week $4 \rightarrow 5$
- Q\&A Session 1h in week 7

Organizational Issues: Times

- Next times (total 30 minutes break in between, possible different breaks)
- 09:10-10:30 (We start 10 past 9)
- 11:00-12:40
- Please interrupt us if something is unclear!

Learning Objectives

- Increase our knowledge in TF
- Foundations of DL
- Loss Function (what to minimize)
- Cross entropy loss for multinomial logistic regression
- Two principles to construct loss functions
- Maximum Likelihood Principle
- Cross Entropy
- Deep Neural Networks
- Fully Connected Networks with hidden layers
- Gradient Descent
- How to calculate the weights efficiently

Biological Interpretation

- In popular media neural networks are often described as a computer model of the human brain.

DL loosely inspired by how the brain works. Biological neurons are much more complicated.

Images from: http://cs231n.github.io/neural-networks-1/

Multinomial Logistic Regression

Multinomial logistic regression

- Logistic Regression outputs prob. for class 1
- So far we can classify into two classes
- We now want to classify more than 2 classes

Exercise: The MNIST Data Set

- MNIST the drosophila of all DL-Data sets
- 50000 handwritten digits to be classified into 10 classes (0-9)

Input tensors: are flattened to $28 * 28=768$ pixels

Multinomial Logistic Regression

Multinominal Regression

$$
\text { Binary Case }_{P(Y=1 \mid X=x)=\frac{1}{1+\exp (-z)}=\frac{\exp \left(\sum_{i} x_{i} W_{i}\right)}{1+\exp \left(\sum_{i} x_{i} W_{i}\right)} \propto \exp \left(\sum_{i} x_{i} W_{i}\right) .}
$$

$W_{12}=$ reads "from node 2 to 1 "
called logit

Multinomial case: just anothernon-linearity softmax
$p_{1}=P\left(Y_{1}=1 \mid X=x\right)=\frac{\exp \left(\sum_{i} x_{i} W_{i 1}+b_{1}\right)}{\sum_{j} \exp \left(\sum_{i} x_{i} W_{i j}+b_{j}\right)}=\operatorname{softmax}\left(\sum_{i} x_{i} W_{i 1}+b_{1}\right)$

Recap: Matrix Multiplication aka dot-product of matrices

We can only multiply matrices if their dimensions are compatible.

$$
\begin{aligned}
& A \times \quad \text { B }=C \\
& (m \times n) \times(n \times p)=(m \times p)
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{A}_{3 \times 3} \\
{\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \times\left[\begin{array}{ll}
\mathbf{B}_{3 \times 2} & =\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} \\
b_{31}
\end{array}\right. \\
b_{22} \\
b_{32}
\end{array}\right]=\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22} \\
c_{31} & c_{32}
\end{array}\right]}
\end{gathered}
$$

$$
\begin{aligned}
& c_{11}=a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31} \\
& c_{12}=a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32} \\
& c_{21}=a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31} \\
& c_{22}=a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32} \\
& c_{31}=a_{31} b_{11}+a_{32} b_{21}+a_{33} b_{31} \\
& c_{32}=a_{31} b_{12}+a_{32} b_{22}+a_{33} b_{32}
\end{aligned}
$$

Example:
$\mathbf{A}_{1 \times 2}=\left(\begin{array}{ll}0 & 3\end{array}\right)$
$\mathbf{B}_{2 \times 3}=\left(\begin{array}{lll}3 & 1 & 7 \\ 8 & 2 & 4\end{array}\right)$
$\mathbf{C}_{1 x 3}=\mathbf{A}_{1 x 2} \cdot \mathbf{B}_{2 x 3}=\left(\begin{array}{lll}24 & 6 & 12\end{array}\right)$

GPUs love matrices (or tensors)

$$
\begin{aligned}
\left(p_{1}, p_{2}\right) & =\operatorname{soffmax}\left(x_{1} W_{11}+x_{2} W_{21}+s_{1}, x_{1} W_{12}+x_{2} U_{12}+b_{2}\right) \\
& =\text { Sogtmax }\left(\left(x_{1}, x_{2}\right)\left(\begin{array}{ll}
W_{11} & W_{12} \\
W_{21} & W_{22}
\end{array}\right)+\left(s_{1}, b_{2}\right)\right) \\
P & =\operatorname{softmax}(\times W+S) \\
p_{1}=P\left(Y_{1}\right. & =1 \mid X=x)=\frac{\exp \left(\sum_{i} x_{i} W_{i 1}+b_{1}\right)}{\sum_{j} \exp \left(\sum_{i} x_{i} W_{i j}+b_{j}\right)}=\operatorname{softmax}\left(\sum_{i} x_{i} W_{i 1}+b_{1}\right)
\end{aligned}
$$

Your turn

- \quad Input $x=(1,2)$
- $W=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$
- $b=(1,2,3)$
- Calculate the output using numpy:
- Hints:
- x = np.asarray([[1,2]]) \#
- np.matmul(.,.) \# Matrix multiplication
- np.exp(.) \# Exponential
- np.sum(.) \# Sum
- \#Result: array([[3.29320439e-04, 1.79802867e-02, 9.81690393e-01]])

GPUs love matrices: Use the source luke
$\mathrm{x}=\mathrm{tf} . \mathrm{placeholder}(\mathrm{tf} . f l o a t 32$, [None, 784])
$\mathrm{W}=\mathrm{tf} . \operatorname{Variable(tf.zeros([784,~10]))}$
$\mathrm{b}=\mathrm{tf} . \operatorname{Variable(tf.zeros([10]))}$
$\mathrm{y}=\mathrm{tf} . \mathrm{nn} . \operatorname{softmax}(\mathrm{tf} . m a t m u l(x, \mathrm{~W})+\mathrm{b})$
Data is usually processed in (mini-) batches. Instead of X being a 28*28=784 long vector, we use a batch (e.g. size 100)

GPUs love matrices:

Slide Credit: Martin Gröner TensorFlow and DL without a PhD

Training Examples $\mathrm{Y}=1$
or $\mathrm{Y}=0$

$$
\operatorname{loss}=-\frac{1}{N} \sum_{n=1}^{N} \log \left(p_{\text {model }}\left(y^{(i)} \mid x^{(i)} ; \theta\right)\right)=-\frac{1}{N}\left(\sum_{i \in \text { All ones }} \log \left(p_{1}\left(x^{(i)}\right)\right)+\sum_{i \in \text { All zeros }} \log \left(p_{0}\left(x^{(i)}\right)\right)\right)
$$

N Training Examples classes (1,2,3,..,K)

$$
\operatorname{loss}=-\frac{1}{N} \sum_{n=1}^{N} \log \left(p_{\text {model }}\left(y^{(i)} \mid x^{(i)} ; \theta\right)\right)=-\frac{1}{N}\left(\sum_{i \in y_{j}=1} \log \left(p_{1}\left(x^{(i)}\right)\right)+\sum_{i \in y_{j}=2} \log \left(p_{2}\left(x^{(i)}\right)\right)+\ldots+\sum_{i \in y_{j}=K} \log \left(p_{K}\left(x^{(i)}\right)\right)\right)
$$

Output of last layer

Example: Look at class of single training example. Say it's Dejan, if classified correctly p_dejan $=1 \rightarrow$ Loss $=0$. Real bad classifier put's p_dejan=0 \rightarrow Loss = Inf.

One more Trick: Loss function

 with indicator functionA one-hot-encoded y picks the right class, form all of the K different classes.
For MNIST K=10, so why calculate, 9 logs and through them away? (Parallel executions)

$$
-N \cdot \operatorname{loss}=\sum_{i \in y_{j}=1} \log \left(p_{1}\left(x^{(i)}\right)\right)+\sum_{i \in y_{j}=2} \log \left(p_{2}\left(x^{(i)}\right)\right)+\ldots+\sum_{i \in y_{j}=K} \log \left(p_{K}\left(x^{(i)}\right)\right)=\sum_{i=1}^{N} y^{(i)} \underbrace{}_{\text {true }} \log \left(p\left(x^{(i)}\right)\right)=\sum_{i=1}^{N} y^{(i)}{ }_{\text {true }} \log \left(y_{i}\right)
$$

one-hotencoded

$$
\text { loss }=\frac{-1}{N} \sum_{i} X_{\text {mom }}^{(0)} \ln p\left(x^{(i)}\right)
$$

See later crossentropy and KL-Distance between y_{i} and $p\left(x^{(i)}\right)$

Training Neural Networks: Split of the data

For neural networks usually no cross-validation is done (due to long learning times).

For our use case (4000 images)

- Training set 3000, Test set 1000
- 20% of the Training set is taken as Validation Set

Stochastic gradient descent

- The loss function

$$
\operatorname{loss}=-\frac{1}{N} \sum_{n=1}^{N} \log \left(p_{\text {model }}\left(y^{(i)} \mid x^{(i)} ; \theta\right)\right)
$$

- A particular weight is updated using the partial derivative of the loss function (the sum) w.r.t θ_{i}
- The sum is taken over the whole training set of size N. Often the training set is split into mini-batches size of e.g. bs=128 (*)
- These mini-batches are processed one after another
- When all examples have been processed once, we speak of one epoch being finished
- For a new epoch one often reshuffles the data
- The batch size is chosen so that input tensor fits on the GPU.
(*) For some purists only when bs=1 is called stochastic gradient descent

Exercise: The MNIST Data Set

Input tensors

One minibatch has dimension $(128,28,28,1)$ (batch, x, y, color) or $(128,784)$ flattened

Exercise: Implement multinomial logistic regression

Finish the code in the notebook: Multinomial Logistic Regression

- Think about the trick how the loss is calculated!
- Compare the loss and accuracy in the validation set with the loss in the training set. Why is there such a difference?
- Question: How many parameters do we have?

Hints:

$$
p_{j}=\frac{\exp \left(\sum_{i} x_{i} W_{i j}+b_{j}\right)}{\sum_{j .} \exp \left(\sum_{i} x_{i} W_{i j}+b_{j}\right)}=(\operatorname{softmax}(\mathrm{xW}+\mathrm{b}))_{j}
$$

SOLUTION

- We have
- For W $28 * 28 * 10=7840$ Parameter
- For b 10 Parameter
- Together 7850 Parameters

- Trick with the loss function [Blackboard]
- loss = tf.reduce_mean(-tf.reduce_sum(y_true * tf.log(y_pred), reduction_indices=[1]))
- See:
https://github.com/tensorchiefs/dl course/blob/master/notebooks $/ 05$ Multinomial Logistic Regression solution.ipynb
- https://github.com/tensorchiefs/dl course/blob/master/notebooks misc/Explanation c f loss.ipynb

Alternative solution

```
w = tf.Variable(tf.random_normal([784, 10], stddev=0.01))
b = tf.Variable(tf.zeros([10]))
z = tf.matmul(x,w) +b #aka logits
loss = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(labels=y_true,logits=z)
#Old Solution
prob = tf.nn.softmax(z)
loss_old = tf.reduce_mean(-tf.reduce_sum(y_true * tf.log(prob),
reduction_indices=[1]))
```

For numerical stability, one should use
tf.nn.softmax_cross_entropy_with_logits
There is also a sparse version (no one hot encoded needed) tf.nn.sparse_softmax_cross_entropy_with_logits

Now we are well prepared to entre the realm of deep learning

D:

Today: Fully Connected Networks

1-D Logistic Regression

Networks with hidden layers

Limitations of (multinomial) logistics regression

Logistic regression in NN speak: "no hidden layer"

Iterations	Learn		Activation		Regula				Problem type
000,000	0.03	\checkmark	Sigmoid	\checkmark	None	\checkmark	0	\checkmark	Classification

DATA
Which dataset do
Which dataset do
you want to use?

Railo of training to
$\xrightarrow{\text { test data: } 50 \%}$
${ }^{\text {Noise: }}$
Batch size: 10
regenerate

FEATURES Which properties feed in?

Network taken from

Neural Network with hidden units

- Go to http://playground.tensorflow.org (https://goo.gl/VR3db5) and train a neural network for the data:

- Start with 0 hidden layers. Increase the number of hidden layers to one, what do you observe?
- Now go to here (https://goo.gl/XwLRKB) and increase the number of neurons in the hidden layer. What do you observe?

Results

- 0 hidden layers, only a single line
- Many neurons in a hidden layer \rightarrow also complicated functions

Results (cont)

One hidden Layer

Input LayerHidden LayerOutput Layer

A network with one hidden layer is a universal function approximator!

6 hidden neurons

20 hidden neurons

http://cs231n.github.io/neural-networks-1/

Brief History of Machine Learning (supervised learning)

Examples of deep architectures

Original Resnet had 152 Layers: https://arxiv.org/abs/1512.03385

Why going deep: Experimental evidence

The test set accuracy consistently increases with increasing depth. Just increasing model size does not yield the same performance.

Taken from: http://www.deeplearningbook.org/contents/mlp.html

Why Deep: Hierarchy of learned features in Object Detection

DEEP NEURAL NETWORK (DNN)

Application components:
Task objective
e.g. Identify face

Training data
10-100M images
Network architecture

- 10 layers

1B parameters
Learning algorithm
~30 Exaflops
~30 GPU days

Why deeper (summary)?

- If a network with one hidden layer is a universal function approximator, why bother to go deeper?
- Step functions are universal function approximators, too. Would you use them?
- Representational power:
- There is experimental evidence that a 3 layered network needs less weights in total than a network with one hidden layer.
- Theoretically backed for some functions
- For some applications as image classification there is a natural hierarchy of features to be learned
- More details see: http://cs231n.github.io/neural-networks-1/\#power and references therein.
- Still active research area and not solved yet
- Novel approach Tishby information plane, see e.g. his talk at Yandex https://www.youtube.com/watch?v=bLqJHjXihK8

More than one layer

We have all the building blocks

- Use outputs as new inputs
- At the end use multin. logistic regression
- Names:
- Fully connected network
- Multi Layer Perceptron (MLP)Input Layer

Hidden Layer

Output Layer

Summary

Softmax in last layer

A network for classifying digits

Sketch of the network (not all nodes shown)

Results

We get an accuracy of about 89% on the validation set.
Training error and loss approach zero. Validation error and loss increase with time (overfitting).

Summary

- Where do we stand?
- In Principle we now can use deep networks
- There are some tricks, we learn shortly.
- To understand those tricks we have to get an understanding how learning works...
- Learning / gradient flow
- Nowadays networks are learnt with gradient descent
- For each weight a gradient w.r.t. loss is calculated and the weights are adapted
- As we see a gradient signal flows from the loss to the input

Layer / chain structure of networks

Input Layer

Hidden Layer

Simple chaining

$$
p=\operatorname{softmax}\left(b^{(3)}+W^{(3)} f\left(b^{(2)}+W^{(2)} f\left(b^{(1)}+W^{(1)} x^{(1)}\right)\right)\right)
$$

Backpropagation

Slide Credit to Elvis Murina for the great animations

Motivation:

The forward and the backward pass

- https://google-developers.appspot.com/machine-learning/crash-course/backprop-scroll/

Chain rule recap

- If we have two functions f, g

$$
\begin{aligned}
& y=f(x) \text { and } \\
& \mathrm{z}=g(y)
\end{aligned}
$$

then y and z are dependent variables.

- And by the chain rule:

$$
\frac{\partial z}{\partial x}=\frac{\partial y}{\partial x} * \frac{\partial z}{\partial y}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{\mathrm{y}} \xrightarrow{\mathrm{Z}} \xrightarrow{\frac{\partial z}{\partial x}=} \frac{\partial y}{\partial x} \quad * \frac{\partial z}{\partial y}
\end{aligned}
$$

Gradient flow in a computational graph: local junction

Illustration: http://cs231n.stanford.edu/slides/winter1516 lecture4.pdf

Example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
\frac{\partial(\alpha+\beta)}{\partial \alpha}=1 \quad \frac{\partial\left(\alpha^{*} \beta\right)}{\partial \alpha}=\beta
$$

\rightarrow Multiplication do a switch

Forward pass

Training data:

$$
\begin{aligned}
& x_{1}=1 \\
& x_{2}=2 \\
& y_{1}=1
\end{aligned}
$$

Initial
weights:
$w_{1}=1$

$\underbrace{1}_{1}$| $w_{2}=2$ |
| :--- |
| $b=-5$ |

$$
p(y=1 \mid X)=\frac{1}{1+e^{-\left(x_{1} * w_{1}+x_{2} * w_{2}+b\right)}}
$$

Loss

Backward pass

Training data:

$$
\begin{aligned}
& x_{1}=1 \\
& x_{2}=2 \\
& y_{1}=1
\end{aligned}
$$

Initial
weights:

$$
\underbrace{1}
$$

$w_{1}=1$
$w_{2}=2$
$b=-5$

-0.5

$$
\begin{aligned}
& f=a * b ; \frac{\partial f}{\partial a}=b ; \frac{\partial f}{\partial b}=a \\
& f=a+b ; \frac{\partial f}{\partial a}=1 ; \frac{\partial f}{\partial b}=1
\end{aligned}
$$

$$
f=\frac{1}{a} ; \frac{\partial f}{\partial a}=-\frac{1}{a^{2}}
$$

$f=e^{a} ; \frac{\partial f}{\partial a}=e^{a}$
$f=\log (a) ; \frac{\partial f}{\partial a}=\frac{1}{a}$

Forward pass

Training data:

$$
\begin{aligned}
& x_{1}=1 \\
& x_{2}=2 \\
& y_{1}=1
\end{aligned}
$$

weights:

Initial

$$
w_{1}=1
$$

$$
w_{2}=2
$$

$$
b=-5
$$

gradients: $\frac{\partial L}{\partial w_{1}}=-0.5 ; \frac{\partial L}{\partial w_{2}}=-1 ; \frac{\partial L}{\partial b}=-0.5$
-4.75
Update of the weights: $\eta=0.5$

$$
\begin{aligned}
& w_{1(t+1)}=w_{1(t)}-\eta * \frac{\partial L}{\partial w_{1}}=1-0.5 *(-0.5)=1.25 \\
& w_{2(t+1)}=w_{2(t)}-\eta * \frac{\partial L}{\partial w_{2}}=2-0.5 *(-1)=2.5 \\
& b_{(t+1)}=b_{(t)}-\eta * \frac{\partial L}{\partial b}=-5-0.5 *(-0.5)=-4.75
\end{aligned}
$$

Side remark:

- Some DL frameworks (e.g. Torch) do not do symbolic differentiation. For these for each operation needs to store only
- The actual value y coming in and the value of derivative $\left.\frac{\partial g}{\partial y} \right\rvert\,$,

class MultiplyGate(object):
def forward (x, y) :
$z=x^{*} y$
self. $x=x$ \# must keep these around!
self. $y=y$
return z
def backward(dz):
$d x=$ self. $y * d z \#[d z / d x * d L / d z]$
$d y=s e l f . x^{*} d z \#[d z / d y * d L / d z]$
return [dx, dy]

Further References / Summary

- For a more in depth treatment have a look at
- Lecture 4 of http://cs231n.stanford.edu/
- Slides http://cs231n.stanford.edu/slides/winter1516 lecture4.pdf
- Gradient flow is important for learning: remember!

The incoming gradient is multiplied by the local gradient

Tricks of the trade

Research Topics

German Traffic Sign 2011

Hot
in ML
\square SVM

Activation Functions

Backpropagation through sigmoid

What happens when $x=-10$?
What happens when $x=0$?
What happens when $x=10$?

Gradients are killed, when not in active region! Slow learning!

Different activations in inner layers

$\mathrm{N}-\mathrm{D}$ log regression

$$
z=x_{1} W_{1}+x_{2} W_{2}+b=W x+b
$$

Activation function a.k.a.
Nonlinearity f(z)

Krizhevsky et al 2012

Motivation: Green: logistic regression. Red:
ReLU faster convergence

Figure 1: A four-layer convolutional neural network with ReLUs (solid line) reaches a 25% training error rate on CIFAR-10 six times faster than an equivalent network with tanh neurons

There are other alternatives besides sigmoid and ReLU.

Currently ReLU is standard

Backpropagation through ReLU

What happens when $x=-10$?
What happens when $x=0$?
What happens when $x=10$?

Gradients are killed, only when $x<0$

An activation which never gets killed...

- Why just don't take identity?

$p=\operatorname{softmax}\left(x^{(1)} f\left(W^{(1)}\right) f\left(W^{(2)}\right) f\left(W^{(3)}\right)\right)$
$x^{(1)} W^{(1)} W^{(2)} W^{(3)}=x^{(1)} W$

If you multiply two matrices $A \cdot B$ you get a new matrix.

Activation Functions

[Mass et al., 2013]
[He et al., 2015]

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- will not "die".

Parametric Rectifier (PReLU)

Leaky ReLU

$f(x)=\max (0.01 x, x)$

$$
f(x)=\max (\alpha x, x)
$$

backprop into \alpha (parameter)

Not really established

Initialization

Initialization of weights: Experiment

Layer (type)	Output Shape	Param \#	Connected to
dense_1 (Dense)	(None, 100)	78500	dense_input_1[0][0]
dense_2 (Dense)	(None, 100)	10100	dense_1[0][0]
dense_3 (Dense)	(None, 100)	10100	dense_2[0][0]
dense_4 (Dense)	(None, 100)	10100	dense_3[0][0]
dense_5 (Dense)	(None, 100)	10100	dense_4[0][0]
dense_6 (Dense)	(None, 100)	10100	dense_5[0][0]
dense_7 (Dense)	(None, 100)	10100	dense_6[0][0]
dense_8 (Dense)	(None, 100)	10100	dense_7[0][0]
dense_9 (Dense)	(None, 100)	10100	dense_8[0][0]
dense_10 (Dense)	(None, 10)	1010	dense_9[0][0]
Total params: 160,310 Trainable params: 160,310 Non-trainable params: 0			
Weights are initialized with $\mathrm{N}(0$, sigma)			
See: https://github.com/tensorchiefs/dl course/blob/master/notesbooks misc/weight initialization.ipynb			

Different Initialization: Performance

Name	Smoothed
s_relu_0.001	0.1067
relu_0.01	0.1233
relu_0.1	0.8855
relu_1.0	0.1017
relu_10	0.09000

loss

Name	Smoothed
2arelu_0.001	2.300
relu_0.01	2.300
arelu_0.1	$\mathbf{0 . 0 1 8 3 6}$
relu_1.0	14.57
relu_10	14.48

Reason for not learning

- Activation values vanished or explode
- No learning since gradient is also vanishing
- Grad $\sim x$ and thus also near 0
- Historical anecdote
- Deep Learning started 2006 when Hinton et. all managed to train deep networks unsupervised pre-training
- Later it turned out that random initialization with the same weight would yield similar results
- For ReLU: He et al., http://arxiv.org/abs/1502.01852
- sigma = np.sqrt(2. / fan_in)
- fan_in number of incomming weights (100 in our example)
- bias to zero

Regularization

Regularisation

Having more parameters than examples $\boldsymbol{\rightarrow}$ overfitting becomes a real problem

Several solutions (selection, for complete treatment DL-book chapter 7)

- Early stopping
- Dropout
- Not covered today
- Penalties on parameter norm (L1, L2 a.k.a. weight decay)
- Parameter tying and sharing (in the next lectures)
- Very powerful for special domains
- Time signals \rightarrow RNN
- Image like data \rightarrow CNN
- Dataset Augmentation (in CNN lecture)
- Semi-supervised learning (use unlabelled data)

Early stopping

- Simply stop (or use the parameters of the network) when validation loss is minimal (hope for the best for the test-set)

Stop here
Use these weights

- In practice
- Needs a validation set not used to update the weights
- Save model weights at different epochs (checkpoints)
- Plot and decide which checkpoint to use (or continue training)

Early stopping (intuition)

- Early stopping can be seen as a from of regularization
- The optimization procedure cannot explore the whole parameter space
- Cannot adopt too much on the training set

Dropout

- Dropout is a simple and relatively recent regularization technique (Srivastava et al. 2014) which is already widely used.
- It forces the network to learn redundant features
- It averages over many networks

Dropout during training.

Technically: add a layer killing neurons with prob. p

(a) Standard Neural Net

(b) After applying dropout.

Figure: from paper

Dropout: training / testing

- At test time we (usually) want deterministic predictions
- Later in the course we use them to make stochastic predictions
- Weights (connections) need to be downweighted by p
- During training the connections have not been present with prob. p, they would thus be too strong if always present in test time

(a) At training time

(b) At test time
- Alternative approach (inverted dropout)
- Upweight the weights by W/p during training (see also: http://cs231n.github.io/neural-networks-2/)
- No scaling needed at test-time

Higher level libraries

- Including all the logging and regularisation would require to write lot of code
- There is a multitude of libraries (currently too many!) which help you with training and setting up the networks
- Libraries make use of the Lego like block structure of networks

Have a look at

https://github.com/tensorchief s/dl_course_2018/blob/master/ docs/keras-short-intro.pdf

Example in Keras

```
model = Sequential() #We start to build the model in a sequence
model.add(Dense(500, batch input shape=(None,
784),activity_regularizer=\overline{activī}y_l2(lambd)))
model.add(Dropout(0.5))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dense(50,activity_regularizer=activity_l2(lambd)))
model.add(Dropout(0.5))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dense(10, activation='softmax',activity_regularizer=activity_l2(lambd)))
# Finishing
model.compile(loss='categorical_crossentropy',
    optimizer='adadelta',
    metrics=['accuracy'])
# Training
history = model.fit(X[0:2400],
    convertToOneHot(y[0:2400],10),
    n.b_epoch=500,
    batch_size=128,
    #callbacks=[tensorboard],
    validation_data=[X[2400:3000], convertToOneHot(y[2400:3000],10)])
```

Backup

Why the hack they call it cross entropy?

Entropy and Cross Entropy

- The central loss function for classification is called cross entropy, why?
- This is a different viewpoint to the max-likelihood approach, we just had
- Let's start by defining the (information) entropy
- It's somewhat like the amount of surprise you get from a sample.
- Let's first do an simple example

Information Content of a single outcome

- 4 Balls each with same probability 25%

- How can your friend ask you which ball you picked, with minimum number of questions?

Let's say we have a red ball. Two questions need to be ask.

Coding for red ball (yes=1) 10 // Information content 2 bits

Coding for orange (your turn) 00 // Information content 2 bits

Information Content of a single outcome

- 4 Balls each with different probability $50 \%, 25 \%, 12.5 \%, 12.5 \%$

- How can your friend ask you which ball you picked, with minimum number of questions (on average)?

Let's say we have a blue ball.
 One questions need to be ask.

Coding for blue ball (yes=1) 1 // Information content 1 bit

Coding for red (2 questions) 01 // Information content 2 bit

Coding for green (your turn) 001 // Information content 3 bit

Information content

On average:
$1 / 2^{*} 1+1 / 4^{*} 2+1 / 4 * 3=1.75$ bits on average

Information Content

- For that easy example, we found the best coding by hand.
- Let's define the (self-) information (Turns out to be the minimal coding length "Shannon's source coding theorem")
- Requirement for Information (or surpirse)
- p_{i} the probability of event i (or prob. that symbol i occurs)
- Seldom examples should have more surprise.
- $I\left(p_{i}\right)$ should be monotonic decreasing function
- Information should be non-negative
- $I\left(p_{i}\right) \geq 0$
- Uninformative, or sure events should have no Information
- $I\left(p_{i}\right)=0$
- Information of independent events i, j should add up
- $I\left(p_{(i, j)}\right)=I\left(p_{i} p_{j}\right)=I\left(p_{i}\right)+I\left(p_{j}\right)$
- $\boldsymbol{\rightarrow} I(p)=-\log _{2}(p)$
- (defined up to basis), 2 is often chosen

Information Content \rightarrow Entropy

- Entropy (average Information Content)
- $\quad H(p)=\sum p_{i} I\left(p_{i}\right)=-\sum p_{i} \log _{2}\left(p_{i}\right)$

In general: Maximal Entropy if uniform, minimal if peaked (see also in physical Systems)

Cross Entropy

- If we know the distribution p , we can find the best coding and need H bits on average
- If we have a "wrong" distribution q how many bits do we need on average

$$
-H(p, q)=-\sum p_{i} \log 2\left(q_{i}\right) \geq H(p)
$$

- Example, we think symbols come uniform distributed q. But they come (0.5,0.25,0.125,0.125)

$$
H(p, q)=0.52+0.252+0.125 * 2+0.1252=2>1.75
$$

Optimal Coding Scheme for Uniform q

KL-Divergence

- If we have a "wrong" distribution q how many bits do we have more than the minimal possible amount $H(p)$

$$
-D_{K L}(p \| q)=H(p, q)-H(p) \geq 0
$$

- Example, we think symbols come uniform distributed q. But they come ($0.5,0.25,0.125,0.125$)

$$
D(p, q)=H(p, q)-H(p)=2-1.75=0.25
$$

Optimal Coding Scheme for Uniform q

Cross Entropy in DL

We minimize the cross entropy by changing q, the minimum is reached when q is identical to distribution of real labels p

Alternatively we could also minimize the KL-Divergence

Further Resources (cross entropy and information theory)

- https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/
- https://www.quora.com/Whats-an-intuitive-way-to-think-of-crossentropy
- https://www.khanacademy.org/computing/computer-science/informationtheory/moderninfotheory/v/information-entropy
- https://medium.com/swlh/shannon-entropy-in-the-context-of-machine-learning-and-ai-24aee2709e32

