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Organizational Issues: Times

• First 3 times  (total 30 minutes break in between)
– 13:30 – 15:00 
– 15:30 – 17:00

• Please interrupt us if something is unclear!

• Projects 
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Recap from last week
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Recap: Feed and Fetch
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res = sess.run(f, feed_dict={b:[2]})

Fetch 
f (symbolic)

fetch 
(the numeric value) symbolic values



Prinzipielle Funktionsweise: Training Bild Klassifikation
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Trainingsprinzip:
Parameter	werden	so	eingestellt,	dass	möglichst	
wenige	Fehler	in	den	Trainingsdaten	gemacht	
werden.

Tiger

Tiger

Wahre Klasse Vorhergesagtes
Label

Seehund 👎

Tiger 👍

Typisch 1 Mio. Trainingsdaten

Seepf
erd

Seepferd 👍

...



Prinzipielle Funktionsweise: Training Lineare Regression
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130

Das einfachste “Deep Learning“ Model hat 2 
Parameter.

Alter: 35        155

Alter: 55        152

Wahrer Blutdruck
Vorhergesagter 
Blutdruck

151

131

33 Trainingsdaten aus einer Studie von nordamerikanischen Frauen

...

Alter: 55 140



Loss for linear regression: sums of squared error
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loss = 1
N

(ax(i ) + b − y(i ) )2
i=1

N

∑

ŷ(i )(x) = ax(i ) + b

x

y



Optimization

Slide from cs229

Figure shows a 2 dimensional loss function. In DL Millions! 
We just know the current value (blind)
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Optimization

• Gradient Descent 

Slide credit: wikipedia

Gradient is perpendicular to levels 
Wi

t+1 =Wi
t − ε ∂Wi

loss 

W1

W2

−∂W2
loss 

−∂W1
loss 

−∇loss 
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Effect of learning rate

11https://developers.google.com/machine-learning/crash-course/fitter/graph



Gradient Descent in DL
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Always	have	a	look	at	
the	learning	curves



Computation done with a graph
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tf.reset_default_graph()
a = tf.Variable(1.0, name = 'a') 
b = tf.Variable(1.0, name = 'b')
x = tf.placeholder('float32', [N], name='x_data')
y = tf.placeholder('float32', [N], name='y_data')
loss = tf.reduce_mean(tf.square(a*x + b - y), name='loss')
train_op = tf.train.GradientDescentOptimizer(0.0001).minimize(loss)
with tf.Session() as sess:

…
for e in range(epochs): #Fitting the data for some epochs

res = sess.run([train_op,…],feed_dict={x:x_data, y:y_data}) 

TF does all the hard work for you.
Symbolically calculates gradient. Running train_op does one 
gradient step.

loss= "
#
∑ (𝑎𝑥 ( + 𝑏 − 𝑦 ( )#
(." = /00

#



•Linear regression in TensorFlow

•a) Open the notebook Linreg_with_slider and run the fist 4 cells and try to 
minimize the loss by adjusting the parameters a and b.

•b) Run the next two cells and feed your adjusted parameters through the 
graph. You have to modify cell 6 a bit.
•Do not do c, d)

Feeding and Fetching the graph

Matrix	Multiplication	in	TensorFlow	(Rest)

c)	Now	use	a	placeholder	for	m2	to	feed-in	values.	You	must	specify	the	shape	of	the	m2	matrix	
(rows,	columns).



End of Recap
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Learning Objectives

• Increase our knowledge in TF

• Foundations of DL
– Loss Function (what to minimize)

• Loss Function for Regression
– Mean Squared Error

• Loss Function for classification
– Binary cross entropy loss for logistic regression
– Cross entropy loss for multinomial logistic regression

• Two principles to construct loss functions
– Maximum Likelihood Principle
– Cross Entropy [time permitting]
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We use networks with 
no hidden layers to 
explain basics. Loss 
function and gradient 
descent stay the same 
for real networks.



Tuning a neural network: a loss function

• Neural networks are models which have parameters
• We have (training 𝑖 = 1…𝑁_training) data in pairs 𝑥(() and 𝑦(()

• Examples (your task what are the x’s what are the y’?)
– Facerec.: Faces and Names
– Age Prediction: Faces and Age (numerical problem)

• How to tune the nobs that the output of the model 	𝑦=(() matches the 
“true” value 𝑦(()? We optimize a loss.

• To understand the principle, we start with something dead simple: good 
old linear regression
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𝑥(()àmodel	parametrized	with	weightsà	𝑦=(()

Depending on the weight the model 
produces a different 	𝑦=(()



Linear Regression as Max 
Likelihood Optimization
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Sie haben einen Würfel mit z.B. l=2 roten Seiten.

Wie Wahrscheinlich ist es, dass Sie bei 100 Würfen:

• Keine rote Seite gewürfelt haben
• 34 rote Seiten gewürfelt haben
• 99 rote Seiten gewürfelt haben

Die Maximum-Likelihood (ML) Methode

P(X =k | p) = 100
k

⎛
⎝⎜

⎞
⎠⎟
⋅ pk ⋅(1− p)100−k

2
6

=p .



Ergebniss
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from scipy.stats import binom
reds = np.asarray(np.linspace(0,100,101), dtype='int') #The numbers 0 to 10 as integers
p_reds = binom.pmf(k=reds, n=100, p=2/6) #The probability of 0,1,2...,throws
plt.stem(reds, p_reds)
plt.xlabel('Number of reds')
plt.ylabel('Probability')



Umdrehen der Argumentation

• Wir haben 34 mal rot gesehen, welche Wert des Parameters erklärt die 
Daten am Besten (hat die grösste Wahrscheinlichkeit) 

•



Sie haben einen Würfel mit z.B. l=2 roten Seiten.

Wie Wahrscheinlich ist es, dass Sie bei 100 Würfen:

• Keine rote Seite gewürfelt haben
• 34 rote Seiten gewürfelt haben
• 99 rote Seiten gewürfelt haben

Die Maximum-Likelihood (ML) Methode

P(X =k | p) = 100
k

⎛
⎝⎜

⎞
⎠⎟
⋅ pk ⋅(1− p)100−k

2
6

=p In R ausprobieren.



Varying p
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# Solution
from scipy.stats import binom
num_reds = np.asarray(np.linspace(0,6,7), dtype='int')
p_num_dollar = binom.pmf(k=34, n=100, p=num_reds/6)



ML-Methode Was haben wir getan?

L(X |θ ) = P(X =k | p) = 100
k

⎛
⎝⎜

⎞
⎠⎟
⋅ pk ⋅(1− p)100−k

Fest Der Parameter
Variiert



ML-Methode Was haben wir getan?

L(X |θ ) = P(X =k | p) = 100
k

⎛
⎝⎜

⎞
⎠⎟
⋅ pk ⋅(1− p)100−k

Fest Der Parameter
Variiert

Wir haben das p so gewählt, dass es dem Maximum der Wahrscheinlichkeit 
genügt.

Anmerkung: P(X=k|p) (als Funktion von p) ist keine Wahrscheinlichkeit im engerem 
Sinne, denn z.B.
sum(dbinom(x = 34, prob = c(1:6)/6, size = 100))=0.083



Maximum Likelihood 
(one of the most beautiful ideas in statistics)

M(θ)                     Data
Likelihood / “probability“ 
(often known)

Tune the parameter(s) θ of the model M
so that (observed) data is most likely

What‘s the likelihood of the data for log. regression...
26

Ronald Fisher in 1913
Also used before by 
Gauss, Laplace



Lineare Regression als MaxLikelihood
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𝑌?@ ∼ 𝑁(𝜇?@, 𝜎
E)

Step 1: Probability Distribution for Data y given x.

Here: Gaussian with 𝜇 = 𝑎 ∗ 𝑥 + 𝑏 and 𝜎 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

See Blackboard



Derivation of the MSE See also blackboard



Logistic Regression 
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Fully Connected Networks

We start with....

1-D Logistic Regression

Real	networks	of	
course	are	larger.	
But	this	captures	
the	basic	structure
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The building blocks of a neural network: 
- logistic regression: the mother of all networks

• The first building block

• In the following, have a look at logistic regression and derive the 
cost-function (log-likelihood) which we maximise. 

• Logistic Regression by it self is a method used since many years in 
statistics (David Cox 1958) and should be part of the ML toolbox
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Logistic Regression [motivation]

Some Background on probabilistic modelling

The challenger space shuttle 
exploded 73 seconds the start in 
1986. One of bearings in the 
booster has been broken.
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Statistik & Challenger Desaster [side track]

• On the day of the challenger launch it was cold: 31°F. 
• In 7 from 23 flights there have been problems with the booster bearings

34

• Is there an increased risk of failure at low temperatures?
• NASA Engineer: „...I can't get a correlation between O-ring erosion, blow-by an O-ring, and temperature. “

• Would you launch (give reasons)?

Figures from: PRESIDENTIAL COMMISSION on the Space Shuttle Challenger Accident
(https://history.nasa.gov/rogersrep/v4part3.htm)



Statistik & Challenger Desaster [side track]

• There is information in the successful flights 
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Modelling logistic regression

p(X) = Pr(Y = 1|X) Prob. for one (or more) o-ring to be defect at a given 
temperature X  

p(x)

1. Draw a line p(X) = a X + b which fits data best (linear regression)
2. Question: Why is linear regression wrong?

X

0

1



Sigmoids to the rescue 

• With linear regression we have values outside [0,1]

• We do a sigmoid transformation to fix this (a.k.a. logistic curve)
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f (z) = (1+ e− z )−1 =σ (z)

z

f(z)



Modelling logistic regression

p(X) = Pr(Y = 1|X) Prob. for a O-ring to be defect at a given temperature X  

p(x)

Task: Use the sigmoid function to bend your results of the linear regression.

X

38

0

1



Logistic	Regression

39

Nur das erklaeren

z



Logistic Regression: Example challenger O-rings

Challenger launch @31 F
Prob. of a failure=0.9997

statistical modell (logistic regression) 
For Prob. for a failiure (Y=1)
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No failiure Y=0

Predict if O-Ring is broken, depending on temperature

P(
Y=

1|
X)

X
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Logistic Regression

Challenger launch @31 F
Prob. of a failure=0.9997

statistical modell (logistic regression)
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Predict if O-Ring is broken, depending on temperature

P(Y = 1| X = x) = (1+ e−(a⋅x+b) )−1 = (1+ e− z )−1 = f (x)

How do we determine the parameters (a,b) of the model? M(β)

z∈]− ∞,∞[→ [0,1]

X

P(
Y=

1|
X)
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Maximum Likelihood 
(one of the most beautiful ideas in statistics)

M(θ)                     Data
Likelihood / “probability“ 
(often known)

Tune the parameter(s) θ of the model M
so that (observed) data is most likely

What‘s the likelihood of the data for log. regression...
42

Ronald Fisher in 1913
Also used before by 
Gauss, Laplace



Likelihood: Probability of a single observation

For a given θ the probability of this datapoint (Y=0) is
1 - 0.08 = 92% 

Prob. of all data points is the product of the individual data points...
(if iid). 

For a given θ the probability
of this datapoint (Y=1) is p1=0.08

Prob. for failure (Y=1)=0.08
Given that Temp. 

p1 = P(Y = 1| X = x) = (1+ e−(a⋅x+b) )−1 = (1+ e− z )−1 = f (x)

Two data points Y=1 (failure)   and Y=0 (OK) 

Y
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Likelihood: Probability of the training set

Training Data i = 1...N 
X (i ),Y (i )

p1(X) = P(Y = 1| X) = (1+ e−(a⋅x+b) )−1 = (1+ e− z )−1 = f (x)

Probability to find Y=1 for a given values X (single data point) and a, b

p0 (X) = 1− p1(X) Probability to find Y=0 for a given value X (single data point) 

Likelihood (probability+ of the training set given the parameters) 

L(a,b) = p1
i∈All ones
∏ (x(i ) ) * p0

i∈All Zeros
∏ (x( j ) ) Let‘s maximize this probability

Y (i ) = 0

Y (i ) = 1

44



Maximizing the Likelihood

Likelihood (prob of a given training set) want to maximized wrt. parameters

Taking log (maximum of log is at same position) 

−nJ(θ ) = L(θ ) = L(a,b) = log
i∈All ones
∑ (p1(x

(i ) )) + log
i∈All zeros
∑ (p0 (x

(i ) )) = yi log(p1(x
(i ) ))+ (1− yi )log(p0 (x

(i ) ))
i∈All Training
∑

L(a,b) = p1
i∈All ones
∏ (x(i ) ) * p0

i∈All Zeros
∏ (x( j ) )

loss = − 1
N

log(pmodel (y
(i ) | x(i );θ ))

n=1

N

∑ = − 1
N

log
i∈All ones
∑ (p1(x

(i ) )) + log
i∈All zeros
∑ (p0 (x

(i ) ))
⎛

⎝⎜
⎞

⎠⎟

Same as cross-entropy loss used already for linear regression 

Neg.	log	likelihood	loss	(general)
This	is	the	prob.	the	model	evaluates	for	
the	true	class	y(i)	of	training	example	x(i)

45

This	is	like	a	if-then	

For	logistic	
regression



Logistic Regression in the neural net speak

1-D log Regression N-D log Regression

z = ax + b

f called
Logit non-linearity

GPUs	love	
linear	algebra!
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𝑧 = 𝑥"𝑊" + 𝑥E𝑊E + 1 ⋅ 𝑊O = 𝑥⃑	𝑾

𝑝" 𝑥 = 𝑃 𝑌 = 1 𝑋 = 𝑥 = 1 + exp −𝑥	𝑊 X" = 𝑓(𝑥⃑	𝑾)



Logistic Regression

47

Explain TensorFlow playground



Logistic Regression [10 minutes]

Open the tensorflow playground and 

a) Manually adjust the the weights to find best visual separation
b) Start learning with a learning rate 10 what happens? 
c) Change learning rate to sensible values.

48



Please have a look at the logistic regression notebook:

Notebook [30 minutes]
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Biological Interpretation

• In popular media neural networks are often described as a computer 
model of the human brain. 

Images from: http://cs231n.github.io/neural-networks-1/

DL loosely inspired by how the brain works. 
Biological neurons are much more 
complicated.

50



More than two classes

✔ ✔
>	2	outputs!	Not	possible	yet…

We	can	use	logistic	regression	for	
the	hidden	layers
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Multinomial Logistic Regression
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Exercise: The MNIST Data Set

• MNIST the drosophila of all DL-Data sets
– 50000 handwritten digits to be classified into 10 classes (0-9)

53

Input tensors: are flattened to 28*28=768 pixels

Image credit: https://www.tensorflow.org/versions/r0.10/images/MNIST-Matrix.png



Multinomial Logistic Regression
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2	instead	of	
768

3 instead	of	
10

W23

b3



Multinominal	Regression

  
P(Y = 1| X = x) = 1

1+ exp(−z)
=

exp( xiWii∑ )

1+ exp( xiWii∑ )
∝ exp( xiWii∑ )

W11

W12
  
p1 = P(Y1 = 1| X = x) ∝ exp( xiWi1 + b1i∑ ) p1 =

exp( xiWi1 + b1i∑ )

exp( xiWij + bji∑ )
j∑

  
p2 = P(Y2 = 1| X = x) ∝ exp( xiWi2i∑ + b2 )

pi = 1
i=1
∑

Binary Case

More than one class

Normalisation

W12 = reads „from node 2 to 1“

Multinomial case: just another non-linearity softmax

called logit

55

b

b1

b2

  
p1 = P(Y1 = 1| X = x) =

exp( xiWi1 + b1i∑ )

exp( xiWij + bji∑ )
j∑ = softmax( xiWi1 + b1i∑ )
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A     ´ B     = C
(m ´ n) ´ (n ´ p) = (m ´ p)

We can only multiply matrices if their dimensions are compatible.

32

3 1 7
8 2 4x
æ ö

= ç ÷
è ø

B
   A1x2 = 0 3( )    

C1x3 = A1x2 ⋅B2x3 = 24 6 12( )

Example:

A3x3 ´ B3x2 = C3x2

Recap: Matrix Multiplication aka dot-product of matrices
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GPUs love matrices (or tensors)

57

  
p1 = P(Y1 = 1| X = x) =

exp( xiWi1 + b1i∑ )

exp( xiWij + bji∑ )
j∑ = softmax( xiWi1 + b1i∑ )



Input x = (1,2)

W =  1 2 3
4 5 6

b = (1,2,3)

Calculate the output using numpy:

Hints:

x = np.asarray([[1,2]]) #

np.matmul(.,.) # Matrix multiplication

np.exp(.) # Exponential

np.sum(.) # Sum 

#Result: array([[3.29320439e-04, 1.79802867e-02, 9.81690393e-01]])
59

Your turn



GPUs love matrices: Use the source luke

…
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)

60

Data is usually processed in (mini-) batches. Instead of X being a 28*28=784 long 
vector, we use a batch (e.g. size 100)

Mini	batch	size	
at	runtime

2	instead	
of	768

3 instead	
of	10

W23

b3



GPUs love matrices:

61

y = tf.nn.softmax(tf.matmul(x, W) + b)

Y

Slide Credit: Martin Gröner TensorFlow and DL without a PhD https://docs.google.com/presentation/d/1TVixw6ItiZ8igjp6U17tcgoFrLSaHWQmMOwjlgQY9co/pub?slide=id.g110257a6da_0_431



Loss for multinomial regression

loss = − 1
N

log(pmodel (y
(i ) | x(i );θ ))

n=1

N

∑ = − 1
N

log
i∈All ones
∑ (p1(x

(i ) )) + log
i∈All zeros
∑ (p0 (x

(i ) ))
⎛

⎝⎜
⎞

⎠⎟

Training Examples Y=1
or Y=0

N Training Examples classes (1,2,3,…,K)

Output of last layer

pi

loss = − 1
N

log(pmodel (y
(i ) | x(i );θ ))

n=1

N

∑ = − 1
N

log
i∈yj=1
∑ (p1(x

(i ) )) + log
i∈yj=2
∑ (p2 (x

(i ) ))+ ...+ log
i∈yj=K
∑ (pK (x

(i ) ))
⎛

⎝
⎜

⎞

⎠
⎟

Example: Look at class of single training example. Say it’s 
Dejan, if classified correctly p_dejan = 1 è Loss = 0. Real bad 
classifier put’s p_dejan=0 è Loss = Inf.

loss = − 1
N

log(pmodel (y
(i ) | x(i );θ ))

n=1

N

∑

This	is	the	prob.	the	model	evaluates	
for	the	true	class	y(i)	of	training	

example	x(i)
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One more Trick: Loss function 
with indicator function

63

  
−N ⋅ loss = log

i∈y j=1
∑ ( p1(x( i) )) + log

i∈y j=2
∑ ( p2(x( i) ))+ ...+ log

i∈y j=K
∑ ( pK (x( i) )) = y( i)

true
i=1

N

∑ log( p(x( i) )) = y( i)
true

i=1

N

∑ log( yi )

one-hot-
encoded

A one-hot-encoded y picks the right class, form all of the K different classes.

For MNIST K=10, so why calculate, 9 logs and through them away? 
(Parallel executions)  

See later crossentropy and KL-Distance 
between 𝑦( and 𝑝(𝑥 ( )

i i



Training Neural Networks: Split of the data

1.

2.

3.

Taken	from	V03	ModelAssessment.		For	neural	networks	no	cross-validation	is	
done	(long	learning	times).

For	our	use	case	(4000	images)
• Training	set	3000,	Test	set	1000	
• 20%	of	the	Training	set	is	taken	as	Validation	Set

Data

Training set (ca. 70%) Test set (ca. 30%)

Training set (ca. 60%) Validation set 
(ca. 20%)

Test set (ca. 20%)

Don’t	let	any training	
procedure	ever	see	any	labels;	
better	lock	away	all	test	data	

until	final test!

Use	validation	set	for	
parameter	optimization	&	
estimating the	true	error	

(à that’s	a	mere	heuristic!)

Insidious	form	of	“testing	on	
training	data”:	do	many	

repeated	optimization	trials	on	
same	validation	set.

Dilemma:	all	3	sets	should	be	large	for	good	
estimates	of		as	well	as	the	true	error.
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Stochastic gradient descent 

• The loss function

• A particular weight is calculated by the partial derivative of the loss 
function w.r.t θi

• The sum is taken over the whole training set of size N. Often the 
training set is split into mini-batches size of e.g.  b=128 (*)

• These mini-batches are processed one after another
• When all examples have been processed once, we speak of one 

epoch being finished
• For a new epoch one often reshuffles the data

• The batch size is chosen so that input tensor fits on the GPU. 

loss = − 1
N

log(pmodel (y
(i ) | x(i );θ ))

n=1

N

∑

θi

65(*) For some purists only when b=1 is called stochastic gradient descent



Exercise: The MNIST Data Set

Input tensors

One minibatch has dimension (128, 28, 28, 1) (batch, x,y, color) 

or (128, 784) flattened

Image credit: https://www.tensorflow.org/versions/r0.10/images/MNIST-Matrix.png 66



Finish the code in the notebook: Multinomial Logistic Regression
• Think about the trick how the loss is calculated!

• Compare the loss and accuracy in the validation set with the loss in the training set. 
Why is there such a difference?

• Question: How many parameters do we have?

Exercise: Implement multinomial logistic regression

  
p j =

exp( xiWij + bji∑ )

exp( xiWiji∑ )
j∑ = softmax(xW+b)( ) j

Hints:
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• We have
• For W 28*28*10 = 7840 Parameter
• For b 10 Parameter
• Together 7850 Parameters

• Trick with the loss function
• loss = tf.reduce_mean(-tf.reduce_sum(y_true * tf.log(y_pred), reduction_indices=[1]))

• See: 
https://github.com/tensorchiefs/dl_course/blob/master/notebooks
/05_Multinomial_Logistic_Regression_solution.ipynb

• https://github.com/tensorchiefs/dl_course/blob/master/notebooks_misc/Explanation_o
f_loss.ipynb

SOLUTION
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Alternative solution

w = tf.Variable(tf.random_normal([784, 10], stddev=0.01))
b = tf.Variable(tf.zeros([10])) 
z = tf.matmul(x,w)+b #aka logits
loss = tf.reduce_mean(

tf.nn.softmax_cross_entropy_with_logits(labels=y_true,logits=z)
)

#Old Solution
prob = tf.nn.softmax(z)
loss_old = tf.reduce_mean(-tf.reduce_sum(y_true * tf.log(prob), 
reduction_indices=[1]))

For numerical stability, one should use 
tf.nn.softmax_cross_entropy_with_logits

There is also a sparse version (no one hot encoded needed)
tf.nn.sparse_softmax_cross_entropy_with_logits
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Learning Objectives

• Increase our knowledge in TF

• Foundations of DL
– Loss Function (what to minimize)

• Mean Squared Error
• Loss Function for classification

– Binary cross entropy loss for logistic regression
– Cross entropy loss for multinomial logistic regression

• Two principles to construct loss functions
– Maximum Likelihood Principle
– Cross Entropy 

– Gradient Descent 
• How to minimize
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We use  networks with 
no hidden layers to 
explain basics. Loss 
function and gradient 
descent stay the same.

Now we have the tools. Next time, we go deeper, promised.
Make yourself aware of the chain rule.



Backup
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Why the hack they call it 
cross entropy?
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Entropy and Cross Entropy

• The central loss function for classification is called 
cross entropy, why?

• This is a different viewpoint to the max-likelihood approach.
• See also

– https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/
– https://www.quora.com/Whats-an-intuitive-way-to-think-of-cross-entropy 
– https://www.khanacademy.org/computing/computer-

science/informationtheory/moderninfotheory/v/information-entropy
– https://medium.com/swlh/shannon-entropy-in-the-context-of-machine-learning-and-

ai-24aee2709e32

• Let’s start by defining the (information) entropy
– It’s somewhat like the amount of surprise you get from a sample.
– Let’s first do an simple example
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Information Content of a single outcome

• 4 Balls each with same probability  25%

• How can your friend ask you which ball you picked, with minimum 
number of questions?
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Let’s say we have a red ball.
Two questions need to be ask.

Coding for red ball (yes=1)
10 // Information content 2 bits

Coding for orange (your turn)
00 // Information content 2 bits

Example form https://www.quora.com/Whats-an-intuitive-way-to-think-of-cross-entropy 



Information Content of a single outcome

• 4 Balls each with different probability 50%, 25%, 12.5%, 12.5%

• How can your friend ask you which ball you picked, with minimum 
number of questions (on average)?
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Let’s say we have a blue ball.
One questions need to be ask.

Coding for blue ball (yes=1)
1 // Information content 1 bit

Coding for red (2 questions)
01 // Information content 2 bit

Coding for green (your turn)
001 // Information content 3 bit

Example form https://www.quora.com/Whats-an-intuitive-way-to-think-of-cross-entropy 



Information Content

• For that easy example, we found the best coding by hand.
• Let’s define the (self-) information (Turns out to be the minimal 

coding length “Shannon's source coding theorem”)

• Requirement for Information (or surpirse)
– 𝑝( the  probability of event i (or prob. that symbol i occurs) 
– Seldom examples should have more surprise. 

• 𝐼(𝑝() should be monotonic decreasing function 
– Information should be non-negative 

• 𝐼 𝑝( ≥ 0
– Uninformative, or sure events should have no Information

• 𝐼 𝑝( = 0
– Information of independent events 𝑖, 𝑗	should add up

• 𝐼 𝑝((,c) = 𝐼 𝑝(𝑝c = 𝐼 𝑝( + 𝐼(𝑝c)

• è𝑰 𝒑 = − 𝐥𝐨𝐠𝟐 𝒑
– (defined up to basis), 2 is often chosen
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Information Content à Entropy 

• Entropy (average Information Content)
– 𝐻 𝑝 = ∑𝑝(𝐼(𝑝() = −∑𝑝( logE(𝑝()
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𝐻 𝑋 = 2 𝐻 𝑋 = 0.5 + 0.25*2+0.25*3=1.75

In general: Maximal Entropy if uniform, minimal if peaked (see also in physical Systems)

− logE 0.25 = 2

− logE 0.5 =1

− logE 0.25 =2

− logE 0.125 =3



Cross Entropy

• If we know the distribution p, we can find the best coding and need 
H bits on average

• If we have a “wrong” distribution q how many bits do we need on 
average

– 𝐻 𝑝, 𝑞 = −∑𝑝(𝑙𝑜𝑔2 𝑞( ≥ 𝐻 𝑝

• Example, we think symbols come uniform distributed q. But they 
come (0.5,0.25,0.125,0.125)
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𝐻 𝑝, 𝑞 = 0.5	2 + 0.25	2 + 0.125	 ∗ 2 + 0.125	2 = 2 > 1.75

Optimal Coding Scheme 
for Uniform q



KL-Divergence 

• If we have a “wrong” distribution q how many bits do we have more 
than the minimal possible amount 𝐻(𝑝)

– 𝐷tu(𝑝||𝑞) = 𝐻 𝑝, 𝑞 − 𝐻 𝑝 ≥ 0

• Example, we think symbols come uniform distributed q. But they 
come (0.5,0.25,0.125,0.125)
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𝐷 𝑝, 𝑞 = 𝐻 𝑝, 𝑞 − 𝐻 𝑝 = 2 − 1.75 = 0.25

Optimal Coding Scheme 
for Uniform q



Cross Entropy in DL
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𝐻 𝑝, 𝑞 = −∑𝑝(𝑙𝑛𝑞( (for one example of the training set) 

𝐻 𝑝, 𝑞 = −∑∑𝑝(
(c)𝑙𝑛𝑞(

c (for the training set)

We minimize the cross entropy by changing q, the minimum is reached when 
q is identical to distribution of real labels p

Alternatively we could also minimize the KL-Divergence



Just for curiosity
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