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Woven Codes with Outer Warp: Variations,
Design, and Distance Properties

J. Freudenberger, M. Bossert, V. Zyablov, and S. Shavgulidze

Abstract—In this paper we consider convolutional and block
encoding schemes which are variations of woven codes with
outer warp. We propose methods to evaluate the distance char-
acteristics of the considered codes on the basis of the active
distances of the component codes. With this analytical bound-
ing technique, we derived lower bounds on the minimum (or
free) distance of woven convolutional codes, woven block codes,
serially concatenated codes, and woven turbo codes. Next, we
show that the lower bound on the minimum distance can be im-
proved if we use designed interleaving with unique permuta-
tion functions in each row of the warp of the woven encoder. Fi-
nally, with the help of simulations, we get upper bounds on the
minimum distance for some particular codes and then inves-
tigate their performance in the Gaussian channel. Through-
out this paper we compare all considered encoding schemes by
means of examples, which illustrate their distance properties.

Keywords— woven codes, turbo codes, serially concatenated
codes, interleaver design, active distances, bounds on dis-
tances.

I. INTRODUCTION

OVEN convolutional codes (WCC) were first in-
troduced by Höst, Johannesson, and Zyablov [1]

in 1997. A series of papers on the asymptotic behavior
of WCC show their distance properties [2] and error-
correcting capabilities [3], [4]. The characteristics of
woven codes were further investigated in [5], [6], [7],
[8], [9], [10]. In the original proposal [1], two types
of WCC are distinguished: Those with outer warp and
those with inner warp. The active distance family re-
cently introduced in [11] plays a key role in the struc-
tural analysis of WCC.

In this paper we consider variations of woven codes
with outer warp, give design rules and analyze their
distance properties. In Section II we give some basic
notations and definitions. In Section III we present an
overview of some new and old code constructions where
we utilize block or convolutional interleavers. We con-
sider all these constructions from the view of the woven
code construction. For instance, serially concatenated
convolutional codes [12] and parallel concatenated con-
volutional (turbo) codes [13] are regarded as special
cases of woven codes.

In Section IV we give a brief introduction to active
distances and based on these, we get some prelimi-
nary results which serve for further analysis of the dis-
tance properties of woven codes. Section V is concerned
with the distance characteristics of woven codes. Lower
bounds on the overall free distances or minimum dis-
tances are given for all considered code constructions.
We derive conditions that allow us to get these lower
bounds as the product of the minimum (or free) dis-
tances of the component codes.

In Section VI we extend these results. We present
designed interleavers, which lead to improved lower
bounds on the overall minimum distance, i.e. the over-
all minimum distance is about twice the product of
the minimum distances of the component codes. We
give some simulation results in Section VII and discuss
them with respect to the distance characteristics of the
codes.

II. BASIC NOTATIONS AND DEFINITIONS�
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The constraint length [14], [15] for the � th input se-
quence is defined asJ � �LKNMPOHQSRUT�V4WYX?Z�
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The overall constraint length J is defined as the sum
of all constraint lengths J ��qsr�=t Z J � . The memory u
is defined as the maximum of the constraint lengthsuv�&K�M�O �=t Z]w_x_x_x w r J � , and the minimal constraint length
is J�y �{z ��K}|=~ �=t Z]w_x_x_x w r J � . A rate �����!�P� convolutional
encoder of a convolutional code with generator matrixDF

()� is a realization of DF
A(B� as linear sequential cir-
cuit.

III. ENCODING SCHEMES

ITH binary woven convolutional codes, several
convolutional encoders are combined in such a

way that the overall code is a convolutional code. In [1],
two possible constructions were introduced, namely wo-
ven convolutional codes with outer and inner warp. In
this paper we only consider woven encoders with outer
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warp. We present some new encoder constructions.
Contrary to the original proposal, we investigate en-
coder constructions which lead to overall convolutional
codes and to overall block codes.
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Fig. 1. Overview of woven code constructions.

Serially concatenated convolutional codes with inter-
leavers introduced in [12], as well as parallel concat-
enated convolutional codes (turbo codes [13]) can be
considered as special cases of this new encoder con-
structions. An overview of possible variations of woven
code constructions is illustrated in Figure 1, where ���
denotes the number of outer encoders employed in the
woven scheme and the rates ��� and � � will be defined
later on. Below, we present different encoding schemes
of woven codes and point out the associations among
them.

Woven Convolutional Codes (WCC) [1]: A wo-
ven convolutional encoder with outer warp as depicted
in Figure 2 consists of � � outer convolutional encoders
which have the same rate � � �g� � �P� � . The informa-
tion sequence

'
is divided into ��� sub-sequences
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with
��� ���� ! � "��� � . These sequences are fed into the paral-
lel outer encoders. The outer code sequences
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are written row-wise into a buffer of � � rows. The bi-
nary code bits are read column-wise and the resulting
sequence constitutes the input sequence

' �
of the single

inner rate � � � � � ��� � convolutional encoder. The resul-
ting woven convolutional code has overall rate

�
� ��� � � � � �  (4)

Woven Turbo Codes (WTC) [16]: A woven turbo
encoder consists of � � outer convolutional encoders and
one inner convolutional encoder (see Figure 3). The in-
formation sequence

'
is subdivided into � � sequences

which are the input sequences to the ��� rate � � � � � ��� �
outer encoders. Parts of the symbols of the outer code
sequences (
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Fig. 2. Woven encoder with outer warp.

positions are multiplexed to the sequence
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�
. The se-

quence
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is the input sequence of the inner encoder.
The other symbols of the outer code sequences (
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dashed lines in Figure 3) are not encoded by the in-
ner encoder. These sequences
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Fig. 3. Woven turbo encoder.

Similar to the puncturing of convolutional codes we
describe the partitioning of the outer code sequences
into two so-called partial code sequences
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by means of a partitioning matrix � . Consider
a rate � � �s� � ��� � outer convolutional code. � is a � ���
� �
matrix with matrix elements � ����� Q�� �!��f , where � ��� �
is any integer. A matrix element � ��� �g� means that
the corresponding code bit will be mapped to the par-
tial code sequence
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, while a code bit corresponding

to � ��� ��� will appear in the partial code sequence
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.
With � � � q � w � � ��� - the number of ones in the partition-
ing matrix - and with the partitioning period ��� � � ��� �
we have ��� � ���� � � q � w � � ���� � � �  (5)

We call � � the partial rate, that is the fraction of outer
code bits which will be encoded by the inner encoder of
a woven turbo encoder. With ���)�8� we have a woven
encoder with outer warp as given in Figure 2. Finally,
we obtain the rate of the overall woven turbo code

� �� � � � � � �� �
0
� � 
p��!%� � � � (6)

where � � is the inner code rate.
Interleaving [17], [10]: First of all, we note that

if no interleaving is used, both considered encoding
schemes result in convolutional codes. When inter-
leaving is employed, one can use either column-wise or
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row-wise interleaving as indicated in Figure 1. The for-
mer leads to overall convolutional codes. We mainly fo-
cus our attention to the design of row-wise block inter-
leavers (see Figure 4). Here, each outer code sequence
'
� �

is interleaved by arbitrary and independent inter-
leavers. The interleaved sequences �

@
�	 are fed into the

inner encoder. Block interleaving can be described by
means of a permutation function � 
��_���}Q`���� ! � "� � f��Q`�`�! � ! "� � f , which is one-to-one and onto.

�
defines the

interleaver size. We note, that there is also the possi-
bility of using row-wise convolutional interleaving [18].
As a result, no termination is required and the overall
woven code remains a convolutional code.
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Fig. 4. Woven encoder with row-wise interleaving.

Woven Block Codes (WBC) [17], [19]: Here, we
use block interleavers in the woven encoder. We as-
sume that all convolutional encoders generate termi-
nated code sequences. The resulting woven code is a
woven block code. The � � outer information sequences
'
� � �
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are of finite length and consist of� � information bits. The overall information sequence
has length

� � 
 � � � � � � . The sequences

'
� �

are en-
coded by the outer encoders and we obtain outer code
sequences

@
�	 of length

� � � � �
0
J �� � � (7)

where J � denotes the overall constraint length of the
outer encoders. The sequences �

@
�	 consist of the inter-

leaved code bits of the outer code sequence

@
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. Let J � be

the overall constraint length of the inner encoder. Then,
we have � � 
 � � � � � �

0
J �� � � (8)

for the length of the overall code sequence. Thus, we
obtain an overall code rate
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 �
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� � J �

0
� � J �� � � � � ��� � (9)

where ��� represents the fractional rate loss due to ter-
mination.

In place of outer convolutional encoders we may use
encoders for binary block codes. Then each information
sequence

'
� �

is sub-divided into � blocks of length � � .
Each block is independently encoded with help of the

same generator matrix D � . We call a codeword encoded
by D � a basic codeword. The sequence

@
��

consists of �
basic codewords of length � � , i.e.

� � ����� � code bits.
Then we use interleaving and obtain the output code
sequence �

@
�	 of the � th row after interleaving the code

bits of

@
��
. Using an

� � � � � permutation matrix � � to
describe the row-wise interleaving we may express the
encoding of the � th output sequence as :

�
@
�� �

'
� � 
������ D � ����� � � (10)

where � � is an � � � identity matrix and � denotes
the Kronecker product.

Serially Concatenated Codes (SCC) [12]: Seri-
ally concatenated encoders consist of a cascade of an
outer encoder, an interleaver, and an inner encoder (see
Figure 5). Note, that we may consider this construc-
tion as a special case of a woven encoder with row-wise
interleaving where we choose ���+� � . We may dis-
tinguish between serially concatenated convolutional
codes (SCCC), if only non-terminated convolutional en-
coders and convolutional interleavers are used, and se-
rially concatenated block codes (SCBC).

outer encoder inner encoder
vu v

o
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u

i

Fig. 5. Serial concatenation with interleaving.

Parallel Concatenated Codes (PCC) [13]: Con-
sider the encoder of a woven turbo code depicted in Fig-
ure 3. As mentioned above, additional interleaving can
be used. Then if we choose ����� � � , � � � � and use sys-
tematic outer and inner encoding we obtain a parallel
(turbo) encoder (cf. Figure 1).

IV. ACTIVE DISTANCES AND GENERATING TUPLES

Definition 1 (Encoder state, encoder state space [15])
The encoder state � of a realization of a rational gen-
erator matrix 	�
A��� is the contents of its memory ele-
ments. The set � of encoder states is called the encoder
state space.
If the encoder is realized in controller canonical form,
then the dimension � , with  �! ��sk#" , of the encoder state
space is equal to the overall constraint length J . We
consider only encoder realizations in controller canoni-
cal form [15]. The denominator polynomials of a gener-
ator matrix with degree greater than zero are realized
with feedbacks in the encoder. We call convolutional
encoders with feedback recursive encoders. Encoders
without feedback are called polynomial, as all elements����� 

��� of the corresponding generator matrix are poly-
nomials in � , i.e. i � 

���*�+���B� � ���� ! ! !�#� .

The active distance measures [11] are defined as the
minimal weight of a set of code sequence segments
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which is given by a set
of encoder state sequences. Let �+*-, w *-.$ /10 w /32�' denote the set
of encoder state sequences � $ / 0 w / 2 ' �4� /10 � /10 ( Z  � ! 5� /32 that
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start at depth � Z in some state � / 0 � ��� and terminate at
depth � ^ in some state � /32 � ��� and do not have all-zero
state transitions along with all-zero information block
weight in between:

� * , w * .$ / 0 w / 2 ' � Q�� $ /10 w /32 '  � / 0 � �����5� / 2 � � � and not

� � ���7�5� � ( - ��� with

'
� ���.�	� - 
��

 � < !�� f`� (11)

where �	� and ��� denote the sets of possible starting and
ending states. This definition of state sequences was
presented in [17]. It differs slightly from the original
definition presented in [11]. Here, we included all-zero
to all-zero state transitions that are not generated by
all-zero information blocks in order to consider partial
(unit) memory codes.

Definition 2 (Active distances [11]) Let � be a convo-
lutional code encoded by a rational generator matrixDF

()� with memory u which is realized in controller
canonical form.

The $ th order active burst distance is� r� def� KN|=~����� �� ��� ��� 0��  "! �"

@
$
2
w # ' �%$ � (12)

where $ � J y �{z and
! �"
 � � denotes the (Hamming)

weight of the sequence.
The $ th order active column distance is� m� def� KN|=~� ��� &� ��� ��� 0��  ! �"
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where � denotes any encoder state.
The $ th order active reverse column distance is�(' m� def� KN|=~�(&)� *� ��� ��� 0��  "! �"
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where � denotes any encoder state.
The $ th order active segment distance is� �� def� KN|=~� & % � & &� + � + �"��� 0,�  ! �"
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where �
-

and �
<

denote any encoder state.

The active distances are encoder properties, not code
properties. For the free distance of a non-catastrophic
convolutional encoder we obtain:- �}� KN|=~� 
 � r� �C (16)

In general, all active distances can be lower bounded by
linear functions with the same slope . . Therefore, we
can write [11]:� r� � �� r 
{$ �:�/. �#$

0 0 r (17)� m� � �� m 
{$ �*��. �E$
0 0 m

(18)�(' m� � ��(' m 
=$ �:�/. �#$
0 0 ' m (19)� �� � �� � 
=$��d�/. �l$
0 0 � � (20)

where ���1 
{$ � denote the lower bounds on the active dis-
tances and

0 r � 0 m � 0 ' m � 0 � are rational constants.
Below, we consider the generating tuples of an input

sequence

'


()� of a convolutional encoder. Moreover,

we prove that each generating tuple generates at least-32
many non-zero bits in the encoded sequence

@

A(B� ,

where
-32

is some weight in the region
0 r 
 -"2 
 - � . In

order to prove this result, we have to restrict our consid-
erations to the class of encoders for which

-�4 � 
 ' 
A(B�E� 
576�8 
 @ 

()�p� [15].
Definition 3 (Burst) Consider a convolutional en-

coder and its active burst distance. We call a segment of
a convolutional code sequence burst if it corresponds to
an encoder state sequence starting in the all–zero state
and ending in the all–zero state, and having no consec-
utive all–zero states in between which correspond to an
all–zero input tuple of the encoder. A burst of length$
0
� has at least weight �� r 
{$ � .

Let
-32

denote some weight and
0 r 
 -32 
 - � . We

define the generating length for
-32

as

$ 2 �:9 k - 2 ! 0 r. ; � (21)

i.e. $ 2 is the minimum $ for which �� r 
{$ � � k -32 holds.
Definition 4 (Generating and neighboring tuples) Let� Z be the time index of the first non-zero tuple

' 6
�


':9 -!;6
�
':9=< ;6

�! ! � "�
':9?> ;6

� of a sequence

'


()� . Let �p^ be the

time index of the first non-zero tuple with � ^ �<� Z
0
$ 2 ,

and so on. We call the tuples

' 6
% �
' 6
& �� ! � generating tu-

ples. All other non-zero tuples are called neighboring
tuples. Non-zero bits which belong to a generating or
neighboring tuple are named generating bits or neigh-
boring bits, respectively.

We note, that the generating length given by (21) is
defined in � -tuples and the corresponding number of
bits is equal to � $ 2 .

Lemma 1: Let

'


()� be the input sequence of a convo-

lutional encoder with
� 2

generating tuples with gener-
ating length $ 2 . Then the weight of the corresponding
code sequence

@


()� satisfies! �"
 @ 

()�p����=?> 5 >  (22)

Proof: Consider an encoder with $ 2 according to
equation (21). The weight of a burst that is started
by a generating tuple of the encoder will be at least

- �
if the next generating tuple enters the encoder outside
the burst and at least k -�2 if the next generating tuple
enters the encoder inside the burst. This approach can
be generalized. Let

� �
denote the number of generating

tuples corresponding to the � th burst. For
� � � � the

weight of the � th burst is greater or equal to
- � , which

is greater or equal to
-32

. The length of the � th burst is
at least 
 � � ! � �
$ 2

0
� for

� �
@ � and we obtain! �"
e�BA�CED%� � � � �� r 
E
 � � ! � �
$ 2 �
� . 
 � � ! � �
$ 2

0 0 r  (23)
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With equation (21) we have . $ 2 ��k - 2 ! 0 r and it follows:! �"
e�BA�C D%� � � � 
 � � ! �S�!
Ak -"2 ! 0 r �
0 0 r

� � � -32 0 
 � � ! k��"
 -"2 ! 0 r �" (24)

Taking into account that
- 2 � 0 r , i.e.

- 2 ! 0 r � � , we
obtain ! �"
e�BA�C D%� � � � � � -32�� � � � �� (25)

Finally, with
� 2 � q � � � we obtain! �"
 @ 

()�p��� � ��� �`
�� '	��
 � � � � � � = � 5 > �/= > 5 >  (26)

Definition 5 (Effective length) Consider a convolu-
tional encoder and its active burst distance. We define
the effective length:

�,� �-� � � 9 k - � ! 0 r. ;  (27)

Then, it follows from Lemma 1:
Lemma 2: Let

'


()� be the input sequence of a convo-

lutional encoder with
� 2

generating tuples with gener-
ating length $ 2 � �,� �-� ��� . Then the weight of the corre-
sponding code sequence

@


()� satisfies! �"
 @ 

()�p����=?> 5
�  (28)

V. LOWER BOUNDS ON THE DISTANCES

OVEN Convolutional Codes: Consider the en-
coder of a woven convolutional code with outer

warp depicted in Figure 4. Let
- �� � - � � � - � � �� denote the

free distances of the outer codes, the inner code and the
overall woven convolutional code, respectively. Let �

�� �-�
denote the effective length of the inner encoder.

Theorem 1: [17], [8] The free distance of the WCC
with � � � �

�� �-� outer convolutional encoders satisfies the
following inequality: - � ���� � - �� - � �  (29)

Proof: Due to the linearity of the considered codes,
the free distance of the woven convolutional code is
given by the minimal weight of all possible inner code
sequence, except the all-zero sequence. If ��� � �

�� �-� holds
and one of the outer code sequences

@
��

is non-zero, then
there exist at least

- �� generating tuples in the inner in-
formation sequence which generate a weight greater or
equal to

- � � . Thus, inequality (29) follows from Lemma
2.
Note, that similarly to [20] we can also estimate the free
distance of a WCC for some values of � ��� �

�� �-� with the
help of Lemma 1.

Consider a burst of the inner encoder. We need at
least one non-zero bit to start a burst. Because we as-
sume rational generator matrices, the encoding may be
recursive and thus we may require several non-zero in-
put bits to terminate the burst. In order to prove the
following theorem, we introduce a new time base and
write

'
� �

' 2
�! � ! "�

'.6
�� ! ! , where � denotes the time in-

dex of bits. Let A Z be non-zero and starting bit of a
burst with weight

- � � . We consider all non-zero input
bits A Z � A / 0 � A / 2 �! ! � corresponding to this burst and de-
fine a set � = Q%��� � �`���EZS� � ^P�� ! ! {f of their time indices.

Theorem 2: The free distance of the WCC with � � �
�
�� �-� identical outer convolutional encoders and identical

interleavers satisfies:- � ���� � - �� - � �  (30)

Proof: Consider the warp of the woven encoder.
Without loss of generality we assume that the first
outer codeword

@
�
-

has weight
- �� . The corresponding

information sequence is

'
�
-
. For each outer information

sequence

'
� � ��� � � we assume that

'
� � �

'
�
-

and all
other outer information sequences are zero.

Due to the fact that all outer encoders and all inter-
leavers are identical, all non-zero codewords contain ze-
ros and ones in the same positions. Therefore, there
exist

- �� generating tuples in the inner input sequence,
each generating tuple corresponds to a burst of weight- � � and the weight of the output sequence is

- �� - � � . Thus,
the free distance of the woven code cannot exceed

- �� - � � .
Woven Block Codes: Consider the encoder of a wo-

ven block code (see Figure 4), where we employ termi-
nated convolutional codes or sequences of binary block
codes as outer codes. Let

- � � - � 
 � � - � � denote the min-
imum distances of the outer codes, the overall woven
block code, and the free distance of the inner convolu-
tional code, respectively.

Theorem 3: The minimum distance of the WBC with
� � � �

�� ��� rows of outer block code sequences satisfies the
following inequality: - � 
 � � - � - � � � (31)

with equality if all outer block codes and all interleavers
are identical.

Proof: Theorem 3 immediately follows from Theo-
rem 1 and Theorem 2.

Example 1: Let us construct a woven encoder em-
ploying � � outer block codes with generator matrix

D �
-
��� � � � �

� � � ���
and minimum distance

- � �&k . The generator matrix
of the inner convolutional code is D � 

()�*�+
�� �

-
(�� &-

(�� (�� & � ,
i.e.

- � � ��� . The lower bound on the active burst dis-
tance of the inner encoder is given by �� r w � 
=$�� � �  ��$ 0��
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and we have �
�� �-� � � k . Then, with � � � �

�� �-� ���Sk we
obtain the minimum distance

- � 
 � �8� � which corre-
sponds to the statement of Theorem 3, as all outer codes
are identical. Now, let the warp consist of 12 encoders
made up of alternating matrices D �

-
and D � < , where

D � < � D �
-
������ � � � �

� � � �
� � � �
� � � �

����� � � � � � �
� � � � �  

We have verified that this woven code has the minimum
distance

- � 
 � � �Sk which exceeds the bound presented
in Theorem 2. With this construction we have used a
permutation matrix in every second row of the warp
which leads to a slightly improved overall minimum
distance. In Section VI we will extend this concept to
designed row-wise interleaving in order to improve the
lower bound on the minimum distance.

Serially Concatenated Codes: A serially concat-
enated encoder as presented in [12] consists of a cas-
cade of an outer encoder, an interleaver, and an inner
encoder (see Figure 5). We have already mentioned in
Section III that this encoder construction can be consid-
ered as a special case of a woven encoder if we choose
� � � � (cf. Figure 4). We will now consider the distance
properties of serially concatenated block and convolu-
tional codes. First, we deal with SCBC with randomly
chosen interleavers, as given in [12]. Next, we show
that the product distance can be achieved if the em-
ployed interleaver fulfills some design criteria. Finally,
we give the corresponding criterion for convolutional in-
terleavers.

Let
- � � 
 �

denote the minimum distances of the
SCBC.

Theorem 4: The minimum distance of the SCBC with
randomly chosen interleaver satisfies the following in-
equality: - � � 
 � � KNMPO	� - � � �� r w � � 9 - �� � ; ! � ��
 � (32)

where �� r w � 
{$ � is the lower bound on the active burst dis-
tance of the inner encoder.

Proof: The minimum distance of the concatenated
code is given by the minimal weight of all possible in-
ner code sequences, except the all-zero sequence. A
non-zero outer code sequence has at least weight

- � .
The

- � non-zero bits may occur in direct sequence after
interleaving and therefore may be encoded as a burst
of length � - � ��� ��
 . Such a burst has at least weight
�� r w � 
�� - � �P� ��
 !�� � . However, the weight of the inner code
sequence can not be less then

- �
and consequently we

get (32).
Now we focus on the interleaver structure.

Definition 6 ( 
�� Z � � ^ � -interleaver) Let � denote the time
index of a bit before interleaving. We consider all possi-
ble pairs of indices 
 �]�����=�"������ ��� with  � ! ���  � �
Z . Let � 
 �p�

and � 
,� � � denote the corresponding indices after inter-
leaving. We call an interleaver 
��AZ � � ^�� -interleaver if for
all such pairs 
 �]�����n� it satisfies:

 � 
 �p� ! � 
,� � �  � � ^P (33)

Theorem 5: For a given pair 
��
Z���� ^S� there exist 
��
Z���� ^S� -
block interleavers with size

� � �
Z�� ^P� (34)

and 
�� Z � � ^ � -block interleavers with size

� � � Z � ^ !�� � ^ ! ��
Z�� (35)

do not exist.
Proof: First, consider the function

� 
 �p�*� � ��i K�� R)
 � 0
� �]�)i��  � 0

� (36)

where �]�Ei � � are integers, and � � �`�! � ! "� � . As i does
not divide

�
0
� , the function � 
 �p� is a permutation

which defines the interleaving. Let q be from the region

� ^ 
 i 
 �
�
Z  (37)

Then
�

obviously satisfies (34). We have � 
,�p� ! � 
 ��� �1�iU
,� ! ���n� K��URB
 � 0
�S� . With � 
  � !����  � � Z and (37) it

follows � ^ 
  iU
,� ! ��� �  
 �
. Applying the modulo oper-

ation given by (36) we obtain � ^ 
  � 
 �p� ! � 
 ���n�  . Thus,
such an interleaver is an 
��AZ ��� ^S� -interleaver according to
Definition 6, which proves the first assertion.

Next, assume that � 
 � � defines an 
�� Z ��� ^ � -block
interleaver. We consider sets � Z � � ^ �� ! � , � 	 �Q%� 9 	

;
Z �! � ! "� � 9 	

;
	 0 f��! ! � of � Z time indices such that no two

elements of � 	 have temporal distance greater than
�
Z ! � . Consider the corresponding set � 
�� 	 �v�Q � 
 � 9 	

;
Z �"�! ! � !� � 
,� 9 	

;
	 0 �lf . As the function � 
 � � is one-to-one

and onto, we may assume without loss of generality� 
 � 
 � 9 	
;
Z � �  ! � � � 
,� 9 	

;
	 0 � 
 �

.
With (33) we get

� 
 � 
 � 9 	
;
Z �"�

� ^
0
� 
 � 
 � 9 	

;
^ �"�

...
�� Z ! � � � ^
0
� 
 � 
 � 9 	

;
	 0 � 
 �  

From
� ��
�� Z ! �S� � ^

0
� we conclude that there must

exist � ^ !�� 
�� ^ ! � �E� � Z�� disjoint sets � Z �� ! ! ���� 	 2 ,! 9 	 2 , Z ;#" 	 0%$ .
One of these sets satisfies

� ^�!&�p
�� ^ ! �S�#� �
Z � 
 � 
 � 9 	
;
Z �"�

...
�� Z ! � � � ^
0
� ^ !&�p
�� ^ ! �S�#� � Z�� 
 � 
,� 9 	

;
	 0 � 
 �  

Finally, we have
� � � Z � ^ !'� 
�� ^ !�� �E� � Z(� if � 
 � � is a per-

mutation function of an 
��AZ���� ^�� -block interleaver.
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Definition 7 (Minimum length [21]) Consider a rate� � �!��� convolutional encoder and its active distances.
Let $ � denote the minimum $ for which $ , � K}|=~ � Q]$  
�� � 
{$ � � - � f holds. Let $ m denote the minimum $ for
which $�� ��KN|{~ � Ql$  �� m 
{$ � � - � f holds. Let $ ' m denote the
minimum $ for which $ ' m � KN|=~ � Q]$  �� ' m 
=$�� � - � f holds.
We define the minimum segment length:

� �y �=z �L�P
=$ �
0
�S� (38)

and the minimum column length:

�
my �{z ��K}|=~3
A�P
{$ m

0
� �]�#�P
{$ ' m

0
�S�p�  (39)

Consider a serial concatenation where the employed
��
Z���� ^S� -block interleaver has size
� � � �
Z�� ^ . Let �

�� �-� be
the effective length of the inner encoder and �

m w �y �{z be the
minimum column length of the outer encoder according
to Definition 5 and Definition 7, respectively.

Theorem 6: The minimum distance of the SCBC with
an 
�� Z � � ^ � -block interleaver ( � Z � �

m w �y �=z and � ^ � �
�� �-� ) sat-

isfies the following inequality:- � � 
 � � - � - �  (40)

Proof: Again, we are looking for the minimum
weight sequence among all possible inner code se-
quences. A terminated non-zero outer code sequence
consists of one or more bursts of arbitrary length. The
definition of the minimum length ensures that we have
to consider at most �

m w �y �=z code bits of a burst to obtain
a code segment with at least

- � non-zero bits. The
definition of the effective length, (33) and Theorem 5
guarantee that �

m w �y �=z successive bits in the outer code
sequence are sufficiently interleaved to belong to inde-
pendent generating tuples, but within the interleaver
size. Thus, there exist at least

- � generating tuples in
each non-zero input sequence to the inner encoder and
inequality (40) follows from Lemma 2.

For 
�� Z ��� ^ � -convolutional interleavers, results similar
to Theorem 5 can be derived [18]. Now, consider SCCC
employing convolutional interleavers. Let � � w �y �=z be the
minimum segment length of the outer encoder.

Theorem 7: The free distance of the SCCC with an
�� Z ��� ^ � -convolutional interleaver ( � Z ��� � w �y �{z and � ^ � �
�� ��� )

satisfies the following inequality:- � ��� �� � - �� - � �  (41)

Proof is similar to the proof of Theorem 6. We take
into consideration that non-terminated non-zero code
sequences do not necessarily include a burst.

Example 2: Consider a rate � � � k�� � outer code with
generator matrix

D � 
A(B�:� � �
0
� �

0
� �

� � �
0
� �  

The outer code has minimum (free) distance
- � � �

and. � � �  � , 0 m w � � � , 0 ' m w � � �` � , and
0 � w � � � . The in-

ner generator matrix is D � 

()� � 
��
0
( < �%�

0
(
0
( < � ,

i.e. � � ��� �Pk , - � � � , . � � �  � , and
0 r w � �

�
. For an

SCBC with randomly chosen interleaver we obtain the
minimum distance

- � � 
 � � � according to Theorem 4
regardless of the interleaver size.

Now, on the basis of the same outer and inner gener-
ator matrices, we construct an SCBC with a designed
permutation satisfying (36). We have: $ �r �8�Sk , $ �m �

�
,$ �' m � �

, thus we obtain �
m w �y �=z � � k and �

�� �-� ��� k . The
permutation function

� 
 �p�:�+�Sk � � mod �
� �U� � � � Q����! � ! "���

� �
f

defines a 
 � kU�!� k�� -block interleaver of size
� � �j�

� �
.

Thus, with � � � k`� � we have ��� corresponding input
bits, where we use two bits for termination. We obtain
overall code dimension 94. With the inner code we have� � � �

� �
input bits plus two bits for termination. We

have overall length 292 and rate � � � 
 ��� �  � k�k . The
overall minimum distance satisfies

- � � 
 � � � � accord-
ing to Theorem 6.

We may also construct an SCCC with free distance- � ��� �� � � � and rate � � � � � �+� � � . However, with $ �� �� we obtain the minimum segment length � � w �y �{z ��k � ,
and require an 
AkU�`�!� k�� -convolutional interleaver.

Woven Turbo Codes: Consider a woven turbo en-
coder depicted in Figure 3. We employ one inner and
� � equal outer codes, where the outer partial code se-
quences

@
� w 9
-";

�
are multiplexed to the inner input se-

quence

'
�
. We may also apply interleaving to each outer

partial code sequence

@
� w 9
-!;

�
before multiplexing.

Definition 8 (Partial Distance) Let

@
$
2
w # ' denote a

burst of length $
0
� . Considering all possible bursts

we define the partial distance with respect to a parti-
tioning matrix � as the minimum weight of the partial
code sequence

@*9n< ;
$
2
w # ' , where we fix the weight of the par-

tial code sequence

@ 9 -!;
$
2
w # ' :- �U
 ! �j� KN|=~� � *B� 	 � w 
 6 9 ��� %�
� *)� 	 � t 
 ;�� ! ���

@49=< ;
$
2
w # '����  (42)

Example 3: The rate � � � �Pk convolutional code with
generator matrix DF

()�:�+
��

0
(
0
( < � �

0
( < � has free

distance
- � � � . With partitioning matrix

� ��� �
� �

we obtain the partial distances
- � 
 ! � �

�
�lkU�#k �#k �#kU�� ! � 

with
! � kU� � �

�
�! ! � . Note, that

- � 
 ! � � � does not exist.
With partitioning matrix

� � ��� � ���
we obtain the partial distances

- �� 
 ! � � � �lkU�#k �#k �#kU�� ! � 
with

! � k �
�
��� �� ! � . These partial distances exist only

for even values of
!

.
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Let
- �� 
 ! � denote the outer code partial distance. Let- � � be the free distance of the inner code and �

�� �-� denotes
the effective length of the inner encoder according to
equation (27).

Theorem 8: The free distance of the WTC with ��� �
�
�� �-� outer codes satisfies:- �� �� � KN|{~�  ! � - � �

0 - �� 
 ! � $  (43)

Proof: Due to the linearity of the considered codes,
the free distance of the woven turbo code is given by the
minimal weight of all possible overall code sequences

@
,

except the all-zero sequence. If ��� � �
�� �-� holds and one

of the outer partial code sequences

@
� w 9
-";

�
has weight!

then there exist at least
!

generating tuples in the
inner information sequence. Thus, with Lemma 2 we
have

! �"
 @ � � � � 5 �� . However, the weight of the corre-
sponding partial code sequence

@
� w 9=<

;
�

is at least
- �� 
 ! �

and we have
! �"
 @ � � � � 5 �� 0 5 �� 
 � � . Consequently, we

obtain (43).
We note, that when block interleaving and termination
is applied one can prove results similar to Theorem 8,
where the overall free distance is replaced by the over-
all minimum distance.

Example 4: We construct a WTC with equal inner
and outer rate � � � � � �v� ��k codes with generator
matrices D � 

()����D � 
A(B�B� 
�� �

-
(�� &-

(�� (�� & � . After outer
encoding we apply the partitioning matrix � as given
in Example 3. Then, the overall rate is � �� � �+� � � ac-
cording to (6). The lower bound on the active burst dis-
tance of the inner encoder is given by �� r w � 
=$ � � �  ��$ 0��
and we have �

�� �-� � � k . Thus, with � � � � k outer codes
we obtain an overall code with free distance

- �� �� � �
�

according to Theorem 8. Note, that partitioning of the
outer code sequences according to � � from Example 3
would lead to

- �� �� � � � .
For this example we have verified that with ��� � k

�
outer codes, we can further improve the free distance of
the woven turbo code and we obtain

- �� �� �+k � . How-
ever, for a rate �  � �+� � � turbo code (TC) with the same
inner and outer generator matrices as given above and
with a randomly chosen block interleaver we can only
guarantee a minimum distance

-  � � �
.

VI. DESIGNED INTERLEAVING
�

HE use of designed interleavers is motivated by
the asymptotic coding gain, which for un-quantized

channels is given by [22]:

	��a�+� ��� ��V 

� - �C� (44)

where � is the rate and
-

is the minimum distance of
the code. This formula implies that for fixed rates the
codes should be constructed with minimum distances
as large as possible, in order to ensure efficient perfor-
mance for high signal to noise ratios (SNR).

In this section we present a woven encoder construc-
tion where we use block interleaving with unique per-
mutation functions in each row of the warp and ob-
tain an improved lower bound on the minimum dis-
tance [19]. Note, that the derivation of the new bound
given below is not valid for constructions with inner
polynomial encoders.

In particular we consider only rational generator ma-
trices, where the elements

���_� 
A���*� h �_� 
A���E�Pi � 

��� are ra-
tional functions in � and no feedback polynomial i � 
A���
has zero degree, i.e. we use inner recursive convolu-
tional encoding. Therefore, we need at least one non-
zero information bit to start a burst in the convolutional
encoder and one non-zero information bit to terminate
this burst.

In the following we consider a similar interleaver con-
struction as one given in [23]. Let �%� �

0
� be prime

and perform all multiplications in GF 
 � � . For each � th
row in the warp we use a different interleaver with an
unique permutation function:

� 	 

���*��� �%A 	 �B� � Q`�`�! ! � "� � f � (45)

where � � Q����� ! ! !��� � f and each A 	 is a fixed element of		��
 �H� which satisfies the following condition.
Condition 1:A 	 � k � (46)A 	 
 �

� � ! � � (47)A
,
Z	 � � � � (48)

 
SZ)A 	 !�
!^%A �  � � �� 
SZ ��
!^ � Q ! � �
0
���� ! � "� ! �`�!���� ! � ]� � � ! �Pf

and for any pair � �� $�
 �p�e$ � Q`�`�! � ! ]��� � f� (49)

Consider a woven encoder employing an inner recursive
convolutional encoder with �

�� �-� according to Defini-
tion 5.

Theorem 9: The minimum distance of the WBC with
� � � �

�� �-� rows of outer block codes and interleavers ful-
filling Condition 1 satisfies:- � 
 � � 
Ak - � ! �S� - � �  (50)

Proof: In order to prove Theorem 9 we consider
the following cases:
a) There is only one non-zero basic codeword in the
warp. Here, we prove that two non-zero bits of this ba-
sic codeword are separated by at least one zero bit after
interleaving. The resulting code sequence has at least
weight k - � - � � .
b) There is only one outer non-zero code sequence

@
��
.

We prove that if after interleaving two successive bits
of this sequence are non-zero, then there must exist at
least two non-zero basic codewords in this row. Thus,
there are at least k - � generating tuples.
c) There are two non-zero outer code sequences

@
�� �
@
�#

and each non-zero sequence contains only one non-zero
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basic codeword. Here, we show that there exist at most
two non-zero bits in the inner input sequence which are
not separated by at least �

�� ��� zero bits. All other non-
zero bits are separated by at least �

�� ��� zero bits. There-
fore, there are at least k - � ! � generating tuples.
d) There are at least two non-zero outer code sequences
@
��

and

@
�# . If there exist more then two non-zero bits in

the inner input sequence which are not separated by
�
�� �-� zeros then there must be one outer code sequence

in the warp with at least two non-zero basic codewords.
We obtain at least k - � generating tuples.
Considering the cases b,c,d, with Lemma 2 the resulting
code sequences have at least weight 
Ak - � ! � � - � � which
concludes the proof.

a) First, we consider the case when only one basic
codeword in the warp is non-zero, i.e. all non-zero bits
of this codeword are generating bits. Assume that

@
��

is
non-zero and let � Z , � ^ denote the positions of two non-
zero code bits before interleaving. It follows that � � !� �� �pZ !F� ^  � � . Now with A 	 � k we have

 ?

� Z ! � ^ �  A 	 �
 � 	 
Y�pZ"��! � 	 
Y��^��  � k  

Furthermore, with �z 
 , Z ��A 	 we have

 ?

� Z ! � ^ �  A 	 �
 � 	 
Y� Z ��! � 	 
Y� ^ �  
 �  

Therefore, the conditions (46) and (47) guarantee that
two successive non-zero bits are separated by at least
one zero bit after interleaving.

Now taking into account that
- � � � 0 r w � and that we

need at least one non-zero bit to terminate a burst it
follows from above discussions that the inner code se-
quence has weight k - � - � � or more.

b) Now assume that only one outer code sequence is
non-zero and after interleaving two successive bits of
this sequence are non-zero. Let � 	 
Y� Z � , � 	 
Y� ^ � denote the
positions of the two bits after interleaving. Then we
have

 � 	 
Y� Z � ! � 	 
Y� ^ �  ��
 {
Y� Z !F� ^ �  A 	 � �

and it follows that  {
Y� Z !s� ^ �  \� A
,
Z	 . With A

,
Z	 � � �

(formula (48)) we obtain  ?

� Z ! � ^ �  ��4� � , which means
that there exit at least two non-zero basic codewords in
this row and therefore we have at least k - � generating
tuples.

c) We consider the case when there are two non-zero
outer code sequences

@
�� �
@
�# and each non-zero sequence

contains only one non-zero basic codeword. Let �#ZS�p��^
denote the positions before interleaving of any two non-
zero code bits of the � th and $ th row, respectively. If

 � 	 
Y�pZ!��! � � 
Y��^��  ��k
holds for all possible pairs � Z �p� ^ , then there exist at leastk - � generating tuples.

Consider  � 	 

� Z � ! � � 

� ^ �  
 � , that means that after
interleaving the bit at position � � 
Y��^�� might be a neigh-
boring bit to the bit at position � 	 

� Z!� , or vice versa. In
the following, we prove that if there exist any neighbor-
ing bits, then we still have k - � !L� or more generating
tuples.

Assume that two sequences

@
�� �
@
�# are non-zero and

the bits corresponding to � Z �E� ^ are neighboring after
interleaving. We obtain

� 	 
Y� Z ��! � � 
Y� ^ �j��pZBA 	 ! ��^ A � � � � � � Q ! ��� � �!��f` 
Now we consider all other bits which may be non-zero,
i.e. all bits which might belong two the same basic code-
words as � Z �p� ^ . All these bits should be separated by at
least �

�� �-� zero bits in the input sequence of the inner
encoder. Note, that �EZ �E� ^ may have any position within
the non-zero basic codewords. Therefore, we consider
all bits � � Z �L� Z 0 
 Z and � �^ ��� ^ 0 
 ^ which are separated
by at most � � ! � positions from � Z �E� ^ . We have


SZ ��
!^ � Q ! � �
0
���� ! ! !� ! �������� ! ! ]�5� � ! ��f

and the following inequality should be satisfied:

 � 	 
Y� � Z ��! � � 

� �^ �  ��
 � 	 

� Z

0

 Z ��! � � 

� ^

0

 ^ �  ��

 � Z A 	
0

 Z A 	 ! � ^ A � ! 
 ^ A �  ��
 
SZ)A 	 !�
!^%A �

0
�  � k � � � Q ! ��� � ���Pf

which is true due to inequality (49).
d) Finally, we consider the case where at least two

outer code sequences

@
��

and

@
�# are non-zero. If there

exist more then two non-zero bits in the inner input
sequence which are not separated by �

�� �-� zeros then
there must be one outer code sequence in the warp
with at least two non-zero basic codewords. We as-
sume that there exist at least two pairs � Z �E� ^ and � � Z �E� �^ ,
both neighboring, such that � 	 
Y�pZ��
! � � 
Y��^S� � � and� 	 
Y� � Z � ! � � 

�%�^ � � � � for � � � � � Q ! �`��� ���Pf . We obtain for

 Z � 
 ^ � Q ! � �

0
���! � ! ]� ! ���!�`�! � ! ]� � � ! ��f the following con-

dition:

� 	 
Y� � Z ��! � � 

� �^ � �
� 	 

�pZ

0

 Z"� ! � � 

��^

0

�^S� �� Z A 	

0

 Z A 	 ! � ^ A � ! 
 ^ A � �

 Z A 	 !�
 ^ A �

0
� � � �  

The last equality contradicts (49). Thus, there must
exist one outer code sequence with two non-zero basic
codewords and therefore with weight at least k - � .

Example 5: We construct a woven encoder with row-
wise interleaving, where we use D � 
A(B�N��
�� �

-
(�� &-

(�� (
� & �
as inner generator matrix. We employ ��� � �

�� ��� ���Sk
rows of single parity check codes with

D � � � � � �
� � ���  
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Each row consists of � �
�
� � basic codewords. For the

interleavers according to equation (45) we useA 	 � Q � ��� � ��� � �#k � �#k�� �#k�� � � � �
�
� �
�
� �
�
�U� � � ��� ��f

which satisfy conditions (46) - (49). The resulting wo-
ven code has rate � �g� � � and dimension

� � ��� �
�
.

With the minimum distances
- � � k and

- � � � � we
obtain

- � 
 � � � � . For comparison, a serially concat-
enated block code with the same outer and inner codes,
but with a randomly chosen interleaver has minimum
distance

- � � 
 � � � . The code parameters are summa-
rized in Table I, where

�
and

�
are the overall dimen-

sion and code length, respectively. The lower bound for
the minimum distance

-
is also presented.

��� ��� � � � � 	
WBC 2/3 1/2 12 9984 29956 
���

SCBC 2/3 1/2 1 9984 29956 
�


TABLE I
CODE PARAMETERS

Finally, Theorem 9 is also valid if we use outer ter-
minated convolutional codes. We simply replace � � by
�
9 m w �
;

y �{z , the minimum column length of the outer convolu-
tional codes. The proof is almost identical.

VII. SIMULATION RESULTS
�

N the following we investigate the characteristics of
the presented constructions using simulations.
Consider SCBC, WBC, TC, and WTC with overall di-

mension
� � � � � . All employed block interleavers are

randomly chosen, except for the WBC case where we
use a designed interleaver. For all constructions the
inner convolutional component encoders are recursive
encoders with D � 

()� �8
�� �

-
(�� &-

(�� (
� & � . For TC and WTC
we use D � 
A(B� � 
�� �

-
(�� &-

(�� (
� & � and partitioning matrix
� as given in Example 3. With WBC and SCBC we
employ ����������� � ����� ����� � � ����� � . For WTC and
WBC we have ��� � �Sk . The overall codes have rates� � � � � , due to the fractional rate loss. Using the lower
bounds derived in the previous sections we get the min-
imum distances:

- � � 
 � � �
,
- � 
 � � � � , -  � � �

,
and

- �� � � �
�
. We can also estimate the actual mini-

mum distance of each construction by searching for low
weight codewords. For WTC and TC we encode all pos-
sible information sequences of weight two and store the
minimum weight of the corresponding code sequences.
For WBC and SCBC we randomly generate informa-
tion sequences of weight one, two, and three. It is ob-
vious that the actual minimum distance can be upper
bounded by the lowest weight found. In Figure 6 we
depict the simulation results, where we have investi-
gated 1000 different interleavers per construction. For
almost 90 percent of the considered turbo codes we get-  � 
 � � and we found one example with lowest weight

equal to 7. However, with woven turbo codes the low-
est weight found was 15 and, therefore,

- �� � 
 � � .
For SCBC and WBC with worst lowest weight we have- � � 
 � 
 �

and
- � 
 � 
 � � . For

� � � � � � we have
investigated 100 different interleavers per construction
and obtained:

- �� � 
 � � , -  � 
 � � , - � 
 � 
 � � , and- � � 
 � 
 � . Thus, for these examples we observe only
small differences between analytical lower bounds and
upper bounds obtained by simulation.
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Fig. 6. Distribution of lowest weight codewords.

Now, we give some simulation results for the addi-
tive white Gaussian noise (AWGN) channel with bi-
nary phase-shift keying. We employ an iterative de-
coding procedure [24]. For the decoding of the compo-
nent codes we use the sub-optimum symbol-by-symbol
a-posteriori probability algorithm [24], which is a vari-
ant of the BCJR algorithm [25]. All results are ob-
tained for 10 iterations of iterative decoding. First, we
consider the WBC and SCBC given in Example 5. The
bit error rates (BER) (see Figure 7) for the SCBC em-
ploying pseudorandom interleavers represent the aver-
age performance of 100 different interleavers. Next, we
consider TC and WTC constructions as given above in
this section, but with overall dimension

� �+� � � � . Sim-
ulation results are depicted in Figure 8, where the left
hand figure presents bit error rates and the right hand
figure presents block (or word) error rates (WER) for
blocks of 1000 information bits.

One can argue that:! the minimum (or free) distance determines only the
asymptotic performance of the code and plays a key role
only for very high signal to noise ratios, i.e. at BER
which are lower than the target BER of many practical
systems;! at low and moderate BER at which many systems op-
erate the distance spectrum and corresponding error co-
efficients are more important than the minimum dis-
tance of sufficiently large woven (woven turbo) codes
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when iterative decoding is employed;! the error coefficients are optimized by using a pseudo-
random interleaver between component codes and the
designed interleaver generally introduces structure to
the interleaver and thus destroys the very randomness
that results in such excellent performance.
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Fig. 7. Simulation results for SCBC and WBC.

The simulation results in Figure 7 show that at least
for this particular example the WBC with designed in-
terleaver performs almost as well as the comparable
SCBC with pseudorandom interleaver at low and mod-
erate BER, but it is much better suited to provide near-
error-free performance. Besides, the WBC starts to out-
perform the SCBC at a realistic BER. Similarly, WTC
possessing less randomness but with higher minimum
distance has the same performance at low and mod-
erate BER compared to TC. The performance becomes
better at high SNR. Furthermore, the WTC outper-
forms the TC for the whole considered region of WER
and achieves significantly better performance at high
SNR.

VIII. CONCLUSIONS

E have presented encoding schemes for woven
codes with outer warp and in this context we

have considered new and old constructions. With the
help of active distances we derived lower bounds on the
minimum (or free) distances of the considered codes.
Crucial was the introduction of designed interleavers
which lead to substantially improved lower bounds
compared with pseudorandom interleaving. For partic-
ular examples, the obtained lower bounds have been
compared with the corresponding upper bounds ob-
tained by simulation. The observed differences between
theoretical lower bounds and simulation results were
small. It was also demonstrated that higher minimum
distances are obtainable with the new woven and woven
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Fig. 8. Simulation results for TC and WTC.

turbo code constructions compared with the traditional
parallel and serially concatenated codes.

The comparison by means of simulation in AWGN
channels shows that for these particular examples the
woven code with designed interleaving performs almost
as well as comparable serially concatenated codes with
pseudorandom interleaving at low and moderate BER
when iterative decoding is employed. The former be-
comes much better for high signal to noise ratios, but
still within BER regions of practical interest. Similarly,
a woven turbo code outperforms the comparable turbo
code for high SNR with respect to the BER. However,
considering the WER we observe better performance
throughout the complete simulated SNR region. On
the other hand, we are aware that although the min-
imum distance remains the important criterion for con-
struction of woven codes, it would be desirable to char-
acterize the complete distance spectrum of such codes.
This would allow for a prediction of the absolute per-
formance of woven codes. We consider this topic as the
subject of future investigations.
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[10] M. Bossert, S. Höst, R. Johannesson, R. Jordan, and V. Zyablov,
“Woven convolutional codes II: Decoding aspects,” IEEE Trans.
Inform. Theory, will be submitted for publication, 2000.
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