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Abstract We give a short survey on methods for the enclosure of theisolset of
a system of linear equations where the coefficients of theixretd the right hand
side depend on parameters varying within given intervdignlwe present a hybrid
method for finding such an enclosure in the case that the depex is polynomial
or rational. A general-purpose parametric fixed-poingitien is combined with ef-
ficient tools for range enclosure based on the Bernsteinrskpa of multivariate
polynomials. We discuss applications of the general-psepgzarametric method to
linear systems obtained by standard finite element analfsiechanical structures
and illustrate the efficiency of the new parametric solver.

1 Introduction

In this chapter we consider linear systems
AX)-s = d(x), (1a)

where the coefficients of the x m matrix A(x) and the vectod(x) are functions of
n parametersy, ..., X, varying within given interval$xi], .. ., [Xn]
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aij(X) = &j(X1,...,%n), di(X) =di(X1,...,%), B, j=1,....m, (1b)
x € X = (- %)) " (1c)

The set of solutions t¢_JBJ1c), called {h@rametric solution seis
=3 (Ax),d(x),[X]) == {se R™|A(x)-s=d(x) forsomexe [x]}. (2)

Engineering problems that involve such parametric lingsiesns may stem from
structural mechanics, e.d. [3,[4] Z1] 26,[29,[38, 42], tieégaeof electrical circuits
[6.16], resistive network$113], and robust Monte Carlo siation [17], to name but a
few examples. The source of parametric uncertainty is dftertack of precise data
which may result from a lack of knowledge due to, e.g., mez®s@nt imprecision
or manufacturing imperfections, or an inherent variapilit the parameters, e.g.,
physical constants are only known to within certain bounds.

The parametric solution set can be described explicitly anvery simple cases.
Therefore, one attempts to find the smallest axis-alignedith@®™ containing.
Since even this set can only be found easily in some specasci is more practical
to attempt to compute a tight outer approximation to this.box

The chapter is organized as follows. In Secfibn 2 we intredhe basic defini-
tions and rules of interval arithmetic, which is a fundana¢tdol of our approach.
In this section we also compare the interval solution sdt thié parametric solution
set and give a short overview of methods for its enclosuré&uhsectiofiz3]11 we
present a method for the enclosure of the parametric salsgt, called thepara-
metric residual iteration method'his method needs tight bounds on the range of
multivariate functions. In the applications we will preséater in this chapter the
coefficient functions[{dlb) are polynomials or rational ftiogs. To find the range
of a multivariate polynomial, we recall in Subsectonl3.2 ethod which is based
on the expansion of a polynomial into Bernstein polynomi@smed theBernstein
form. Implementation issues concerning the combination of t#raipetric residual
iteration method with the Bernstein form are discussed ins8atior-318. We apply
the combined approach in Sectidn 4 to some problems of sfalahechanics and
draw some conclusions in Sectigrls.

2 The Parametric Solution Set

2.1 Interval Arithmetic

Let IR denote the set of the compact, nonempty real intervals. Titiereetic oper-
ationo € {+,—,-,/} onlR is defined in the following way.
If a=[a,a],b=[b,b] € IR, then

1 Preliminary results were presented at the 2nd Internati@oaference on Uncertainty in Struc-
tural Dynamics, Sheffield, UK, June 15-17, 2009.
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a+b=[a+ba+b]

a—b=[a—ba-b],

a- b = [min{ab,ab,ab,ab}, max{ab, ab,ab,ab}],

a/b = [min{a/b,a/b,a/b,a/b},
max{a/b,a/b,a/b,a/b}], if 0 ¢ b.

As a consequence of these definitions we obtain the inclusimtonicity of the
interval arithmetic operations: Hy,b; € IR with a; C a andb; C b then it holds
that

a;ob; Caoh.

Note that some relations known to be true in thelset.g., the distributive law, are
not valid inTR. Here we have the weaker subdistributive law

a-(b+c)Ca-b+a-cforab,ceIR.
The width of an intervah = [a,3] is defined as
w(@a=a—a

By IR" andIR™*" we denote the set ofvectors anch-by-n matrices with entries
in IR, respectively. For a nonempty bounded.sétC R", define its interval hull by
0.7 := [inf., sup¥] = N{[g €IR"|.# C [s]}.

Where the endpoints of an interval are stored as floatingtpeimbers, it is nec-
essary to useutward roundingn all operations, viz. the infimum is rounded down
and the supremum is rounded up. In this way, interval opmratileliver guaranteed
results even in the presence of rounding errors with flogpioigit arithmetic.

Further details on arithmetic with intervals may be founfliyfiZZ].

2.2 Thelnterval Solution Set vs. the Parametric Solution Set

A system of linear interval equations is a collection of syss

A-s=d, Ac[A], de[d], where[A] € IR™™ [d] € IR™, (3)

its solution set
{seR™ | JA€[A],Ide[d] : A-s=d} (4)

is called here thénterval solution setThere are many methods for the enclosure
of the interval solution set, cf(]122]. With the parametinear system[{da) a
system([(B) is associated which is obtained when each enf@firis replaced by an
enclosure for the range of the functiomg andd; over[x]. In general, the resulting
interval system can be more easily solved than the paransgstem. However, the
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dependencies between the parameters are lost and so thalist@ution set is in
general much larger than the parametric solution set.

2.3 Prior Work on the Parametric Solution Set

One of the earliest papers on the solution of linear systeitisn@nlinear parameter
dependencies i§][8], cf][9]. Later works focus on the solutyf systems of linear
equations whose coefficient matrices enjoy a special streicHere the interval
solution setl(l4) is restricted in such a way that only masrighich have this special
structure are considered. The restricted solution setlsaroften be represented as
a parametric solution sdfl(2), df. ]11] for examples andreafees. In the sequel we
survey some methods for the enclosure of the parametriticolset which have a
wider range of applicability.

A method which is applicable to parameter dependencieshadan be repre-
sented as

xd®, AR e RMm gk c R™ k=1 ... n,

NM s

AX) = S AR d(x) =
() kZle ()

k=1

was recently given i [14]. This parameter dependency cotber (skew-) symmet-
ric, Toeplitz, and Hankel matrices and was also considerdd] i

In [L3] parametric linear systems are considered whererlertain parameters
X enter the systeni{Jla) in a rank-one manner. As an examplglangr resistive
network has the property that with resistances associatadive parametenrg the
resulting system of linear equations, corresponding tdiegaon of Kirchhoff’s
laws, has a rank-one structure. Such systems are solvEH@h [y application of
the Sherman-Morrison formula. For systems with a rank-anetire, results are
obtained in[[IB] which allow one to decide which parametefisence components
of the solution

s(x) = A(x)~td(x)

in a monotone, convex, or concave manner. Such informatiestly facilitates the
computation of an enclosure of the solution E&t (2).

Another direct method is presented[in][15]. Here the coefiiciunctions of[(Tla)
are assumed only to be continuous. They are approximateithdgrIfunctions in
such a way that one obtains a superseffbf (2). An intervabsoot for this superset
is determined as an interval vector whose midpoint is obthas the solution of a
certain system of linear equations. The vector which costtie (half-) widths of
the componentintervals is computed as the solution of anststem and therefore
must be positive, which is a restriction of the method.

In [36] a direct method is proposed for the case of linear patar dependency
based on inclusion theorems of Neumaler| [22]. However aeprgsite for this
method is that a matrix of coefficients generated from theris® of the midpoint
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of the interval matrixA must be arH-matrix [24], a condition which seems to be
rarely satisfied for typical problems.

The method which presently seems to have the widest ranggpbéability is the
parametric linear solver developed by the second authdd([P.); see Subsection
B for details.

3 Methodology

3.1 The Residual Iteration Method

In this section we consider a self-verified method for bongdhe parametric so-
lution set. This is a general-purpose method since it doeassume any particular
structure among the parameter dependencies. The metlyiakdess in the inclusion
theory for nonparametric problems, which is discussed inyneorks (cf. [34] and
the literature cited therein). The basic idea of combining Krawczyk-operator
[L8] and the existence test by Moofe]20] is further elabeddty S. Rumpl[33]
who proposes several improvements leading to inclusioorémas for the interval
solution [3). In [34, Theorem 4.8] S. Rump gives a straighttrd generalization
to (I3) with affine-linear dependencies in the matrix andritjlet hand side. With
obvious modifications, the corresponding theorems cantasapplied directly to
linear systems involving nonlinear dependencies betwkerparameters if(x)
andd(x). This is demonstrated i [26.129]. The following theorem eaeral for-
mulation of the enclosure method for linear systems inv@h\arbitrary parametric
dependencies.

Theorem 1.Consider a parametric linear system definedhy [Th—1c). leRR>*™,
[y] € IR™, §€ R™ be given and defing] € IR™, [C] € IR™™ by

2 1= O{R(A(X) ~ AKX | x € [X]},
[Cl :=0{I —R-AX) | x€ [X]},

where | denotes the identity matrix. Defifg € TR™ by means of the following
Gauss-Seidel iteration

1<i<m: Ml ={Z+I[C (i), Mi_1], [¥il, -, [ym)) " i

If [v] C [y] and|v]i # [y)i fori =1,...,n, then R and every matrix(A) with x € [X|
are regular, and for every x [x] the unique solutiors = A~1(x)d(x) of (T3-ELt)
satisfiese §+ |v].

In the examples we present in Sectldn 4, we have chBsemA\(X)~! ands~
R~1d(X), wherex'is the midpoint ofix].

The above theorem generalisgsl[34, Theorem 4.8] by stipglatsharp enclo-
sure ofC(x) := | — R-A(x) for x € [X], instead of using the interval extensiofx]).
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A sharp enclosure of the iteration matfXx) for x € [x] is also required by other
authors (who do not refer th1B4]), e.d.] [4], without addieg the issue of rounding
errors. Examples demonstrating the extended scope otafiph of the generalized
inclusion theorem can be found [n]Z3] 24] 31]. It should biedohat the above the-
orem provides strong regularity (cf.]23]), which is a wesalet sufficient condition
for regularity of the parametric matrix.

When aiming to compute a self-verified enclosure of the gwiuib a paramet-
ric linear system by the above inclusion method, a fixed{piédnation scheme is
proven to be very useful. A detailed presentation of the agtpnal algorithm can
be found in[[26/-38].

In case of arbitrary nonlinear dependencies between thertaic parameters,
computing[Z] and[C] in TheorenllL requires a sharp range enclosure of nonlinear
functions. This is a key problem in interval analysis andehexists a huge num-
ber of methods and techniques devoted to this problem, vatbne method being
universal. In this work we restrict ourselves to linear sys$ where the elements
of A(x) andd(x) are rational functions of the uncertain parameters. In ¢hise
the coefficients of(x) = R(d(x) — A(x)8) andC(x) are also rational functions of
x. The quality of the range enclosure zfk) will determine the sharpness of the
parametric solution set enclosure. [n][26] the above inctutheorem is combined
with a simple interval arithmetic technique providing ina@d outer bounds for the
range of monotone rational functions. The arithmetic ofegalised (proper and im-
proper) intervals is considered as an intermediate cortipotd tool for eliminating
the dependency problem in range computation and for olbigininer estimations
by outwardly rounded interval arithmetic. Since this melblogy is not efficient in
the general case of non-monotone rational functions, mwhirk we combine the
parametric fixed-point iteration with range enclosing sooased on the Bernstein
expansion of multivariate polynomials.

3.2 Bernstein Enclosure of Polynomial Ranges

In this section we recall some properties of the Bernstepaagion which are fun-
damental to our approach, df! [Z]110] 41] and the referemesin.

Firstly, some notation is introduced. We define multiingice- (i, ..., in)" as
vectors, where th@ components are nonnegative integers. The vector O denotes
the multiindex with all components equal to 0. Comparisomsused entrywise.
Also the arithmetic operators on multiindices are definedponentwise such that
iol:=(i1®ly,...,in®ln)T, for © = 4+, —, x, and/ (with | > 0). For instancei,/|,

0 <i <, defines the Greville abscissae. ke R" its monomials are

X 1= ﬁ Xt (5)
pH=1

For then-fold sum we use the notation
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Z} :illz;..._lzn . (6)

In=!

The generalised binomial coefficient is defined by

(=N L

For reasons of familiarity, the Bernstein coefficients azaated byby;; this should
not be confused with components of the right hand side véotdi[Td). Hereafter,
a reference to the latter will be made explicit.

3.2.1 The Bernstein Form

An n-variate polynomiap,

pX) = ax, Xx=(X1,...,%), (8)
2, “
can be represented over
[X] = [)_(17)_(1] XX [)_(nv)_(n]v (9)
X= (X1, %), X= (X1, ,%n),
as |
p(x) = » biBi(x), (10)
iZO i Di
whereB; is thei-th Bernstein polynomial of degreed (I4,...,In),
o M X=X (x—x)!
B0 = <I) ®=x" )

and the so-calleBernstein coefficients lof the same degree are given by
i (;) DL K
bi=9Y 4+~ (X—Xx (_)>_<a, o<i<lI. (12)
PR ANV

The essential property of the Bernstein expansion isgthge enclosing property
namely that the range qf over[x] is contained within the interval spanned by the
minimum and maximum Bernstein coefficients:

min{bi} < p(x) < maxbi}, x€ [¥|. (13)
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It is also worth noting that the values attained by the pofgiad at the vertices
of [x] are identical to the corresponding vertex Bernstein cdeffts, for example
bo = p(x) andby = p(X). Thesharpness propertstates that the lower (resp. upper)
bound provided by the minimum (resp. maximum) Bernsteirff@ment is sharp,
i.e. there is no underestimation (resp. overestimatibahd only if this coefficient
corresponds to a vertex of.

The traditional approach (see, for examgle] [10, 41]) nexgtihat all of the Bern-
stein coefficients are computed, and their minimum and maxins determined.
By use of an algorithm (cf[[10,-41]) which is similar to de @djgu’s algorithm
(see, for example 132]), this computation can be made efficivith time complex-
ity Q(nIA““) and space complexity (equal to the number of Bernstein coeffis)
O((I'+1)"), wherel =max!_, l;. This exponential complexity is a drawback of the
traditional approach, rendering it infeasible for polyrialmwith moderately many
(typically, 10 or more) variables.

In [B4] a new method for the representation and computatitimeoBernstein co-
efficients is presented, which is especially well suitedgarse polynomials. With
this method the computational complexity typically becamearly linear with re-
spect to the number of the terms in the polynomial, insteadxpbnential with
respect to the number of variables. This improvement isinbtafrom the results
surveyed in the following subsections. For details and etamthe reader is re-
ferred to [37].

3.2.2 Bernstein Coefficients of Monomials

Letq(x) = X', x= (Xq,...,%n), for some O< r <. Then the Bernstein coefficients
of q (of degred) over[x] (@) are given by

bi = [] bir (14)

wherebfr:” is theimth Bernstein coefficient (of degrég) of the univariate mono-
mial X'm over [x,, Xm]. If the box[x] is restricted to a single orthant &" then the
Bernstein coefficients af over [x] are monotone with respect to each variakle
i=1,...,n

With this property, for a single-orthant box, the minimunmdanaximum Bern-
stein coefficients must occur at a vertex of the array of Bemgoefficients. This
also implies that the bounds provided by these coefficiartslaarp; see the afore-
mentioned sharpness property. Finding the minimum and mmaxi Bernstein co-
efficients is therefore straightforward; it is not neceggarexplicitly compute the
whole set of Bernstein coefficients. Computing the compoueivariate Bernstein
coefficients for a multivariate monomial has time compkexn(l + 1)?). Given
the exponent and the orthant in question, one can determine whether thm®mo
mial (and its Bernstein coefficients) is increasing or dasirg with respect to each
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coordinate direction, and one then merely needs to evalhatmonomial at these
two vertices.

Without the single orthant assumption, monotonicity doasnecessarily hold,
and the problem of determining the minimum and maximum Beingoefficients
is more complicated. For boxes which intersect two or motieamts ofR", the box
can be bisected, and the Bernstein coefficients of eachesorghant sub-box can
be computed separately.

3.2.3 The Implicit Bernstein Form

Firstly, we can observe that since the Bernstein form isalinég a polynomialp
consists of terms, as follows,

t .
p(X>:ZainIj7 0§|j§|7 X:(le"'axn>a (15)
=

then each Bernstein coefficient is equal to the sum of theesponding Bernstein
coefficients of each term, as follows:

t .
=S b o<i<l, (16)
| JZ\ i

wherebf” are the Bernstein coefficients of thh term of p. (Hereafter, a super-
script in brackets specifies a particular term of the polyi@brithe use of this nota-
tion to indicate a particular coordinate direction, as ia pinevious subsection, is no
longer required.)

Therefore one may implicitly store the Bernstein coeffitsenf each term, and
compute the Bernstein coefficients as a surhmfoducts, only as needed. The im-
plicit Bernstein form thus consists of computing and stgtimen sets of univariate
Bernstein coefficients (one set for each component unieannomial) for each
of t terms. Computing this form has time complexity®| + 1)) and space com-
plexity O(nt(I'+ 1)), as opposed to @ + 1)") for the explicit form. Computing a
ingle Bernstein coefficient from the implicit form requirgs+ 1)t — 1 arithmetic
operations.

3.2.4 Determination of the Bernstein Enclosure for Polynorials

We consider the determination of the minimum Bernsteinfggeht; the determina-
tion of the maximum Bernstein coefficient is analogous. Foipticity we assume
that[x] is restricted to a single orthant.

We wish to determine the value of the multiindex of the minimBernstein co-
efficient in each direction. In order to reduce the searcleesgamong theél + 1)
Bernstein coefficients) we can exploit the monotonicityhaf Bernstein coefficients
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of monomials and employ uniqueness, monotonicity, and dante tests, cf{[37]
for details. As the examples in[B87] show, it is often possibl practice to dramati-
cally reduce the number of Bernstein coefficients that hawsetcomputed.

3.3 Software Tools

In our implementation we have combined software for the ipatac residual it-
eration method with software developed for the enclosurthefrange of a mul-
tivariate polynomial using the implicit Bernstein form. the case of a rational,
non-polynomial parameter dependency, the ranges of theratar and the denom-
inator have to be bounded independently at the expense of serrestimation.
In both packages interval arithmetic is used throughowth ¢bat the resulting en-
closure for the parametric solution set candamranteedalso in the presence of
rounding errors. The software tools for the residual iteraire implemented in
a Mathematica4d] environment by the second author (E. D. P); this soféniar
publically available[[25-26]. The software for the Bernstiorm is written by the
last author (A. P. S.) and utilises the C++ interval libraiyl i b++ [I8,[19]. Since
this is a specialized software exhibiting good performaheee is no reason for its
re-implementation irMathematica In order to shorten the development time and
to preserve the beneficial properties of both implemematitvironments, we have
connected both software packages into a new parametriersaly theMathLink
[A0] communication protocol, for details sé¢e]11]. Howethis connection leads
to longer computing times compared to an implementationsimgle environment.
For details of the implementation and the accessibilitheftcombined software see

).

4 Application to Structural Mechanics

A standard method for solving problems in structural medasrsuch as linear
static problems, is the finite element method (FEM). In theeocaf linearised ge-
ometric displacement equations and linear elastic méateelaaviour, the method
leads to a system of linear equations which in the presenaea#rtain parameters
becomes a parametric system. Treating the parametriasyst@n interval system
and using a typical interval method for the enclosureldf (dyéneral results in
intervals for the quantities sought which are too wide faqpical purposes.

In [21], [42] the authors combine an element-by-element (EfEnulation,
where the elements are kept disassembled, with a penaltyochdébr imposing
the necessary constrains for compatibility and equilioiin order to reduce the
overestimation in the solution intervals. This approaatusthbe applied simultane-
ously with FEM and affects the construction of the globdfrstiss matrix and the
right-hand side vector, making them larger. A non-paraiméited-point iteration
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is then used to solve the parametric interval linear systhile special construc-
tion methods are applied il J21], the parametric systemiobtbby standard FEM
applied to a structural steel frame with partially consteai connections is solved
by a sequence of interval-based (but not parametric) met[Hd

In the sequel we illustrate the usage of the new parametrieisbased on bound-
ing polynomial ranges by the implicit Bernstein form as dised in Subsection3 2.
The improved efficiency is demonstrated by comparing battttimputing time and
the quality of the enclosure of the parametric solution settie new solver and a
previous solver which is based on the combination of therpatdc residual itera-
tion with the method for bounding the range of a rational fiorcpresented if[26],
cf. Subsectiof3]1. To compare the quality of two enclosjajemnd|b] with [a] C [b]
we employ a measur€,, for the overestimation df) by [b] which is defined by

Oo([al;[b]) = 100(1 - w([a])/w([b])), 17

wherew denotes the width of an interval.
The following examples were run on a PC with an AMD Athlon-63+s pro-
Cessor.

4.1 One-Bay Steel Frame

We consider a simple one-bay structural steel frame, asrsiowigure[l, which
was initially studied by interval methods ifl[3]. Followirsgandard practice, the
authors have assembled a parametric linear system of dgitia@d involving eight
uncertain parameters. The typical nominal parameter sadud the corresponding
worst case uncertainties, as proposed_n [3] but conveaedl-units, are shown
in Table[. The explicit analytic form of the given systemalwng polynomial
parameter dependencies can be founlifiB, 29].

Table 1 Parameters involved in the steel frame example.

parameter nominal value uncertainty
E, 1,999+ 10F kKN/m? 2,399 10’ kKN/m?2
Yo dulus
oUNg MOAUIUSE ™4 999+ 108 kN/m? 42,399 107 kN/m?
b 212310 * P $2123+10 5 m?
Second moment ™ 1 o5 1074 mé 411324105 m*
nron Ao 6.645¢10 37 16.645: 10 7 n?
Ac 9.290+ 1073 m? 49,290+ 104 m2
External force H 23.600 kN 4+9.801 kN

Joint stifness a 3.135x10° kNm/rad +1.429+10° kNm/rad
Length L. 3.658m, L, 7.316 m

As in [3,[29], we solved the system first with parameter uraeties which are
1% of the values presented in the last column of TRble 1.
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Fig. 1 One-bay structural steel franid [3].

The previous parametric solver finds an enclosure for thetisol set in about
0.34 s, whereas the new solver needs only 0.05 s. The quélityecenclosures
provided by both solvers is comparable. As shownn[[Z6, @] solution enclosure
obtained by the parametric solver is better by more than oier @f magnitude than
the solution enclosure obtained In [3].

Based on the runtime efficiency of the new parametric solvemext attempt to
solve the same parametric linear system for the worst casengder uncertainties in
Table[d ranging between about 10% and 46%. Firstly, we nitiagthe parametric
solution depends linearly on the paraméieso that we can obtain a better solution
enclosure if we solve two parametric systems with the cpording end-points for
H. Secondly, enclosures of the hull of the solution set arainbt by subdivision of
the worst case parameter intervél, Ec, Ip, lc, Ap, Ac,a) " into (2,2,2,2,1,1,6) "
subintervals of equal width, respectively. We use more stifidn with respect to
o sincea is subject to the greatest uncertainty. The solution encbtained
within 11 s, is given in Tablgl2. Moreover, the quality of tludugion enclosuréu] of
the respective eight quantities is compared to the conﬂniiaadatsolution[ﬁ], i.e. the
convex hull of the solutions to the point linear systems mlgtéwhen the parameters
take all possible combinations of the interval end-poifitee combinatorial solution
serves as aimner estimation of the solution enclosure.
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Table 2 One-bay steel frame example with worst-case parametertaintées (Tablddl). So-
lution enclosure[u] found by dividing the parameter interval&p, Ec, Ip, lc, Ap, Ac,a) T into
(2,2,2,2,1,1,6)" subintervals of equal width, respectively. All intervaldepoints are multiplied
by 10°. The enclosuréu] is compared to the combinatorial solutif.

10°+ solution enclosuréu] 0, ([h], [u])
d2.: [138.54954789, 627.59324779] 12.5
d2,: [0.29323100807, 2.1529383383] 8.0
r2;: [-129.02427835, -22.381136355] 23.7
r5;; [-113.21398401, -17.95789860] 25.6
ré;:  [-105.9680866, -17.64526946] 25.0
d3y: [135.25570695, 616.85512710] 12.7
d3y: [-3.7624790816, -0.41629803684] 13.2
r3;; [-122.3361772, -21.69878778] 23.5

These results show that by means of a small number of sulmtigishe new
parametric solver provides a good solution enclosure vargkty for the difficult
problem of worst-case parameter uncertainties. Note trapgr bounds, close to
the exact hull, can be obtained by proving the monotoniaitpprties of the para-
metric solution[[2B].

4.2 Two-Bay Two-Story Frame Model with 13 Parameters

We consider a two-bay two-story steel frame with IPE 400 teand HE 280 B
columns, as shown in FiguEé 2, after]29]. The frame is subgbto lateral static
forces and vertical uniform loads. Beam-to-column conioestare considered to
be semi-rigid and they are modelled by single rotationahgpelements. Applying
conventional methods for the analysis of frame structusiesystem of 18 linear
equations is obtained, where the elements of the stiffnegs>and of the right
hand side vector are rational functions of the model pararae¥We consider the
parametric system resulting from a finite element modellinag the following
13 uncertain parameter8g, lc,Ec, Ay, lp, Ep, C, Wi, ..., Wy, F1,F. Their nominal
values, taken according to the European Standard Eurod§@fjeBe given in Table
B. The explicit analytic form of the given parametric systesn be found in[[30].

The parametric system is solved for the element materiggaties £, ..., Ep),
which are taken to vary within a tolerance of 1% (thapdis- x/200, x + x/200Q,
wherex is the corresponding parameter nominal value from Thble IBjewthe
spring stiffness and all applied loadings are taken to vaithiw 10% tolerance
intervals.

The previous parametric solver finds an enclosure for theisol set in about 7.4
s, whereas the new solver needs only about 1.3 s; here it igt abotimes faster.
The solution enclosure provided by the new solver is alsniogntly tighter; the
overestimation[[1l7) of the components of the enclosureigeavby the previous
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Fig. 2 Two-bay two-story steel framgJR9].

Table 3 Parameters involved in the two-bay two-story frame examjile their nominal values.

parameter Columns (HE 280 B) Beams (IPE 400)
Cross-sectional area  A; = 0.01314 n¥ A, = 0.008446m
Moment of inertia lc =19270«10 8 m* I, = 23130: 10 8 m*
Modulus of elasticity Ec = 2.1% 10°kN/m? Ep = 2.1 % 10° kN/m?
Length Lc=3m Lp=6m

Rotational spring stiffnessc = 1% kN

Uniform vertical load Wy =...=Ws =30 KkN/m

Concentrated lateral forcdg = F, = 100 kN

solver relative to the respective components found by thesodver ranges between
53.46 and 92.92.

An algebraic simplification applied to functional express in computer algebra
environments may reduce the occurrence of interval vaslvhich could resultin
a sharper range enclosure. Such an algebraic simplificetiexpensive and when
applied to complicated rational expressions usually doesasult in a sharper range
enclosure. For the sake of comparison, we have run the preparametric solver
in two ways: applying intermediate simplification duringetrange computation,
and without any algebraic simplification. The above resutise obtained when the
range computation does not use any algebraic simplificatdiren the range com-
putation of the previous solver uses intermediate algelsiaiplification, the cost of
this improvement is that the computing time is approximatilubled; the results
are obtained in 14.4 s. This is much slower, but providedlaeigenclosure of the
solution set than the rational solver, based on polynoraiages, which did not ac-
count for all the parameter dependencies. Here the overatitin of the new solver
relative to the modified previous solver ranges between2l&mdl 37.07. It should
be noted that given the complicated rational expressiocis @n improvement is not
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at all typical (in the next example the improvement s onlygizal at a much larger
computation time possibly due to the more complicated esgio@s). Details may
be found in[[11].

4.3 Two-Bay Two-Story Frame Model with 37 Parameters

As a larger problem of a parametric system involving ratiggerameter depen-
dencies, we consider the finite element model of the two-aystory steel frame
from the previous example, where each structural elemenphaperties varying
independently within 1% tolerance intervals. This doesamainge the order of the
system but it now depends on 37 interval parameters. Thécexohalytic form of
the given parametric system can be foundin [30]. Here the hignd side vector is
given to illustrate the dependencies.

1 W1Lb2 Wj_Lbj_ Wszz W1Lb2
f2, —5wilby, — 2EbyIb » — - 2EbyIb

2 12(1+ bll) 2 2 7121+ bll)

W2Lb2 B W2Lb2 W2Lb% L 1

b ) Y b ) Y Y
12(14 £ph2)’ 2 7121+ Xy 2wsLbg
W3Lb2 W3Lb3 W4Lb4 W3Lb2
b B b
12(1+2Eb3' 2Ebglbgy” 2 2 12(1+2Ect|_)3bl33)
2 2 T
W4Lb4 B W4Lb4 W4Lb4 )
2Ebylbg N’ ) 2Ebylb,

12(14 Zpos) 27 12(1+Epha)

The previous solver finds an enclosure for the solution setbiout 755 s and
thereby exhibits performance approximately three timewet than the new solver
(about 245 s). Also, the quality of the solution enclosu/ted by the new solver
is much better than the solution enclosure provided by teeipus solver; here, the
relative overestimation ranges between 28.4 and 95.46.

5 Conclusions

In this chapter, we demonstrated the advanced applicat@general-purpose para-
metric method, combined with the Bernstein enclosure ofmpamial ranges, to
linear systems obtained by standard FEM analysis of mecabstructures, and il-
lustrated the efficiency of the new parametric solver. Ferrdipplications, viz. to
truss structures with uncertain node locations, can bedau{8].
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Itis shown that powerful techniques for range enclosureeaoessary to provide
tight bounds on the solution set, in particular when the ip@tars of the system are
subject to large uncertainties and the dependencies arglicated.

The new self-verified parametric solvers can be incorpdratéo a general
framework for the computer-assisted proof of global an@l@sonotonicity prop-
erties of the parametric solution. Based on these progeréieguaranteed and
highly accurate enclosure of the interval hull of the sa@tset can be computed
[12,128,[39]. The parametric solver for square systems alsitithtes the guaran-
teed enclosures of the solution sets to over- and underdieted parametric linear

systems[[2]7].
Being presently the only general-purpose parametric tinelver, the presented

methodology and software tools are applicable in the caateany problem (stem-

ming, e.g., from fuzzy set theorl IB5] or the other fieldsdibtn the Introduction)

that requires the solution of linear systems whose inpw dapend on uncertain
(interval) parameters.
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