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Abstract: The class of square matrices of order n having a positive determinant and all their minors up to
order −n 1 nonpositive is considered. A characterization of these matrices based on the Cauchon algorithm is
presented, which provides an easy test for their recognition. Furthermore, it is shown that all matrices lying
between two matrices of this class with respect to the checkerboard ordering are contained in this class, too.
For both results, we require that the entry in the bottom-right position is negative.
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1 Introduction

A real matrix is called sign regular (SR) if all its nonzero minors of the same order have identical sign. SR
matrices have found a variety of applications, e.g., in computer aided geometric design [33] and computer
vision [29, Section 3.3]. If the sign of all minors of any order is nonnegative (nonpositive), then the matrix is called
totally nonnegative (TN) (totally nonpositive, t.n.p.). TN matrices arise in a variety of ways in mathematics and its
applications. For background information, the reader is referred to the monographs [16,17,26,34].

Adm and Garloff [7] considered the SR matrices, which have a negative determinant and all of their other
minors nonnegative. In the present study, we investigate the dual class, viz. the matrices having all their
minors nonpositive with the exception of the determinant which is positive, termed below +t.n.p. matrices.
The class of these matrices forms a subclass of the almost N0-matrices [31] (also termed weak almost
N -matrices [32]). A real matrix is called an almost N0-matrix if all its proper principal minors are nonpositive
and its determinant is positive. Such matrices appear in linear complementarity theory [31] and in the theory
of the global univalence ofC

1 functions in n� [32, Section 4]. To recognize whether a given matrix is in this class
requires much more effort than the test for being +t.n.p. .

In this study, we apply the so-called Cauchon algorithm [22,28] for the study of the +t.n.p. matrices. This
algorithm, also called deleting derivations algorithm and Cauchon reduction algorithm, was developed by
Cauchon [11] while studying quantum matrices. It turned out to be an important tool in the investigation of
the connection between torus-invariant prime ideals, torus orbits of symplectic leaves, and cells of TN
matrices, e.g., [22]. By the Cauchon algorithm, we derive necessary and sufficient conditions for a matrix
with negative bottom-right entry to be +t.n.p. which provide an easy test for a given ×n n matrix requiring
O n

3( ) arithmetic operations [5, Section 3.2]. Furthermore, by employing the necessary and sufficient
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conditions, we show that the +t.n.p. matrices possess the so-called interval property. To explain this property,
consider the checkerboard ordering, which is obtained from the usual entry-wise ordering in the set of the square real
matrices of fixed order by reversing the inequality sign for each entry in a checkerboard fashion. Then, all matrices
lying with respect to this ordering between two +t.n.p. matrices with a negative entry in their bottom-right position
are +t.n.p. , too. The motivation for considering such an interval property stems, e.g., from the investigation of the
linear complementarity problem [15]. Often properties of this problem like solvability, uniqueness, convexity, and
finite number of solutions are reflected by properties of the constraint matrix (for a large collection of respective
matrix classes, refer [14]). In the case that one considers the linear complementarity problem with uncertain data
modeled by intervals [8,30], it is important to know whether the matrices obtained by choosing all possible values in
the intervals are in the same matrix class. Then, it is an enormous advantage if one could ascertain this containment
by checking a finite set of matrices [10,23] – in the ideal case, from only two matrices. Collections of matrix classes
which possess the interval property can be found in the survey articles [19,20].

The organization of our study is as follows. In Section 2, we introduce our notation and give some auxiliary
results, which we use in the subsequent sections. In Section 3, we recall from [22] the Cauchon algorithm on
which our results heavily rely. In Section 4, we first extend some results presented in [6] for the nonsingular
(Ns) t.n.p. matrices to cover also the singular case. Then, we apply the Cauchon algorithm to derive necessary
and sufficient conditions for a matrix to be +t.n.p. . Finally, we prove the interval property for +t.n.p. matrices
and related classes of SR matrices. In both cases, we require that the matrices under consideration have a
negative entry in their bottom-right position.

2 Notation and auxiliary results

2.1 Notation

We now introduce the notation used in our study. For positive integers k n, , we denote by Q
k n,

the set of
all strictly increasing sequences of k integers chosen from n1, 2, …,{ }. If ∈α Q

k n,
, =α α α, …, k1( ), then ακ̂

denotes the sequence α without its κth member. The dispersion of α, denoted by d α( ), is defined to be
= − − −d α α α k 1 ;k 1( ) ( ) it represents a measure for the gaps in the sequence α. If =d α 0( ) , i.e., α is formed

from consecutive integers, α is called contiguous. We use the set theoretic symbols∪ and \ to denote the union
and difference of two index sequences, where we consider the resulting sequence as strictly increasing
ordered. For ∈α β Q,

k n,
, we say that α is greater than or equal to β with respect to the lexicographical

order [colexicographical order], denoted by ≤ ≤β α β αc[ ], if the first non-zero entry in the sequence
− − − − − −α β α β α β α β α β α β, , …, , …, ,k k k k1 1 2 2 2 2 1 1

( ) [( )] is positive or =α β. We use the strict inequality
sign if we exclude the equality.

We denote by ×n m� the set of the real ×n m matrices. Let ∈ ×
A

n m� . For = ∈α α α Q, …, k k n1 ,
( ) and

= ∈β β β Q, …,
l l m1 ,

( ) , we denote by A α β[ ∣ ] the ×k l submatrix of A contained in the rows indexed by α α,…, k1

and columns indexed by β β,…,
l1
. If =α β, we denote the principal submatrix of A by A α[ ]. We suppress the

brackets when we enumerate the indices explicitly. If = =d α d β 0( ) ( ) , we call the submatrix A α β[ ∣ ] as well as if
=k l, its determinant contiguous. For any contiguous ×k k submatrix A α β[ ∣ ] of A, we call the submatrix

+ −A α α α n β β β, …, , 1, …, 1, …, 1, , …,k k k1 1 1
[ ∣ ]

of A having A α β[ ∣ ] in its upper right corner the left shadow of A α β[ ∣ ], and, analogously, we call the submatrix

− +A α α α β β β n1, …, 1, , …, , …, , 1, …,k k k1 1 1
[ ∣ ]

having A α β[ ∣ ] in its lower left corner the right shadow of A α β[ ∣ ].
Let ′ =n n mmin ,{ } and = ′ε ε ε, …, n1( ) be a signature sequence, i.e., ∈ − ′

ε 1, 1
n{ } . The matrix ∈ ×

A
n m� is

called SR with signature ε if ≤ ε A α β0 detk [ ∣ ], for all ∈ = ′α β Q k n, , 1, 2,…,
k n,

. If A is SR with signature
=ε 1, 1, …,1( ), then A is called TN; if = − − −ε 1, 1, …, 1( ), then A is termed t.n.p. If =n m and A is Ns and SR
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with signature = − − +ε 1, 1, …, 1( ), then, we denote this by +t.n.p. . Theorem 17 of Chapter V in [17] ascertains the
existence of such matrices for any order. If =n m and A is in a certain class of SRmatrices and in addition also Ns,
then, we affixNs to the name of the class. By Eij we denote the matrix having a 1 in position i j,( ) and all other entries
zero. We reserve throughout the notation =T tij( ) for the backward identity matrix with ≔ + −t δij n i j1 , , =i j n, 1,…, .

We endow ×n n� with two partial orderings: First, with the usual entry-wise ordering = = ∈ ×
A a B b,ij ij

n n�( ( ) ( ) )

≤ ⇔ ≤ =A B a b i j n: , , 1,…, .ij ij

The strict inequality <A B is also understood entry-wise. Second, with the checkerboard ordering, which is
defined as follows. Let ≔ − − +

S diag 1, 1, …, 1 n 1( ( ) ) and ≔ ≔A SAS B SBS* , * . Then, we define

≤ ⇔ ≤A B A B* : * *.

2.2 Auxiliary results

The first lemma is a useful special case of Sylvester’s determinant identity.

Lemma 2.1. [16, p. 29] Partition ∈ ≥×
A n, 3n n� , as follows:

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

A

c A d

A A A

e A f

,

12

21 22 23

32

where ∈ − × −
A

n n

22
2 2�( ) ( ) and c d e f, , , are scalars. Define the submatrices

≔ ⎡
⎣⎢

⎤
⎦⎥ ≔ ⎡

⎣⎢
⎤
⎦⎥

≔ ⎡
⎣⎢

⎤
⎦⎥ ≔ ⎡

⎣⎢
⎤
⎦⎥

C

c A

A A
D

A d

A A

E

A A

e A
F

A A

A f

, ,

, .

12

21 22

12

22 23

21 22

32

22 23

32

Then,

= −A A C F D Edet det det det det det .22

The previous lemma is the key of deducing the following lemma.

Proposition 2.2. [1, Lemma 1.7], Let ∈ = ∈×
A α α α Q, , …,n m

k k n1 ,
� ( ) , and = ∈− − −β β β Q, …,

k k m1 1 1, 1
( ) with

< d β0 ( ). Then, for all η such that < ≤ ∈ ∈−β η m κ k s h, 1, …, , 1, …,
k 1

{ } { }, and < < +β t β
h h 1

, for some
∈ −h k1, …, 2{ } or < <−β t η

k 1
, the following determinantal identity holds:

∪ ∪ = ∪ ∪ + ∪A α β t A α β η A α β η A α β t A α β A α β t ηdet det det det det det , .κ s κ s κ sˆ ˆ ˆ ˆ ˆ ˆ
[ ∣ { }] [ ∣ { }] [ ∣ { }] [ ∣ { }] [ ∣ ] [ ∣ { }]

3 Cauchon algorithm and SR matrices

In this section, we first recall from [22,28] the definition of Cauchon diagrams and the Cauchon algorithm1. In
the second part, we present properties of some classes of SR matrices mainly based on the performance of the
Cauchon algorithm.



1 It should be noted that Cauchon diagrams and the Cauchon algorithm can be traced back to the work by Postnikov [35] on the TN
Grassmannians, where the diagrams are called Le-diagrams.
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3.1 Cauchon algorithm

Definition 3.1. An ×n m Cauchon diagram C is an ×n m grid consisting of ⋅n m squares colored black and
white, where each black square has the property that either every square to its left (in the same row) or every
square above it (in the same column) is black.

We denote by Cn m, the set of the ×n m Cauchon diagrams. We fix positions in a Cauchon diagram in the
following way: For ∈C Cn m, and ∈ ∈i n j m1, …, , 1, …,{ } { }, ∈i j C,( ) if the square in row i and column j is
black. Here we use the usual matrix notation for the i j,( ) position in a Cauchon diagram, i.e., the square in
1, 1( ) position of the Cauchon diagram is in its top left corner.

Definition 3.2. Let ∈ ×
A

n m� and let ∈C Cn m, . We say that A is a Cauchon matrix associated with the Cauchon
diagram C if for all ∈ ∈i j i n j m, , 1, …, , 1, …,( ) { } { }, we have =a 0ij , if and only if ∈i j C,( ) . If A is a Cauchon
matrix associated with an unspecified Cauchon diagram, we just say that A is a Cauchon matrix.

Define the sets ≔ × ≔ ∪ +∘ ∘
E n m E E n1, …, 1, …, \ 1, 1 , 1, 2 .{ } { } {( )} {( )}

Let ∈ ∘
s t E, .( ) Then, ≔ ∈ ≤ ≠+

s t i j E s t i j s t i j, min , , , , , , ,( ) {( ) ∣( ) ( ) ( ) ( )} where the minimum is taken with
respect to the lexicographical order.

Algorithm 3.3. (Cauchon algorithm) [22, Algorithm 3.2] Let = ∈ ×
A aij

n m�( ) . As r runs in decreasing order over
the set E with respect to the lexicographical order, we define matrices = ∈ ×

A a
r

ij

r n m�( )( ) ( ) as follows:
1. Set ≔+

A A
n 1,2( ) .

2. For = ∈ ∘
r s t E,( ) , define the matrix =A a

r

ij

r

( )( ) ( ) as follows:

(a) If =
+

a 0st

r( ) , then put ≔ +
A A

r r( ) ( ).

(b) If ≠
+

a 0st

r( ) , then put

≔

⎧

⎨
⎪

⎩
⎪

− < <
+

+ +

+

+

a

a

a a

a

i s j t

a

, for and ,

, otherwise.

ij

r ij

r it

r

sj

r

st

r

ij

r

( )

( )

( ) ( )

( )

( )

3. Set ≔A A A˜ ; ˜1,2( ) is called the matrix obtained from A (by the Cauchon algorithm).

Remark 3.4. For practical computations, we advise to use instead of Algorithm 3.3 its condensed form [5,
Section 3.2]. Then, the number of arithmetic operations is reduced from O n

4( ) to O n
3( ).

We recall from [28] the definition of a lacunary sequence associated with a Cauchon diagram.

Definition 3.5. Let ∈C n m,� . We say that a sequence

≔ =γ i j k t, , 0, 1, …, ,k k
(( ) ) (1)

which is strictly increasing in both arguments is a lacunary sequence with respect to C if the following
conditions hold:
(i) ∉ =i j C k t, , 1,…,k k

( ) ;
(ii) ∈i j C,( ) , for < ≤i i nt and < ≤j j m

t
.

(iii) Let ∈ −s t1, …, 1{ }. Then ∈i j C,( ) , if
(a) either for all < < +i j i i i, , s s 1( ) , and <j j

s
,

or for all < < +i j i i i, , s s 1( ) , and ≤ < +j j j
s0 1

, and
(b) either for all <i j i i, , s( ) , and < < +j j j

s s 1
,

or for all < +i j i i, , s 1( ) , and < < +j j j
s s 1

.

We call t the length of γ.
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The following procedure is beneficial to construct lacunary sequences.

Procedure 3.6. [2] Let ∈ ×
A

n m� be a Cauchon matrix. Construct the lacunary sequence

=γ i j i j, , …, ,p p 0 0
(( ) ( ))

as follows: Put ≔ + +− −i j n m, 1, 11 1
( ) ( ). For =k p0, 1,…, , define

≔ ≤ < ≤ < ≠− −M i j i i j j a, 1 , 1 , 0 .k k k ij1 1
{( )∣ }

If =M ϕk , put ≔ −p k 1.
Otherwise, put ≔i j M, maxk k k( ) , where the maximum is taken with respect to the lexicographical order.

Procedure 3.6 is useful to determine the rank of a given matrix A from Ã, provided that Ã is a Cauchon matrix.

Theorem 3.7. [2, Theorem 3.4] Let ∈ ×
A

n m� be such that Ã is a Cauchon matrix. Then, = +A prank 1,where p is
the length of the sequence which is obtained by application of Procedure 3.6 to Ã.

The following theorem tells how to find the value of some minors of A by using lacunary sequences with
respect to Ã, provided that Ã is Cauchon matrix.

Theorem 3.8. [2, Corollary 3.3] Let ∈ ×
A

n m� be such that =A a˜ ˜ij( ) is a Cauchon matrix, and let
= =γ i j k p, , 0, 1, …,k k

(( ) ) be a lacunary sequence. Then, the following representation holds:

= ⋅ ⋅A i i j j a a adet , …, , …, ˜ ˜ … ˜ .p p i j i j i j0 0 , , ,p p0 0 1 1
[ ∣ ]

Corollary 3.9. [6] Let ∈ ×
A

n n� and assume that =A a˜ ˜ij( ) is a Cauchon matrix with ≠ã 0ii , =i n1,…, . Then, the
following equality holds:

= ⋅ ⋅A a adet ˜ … ˜ .nn11

3.2 SR matrices

Theorem 3.10. [9, Theorem 2.1] Let ∈ ×
A

n m� be of rank r and ε be a signature sequence. If ≤ ε A α β0 detk [ ∣ ] for
all ∈ ′α β Q,

k n,
, where ′ =n n mmin ,{ }, is valid whenever ≤ −d α n r( ) , then A is SR with signature ε.

Lemma 3.11. [9, Theorem 3.1] If ∈ ×
A B, n n� are SR with signatures =ε ε ε, …, n1( ) and =δ δ δ, …, n1( ), respec-

tively, then AB is SR with signature ε δ ε δ, …, n n1 1( ).

3.2.1 TN matrices

Lemma 3.12. [22, Lemma B.1] Let ∈ ×
A

n m� be TN . Then, A is a Cauchon matrix.

Theorem 3.13. [4, Theorem 3.3], [28, Theorem 2.6] The matrix A is TN if and only if Ã is an entry-wise
nonnegative Cauchon matrix. A is in addition Ns if and only if all diagonal entries of Ã are positive.

3.2.2 T.n.p. matrices

The following lemma was originally presented for TN matrices as Proposition 1.15 in [34]. It was shown in [1,
Proposition 2.5] by a similar proof that it is also valid for t.n.p. matrices (Section 2.1).

Matrices with nonpositive minors and a positive determinant  5



Lemma 3.14. Let ∈ ×
A

n m� be t.n.p., and let = + + = + +α i i r β j j r1, …, , 1, …,( ) ( ) for some ∈i n1, …, ,{ }

∈j m1, …,{ }, and ≤ < −r n m2 min , 1{ } . If A α β[ ∣ ] has rank −r 1, then,
(i) either the rows + +i i r1,…, or the columns + +j j r1,…, of A are linearly dependent, or
(ii) the right or left shadow of + + + +A i i r j j r1, …, 1, …,[ ∣ ] has rank −r 1.

The following theorem presents equivalent statements for a Ns matrix to be t.n.p. using a fixed number of
minors.

Theorem 3.15. [25] Let = ∈ ×
A aij

n n�( ) with ≤ n2 be Ns. Then, the following three statements are equivalent:
(i) A is t.n.p.
(ii) For any ∈ −k n1, …, 1{ },

≤ ≤ < <a a a a0, 0, 0, 0,nn n n11 1 1

+ ≤ ∈ −A α k n for all α Qdet 1, …, 0, ,
n k n,

[ ∣ ]

+ ≤ ∈ −A k n β for all β Qdet 1, …, 0, ,
n k n,

[ ∣ ]

<A k ndet , …, 0.[ ]

(iii) For any ∈ −k n1, …, 1{ },

≤ ≤ < <a a a a0, 0, 0, 0,nn n n11 1 1

≤ ∈A α k for all α Qdet 1, …, 0, ,
k n,

[ ∣ ]

≤ ∈A k β for all β Qdet 1, …, 0, ,
k n,

[ ∣ ]

+ <A kdet 1, …, 1 0.[ ]

The following theorem tells that the entries of Ã can be represented as ratios of contiguous minors if A is
Ns.t.n.p.

Theorem 3.16. [6] Let = ∈ ×
A aij

n n�( ) be Ns.t.n.p. with <a 0nn . Then, the entries ãkj of the matrix Ã can be
represented as =k j n, 1, …,( )

=
+ +

+ + + +
a

A k k p j j p

A k i p j j p

˜
det , …, , …,

det 1, …, 1, …,
,kj

[ ∣ ]

[ ∣ ]

with a suitable ≤ ≤ −p n k0 , if ≤j k , and ≤ ≤ −p n j0 , if <k j.

Theorem 3.17. [6] Let = ∈ ×
A aij

n n�( ) have all its entries negative except possibly ≤a 011 . Then, the following
two properties are equivalent:
(i) A is a Ns.t.n.p. matrix.
(ii) Ã is a Cauchon matrix and −A n˜ 1, …, 1[ ] is a nonnegative matrix with positive diagonal entries.

4 Main results

In this section, we present our results on the characterization of a special class of SR matrices by application of
the Cauchon algorithm. In Section 4.1, we will extend some results on Ns.t.n.p. matrices to the rectangular case.
In Section 4.2, we will introduce some characterizations and necessary and sufficient conditions for a given
square matrix with a negative entry in the bottom-right position to have a positive determinant and all other
minors nonpositive, i.e., to be +t.n.p. . We conclude this study by Section 4.3, wherein we show that the so-called
interval property holds for such matrices.
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4.1 T.n.p. matrices and the Cauchon algorithm

First, we show that a t.n.p. matrix with a negative entry in its bottom-right position either has all its entries in
the last row and column negative or it contains a zero row or a zero column.

Proposition 4.1. Let = ∈ ×
A aij

n m�( ) be a t.n.p. matrix with <a 0nm . Then, the following implications hold.
(i) If there exists ∈ −i n1, …, 1{ } with =a 0im , then =a 0ij , for all ∈ −j m1, …, 1{ }.
(ii) If there exists ∈ −j m1, …, 1{ } with =a 0nj , then =a 0ij , for all ∈ −i n1, …, 1{ }.

Proof. First, assume =a 0im for some ∈ −i n1, …, 1{ }. Then, it follows from the total nonpositivity of A that for
any ∈ −j m1, …, 1{ },

≥ = − = ≥A i n j m a a a a a a0 det , , 0.ij nm im nj ij nm[ ∣ ]

Because <a 0nm , we conclude that =a 0ij , for all = −j m1,… 1, i.e., A has a zero row. The proof for (ii) is
similar. □

In the following theorem, we make extensive use of the following proposition on the relationship between
the minors of the intermediate matrices occurring when running the Cauchon algorithm. The statements are
composed of Propositions 3.7 and 3.11 and Lemma B.3 in [22].

Proposition 4.2. [22] Let = ∈ ×
A aij

n m�( ) and = ∈ ∘
r s t E,( ) .

(i) Let ≠a 0st , = ∈α α α Q, …, l l n1 ,
( ) , and = ∈β β β Q, …,

l l m1 ,
( ) , where ≤l n mmin ,{ } and =α β r, .l l

( ) Then,

= ⋅+
A α β A α β adet det .r r

s t stˆ ˆ[ ∣ ] [ ∣ ]( ) ( )

(ii) Let <α β r, .l l
( ) If =a 0st , or if =α sl , or if ∈t β β or, …, ,

l1
{ } if <t β

1
, then

=+
A α β A α βdet det .r r[ ∣ ] [ ∣ ]( ) ( )

(iii) Assume that ≠a 0st and <α sl while < < +β t β
h h 1

for some ∈h l1, …,{ } (by convention, ≔ ++β m 1
l 1

). Then,

∑= + − ∪
=

++
A α β A α β

a

A α β t adet det
1

1 det .r r

st k

h

k h r

k s β

r

1

ˆ ,
k

[ ∣ ] [ ∣ ] ( ) [ ∣ { }]( ) ( ) ( ) ( )

In the following theorem, we investigate the entries of the intermediate matrices that result by the
application of the Cauchon algorithm to a given t.n.p. matrix. We proceed similarly to the case of a
Ns.t.n.p. matrix which was considered in [6, Theorem 4.4].

Theorem 4.3. Let = ∈ ×
A aij

n m�( ) be t.n.p. with all the entries in its last row and column negative. If we apply
the Cauchon algorithm to A, then the following properties hold.
(i) All entries of − −A n m1, …, 1 1, …, 1n t, [ ∣ ]( ) are nonnegative, for =t m2,…, .
(ii) − −A n t1, …, 1 1, …, 1n t, [ ∣ ]( ) is TN, for =t m2,…, .
(iii) − −A n m1, …, 1 1, …, 1n t, [ ∣ ]( ) is TN, for =t m2,…, .
(iv) A

n,2( ) is a Cauchon matrix.
(v) For =t m2,…, , ≤A α βdet 0n t, [ ∣ ]( ) , for all ∈ = ∈−α Q β β β β Q, , , …,

l n l l m, 1 1 2 ,
( ) with =β m

l
and

= −l n m1,…, min 1,{ }.

Proof. (i) If =t m, then set = ∈ ∘
r n m E,( ) . By Proposition 4.2 (i), we have

= = ⋅ = ⋅+
A i n j m A i n j m A i j a a adet , , det , , det ,r r

nm ij

r

nm[ ∣ ] [ ∣ ] [ ∣ ]( ) ( ) ( )

for ∈ − ∈ −i n j m1, …, 1 , 1, …, 1{ } { }. Since A is t.n.p., whence ≤A i n j mdet , , 0[ ∣ ] , and <a 0nm , it follows that

≥ = − = −a i n j m0, for 1,…, 1 and 1,…, 1.
ij

r( )

Matrices with nonpositive minors and a positive determinant  7



For the other cases, let =r n t,( ). Since the last row index in the underlying submatrices of the following
minors equals n, we apply Proposition 4.2 (ii) to conclude that

= = = ≤ −+
A i n j t A i n j t A i n j t t mdet , , … det , , det , , for 1.r n m,[ ∣ ] [ ∣ ] [ ∣ ]( ) ( ) (2)

By Proposition 4.2 (i), we obtain

= = ⋅ = ⋅+
A i n j t A i n j t A i j a a adet , , det , , det .r r

nt ij

r

nt[ ∣ ] [ ∣ ] [ ∣ ]( ) ( ) ( )

Since the left-hand side is nonpositive by the total nonpositivity of A, we conclude that ≥a 0
ij

r( ) .
(ii) Let =r n t,( ), ∈t m2, …,{ }, and ∈ −α Q

i n, 1
, ∈ −β Q

i t, 1
. Since the last row index in the underlying sub-

matrices of the following minors equals n, we apply Proposition 4.2 (ii) to obtain

=
⋮
=
=
≤

+
A α α n β β t

A α α n β β t

A α α n β β t

det , …, , , …, ,

det , …, , , …, ,

det , …, , , …, ,

0,

r

i i

n m

i i

i i

1 1

,
1 1

1 1

[ ∣ ]

[ ∣ ]

[ ∣ ]

( )

( ) (3)

and by Proposition 4.2 (i) with =r n t,( ), we obtain

= ⋅+
A α α n β β t A α α β β adet , …, , , …, , det , …, , …, .r

i i

r

i i nt1 1 1 1
[ ∣ ] [ ∣ ]( ) ( )

Since <a 0nt , we conclude by (3) that

≥A α α β βdet , …, , …, 0.n t

i i

,
1 1

[ ∣ ]( )

Hence, − −A n t1, …, 1 1, …, 1n t, [ ∣ ]( ) is TN , for all = −t m2,…, 1.
(iii) We will prove this statement by decreasing primary induction on the step number t and secondary

induction on the order l of the minors.
For =t m, − −A n m1, …, 1 1, …, 1n m, [ ∣ ]( ) is TN by (ii).
Suppose that − −+

A n m1, …, 1 1, …, 1n t, 1 [ ∣ ]( ) isTN . We want to show that − −A n m1, …, 1 1, …, 1n t, [ ∣ ]( ) isTN ,
i.e.,

≤ ∈ ∈− −A α β α Q β Q0 det , for all , .n t

l n l m

,

, 1 , 1
[ ∣ ]( ) (4)

By (i), in the case =l 1, all entries of − −A n m1, …, 1 1, …, 1n t, [ ∣ ]( ) are nonnegative, for =t m2,…, .
Now assume that (4) is true for all steps − +m t1,…, 1 and all minors of order −l1,…, 1. We want to show

the claim for step t and minors of order l.
Let = ∈ −α α α Q, …, l l n1 , 1

( ) and = ∈ −β β β Q, …,
l l m1 , 1

( ) .
If <β t

l
, then the matrix A α β

n t, [ ∣ ]( ) is a submatrix of − −A n t1, …, 1 1, …, 1n t, [ ∣ ]( ) which is TN by (ii), and
so ≥A α βdet 0n t, [ ∣ ]( ) .

If <t β
1
or t is contained in β, then by Proposition 4.2 (ii), we have

=+
A α β A α βdet det ,n t n t, 1 ,[ ∣ ] [ ∣ ]( ) ( )

which implies by the induction hypothesis on t that

≥A α βdet 0.n t, [ ∣ ]( )

Hence, it remains to consider the case, where there exists h, ≤ ≤ −h l1 1, such that < < +β t β
h h 1

which
implies >d β 0( ) .

In order to prove (4) in this case, we simplify the notation by setting

≔ ≔ +
α β A α β α β A α βdet , det ,n t n t, † , 1[ ∣ ] [ ∣ ] [ ∣ ] [ ∣ ]( ) ( )

and for ∈j h1, …,{ },

′ ≔ − + −β β β β β, …, , , …, ,
j j j lˆ 1 1 1 1

( ) (5)
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such that ′β
ĵ
has the length −l 2.

Since >d β 0( ) and < < +β t β ,
h h 1

we use Proposition 2.2 to conclude that for =k l1,…, ,

′ ∪ ⋅ = ′ ∪ ⋅ ′ ∪ + ′ ∪ ⋅ ′ ∪α β t α β α β β α β β t α β β α β t β, , .
k j k j l j j k j j j l
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ∣ { }] [ ∣ ] [ ∣ { }] [ ∣ { }] [ ∣ { }] [ ∣ { }] (6)

It follows from the induction hypothesis on l that the minors ′ ∪α β t
k j
ˆ ˆ[ ∣ { }], ′ ∪α β β

k j l
ˆ ˆ[ ∣ { }], and ′ ∪α β β

k j j
ˆ ˆ[ ∣ { }] are

nonnegative because they have order −l 1.
Furthermore, since t is a column index of the submatrices underlying the following minors, we obtain by

Proposition 4.2 (ii) that

′ ∪ = ′ ∪α β β t α β β t, ,
j j j jˆ ˆ

†[ ∣ { }] [ ∣ { }]

and

′ ∪ = ′ ∪α β t β α β t β, , .
j l j lˆ ˆ

†[ ∣ { }] [ ∣ { }]

Hence, by induction on t, these minors are also nonnegative.
Since the four minors on the right-hand side of (6) are nonnegative, the left-hand side is nonnegative, too.

If < ′ ∪α β t0
k j
ˆ ˆ[ ∣ { }] for some k and j , then ≤ α β0 [ ∣ ], as desired. If for all ′ ∪ =k j α β t, , 0

k j
ˆ ˆ[ ∣ { }] , then, it follows by

Laplace expansion along column β
l
that ′ ∪ =α β β t, 0

j lˆ[ ∣ { }] . Then, by Proposition 4.2 (iii), we conclude that

=A α β A α βdet det .n t n t, ,
†

[ ∣ ] [ ∣ ]( ) ( )

Hence, we obtain by induction on t that ≤ A α β0 det n t, [ ∣ ]( ) , as desired. This completes the induction for the proof
of (iii).

(iv) By (iii), − −A n m1, …, 1 1, …, 1n,2 [ ∣ ]( ) is TN and therefore, by Lemma 3.12, a Cauchon matrix. The
negative entries in the last row and column of A do not alter during the run of the Cauchon algorithm, and
hence, we may conclude that A

n,2( ) is a Cauchon matrix.
(v) We prove the claim by decreasing primary induction on t and secondary induction on l as in the proof

of statement (iii). For =l 1, due to =β m
l

, we are referring to the entries in the last column which are negative
by assumption and the fact that the entries of the last column and row do not change during the run of the
Cauchon algorithm. If =t m, then by Proposition 4.2 (ii), we have = ≤A α β A α βdet det 0n m, [ ∣ ] [ ∣ ]( ) since =β m.

l

Suppose that the statement is true for all minors of order less than l and for all steps + −t m1,…, 1. Let
∈ −α Q

l n, 1
and = ∈β β β β Q, , …,

l l m1 2 ,
( ) with =β m

l
.

If <t β
1
or =t β

h
for some =h l1,…, , we use Proposition 4.2 (ii) similarly as in the proof of (iii) to conclude

that ≤A α βdet 0n t, [ ∣ ]( ) .
If < < +β t β

h h 1
for some = −h l1,…, 1, we apply Proposition 2.2 and use (6) with the notation (5).

The minors ′ ∪α β t
k j
ˆ ˆ[ ∣ { }] and ′ ∪α β β t,

j jˆ[ ∣ { }], ′ ∪α β β
k j j
ˆ ˆ[ ∣ { }] are nonnegative by (iii). The minor ′ ∪α β β

k j l
ˆ ˆ[ ∣ { }]

is nonpositive by the induction hypothesis on ′ ∪ = ′ ∪l α β t β α β t β, , ,
j l j lˆ ˆ

†[ ∣ { }] [ ∣ { }] by Proposition 4.2 (ii), and by
the induction hypothesis on t, the latter minor is nonpositive. All of these inequalities yield

′ ∪ ⋅ ≤α β t α β 0.
k j
ˆ ˆ[ ∣ { }] [ ∣ ]

If < ′ ∪α β t0
k j
ˆ ˆ[ ∣ { }] for some k and j , then, we have ≤α β 0[ ∣ ] . If for all k j, , ′ ∪ =α β t 0

k j
ˆ ˆ[ ∣ { }] , then proceeding

parallel to the last part of (iii), we obtain

=+
A α β A α βdet det .n t n t, 1 ,[ ∣ ] [ ∣ ]( ) ( )

Hence, we obtain by induction on t that ≤ A α β0 det n t, [ ∣ ]( ) , as desired. □

By sequentially repeating the steps of the proof of Theorem 4.3, we obtain the following theorem.

Theorem 4.4. Let = ∈ ×
A aij

n m�( ) be t.n.p. with all the entries in its last row and column negative. Then, the
following statements hold:
(i) − −A s t1, …, 1 1, …, 1s t, [ ∣ ]( ) is TN, for all =s n2,…, and =t m2,…, .
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(ii) − −A s t1, …, 1 1, …, 1s,2 [ ∣ ]( ) is T N, for all =s n2,…, and =t m2,…, .
(iii) − −A n m˜ 1, …, 1 1, …, 1[ ∣ ] is a nonnegative matrix.
(iv) Ã is a Cauchon matrix.

4.2 Characterization of matrices having a positive determinant and all other
minors nonpositive

In this section, we employ the results obtained so far to investigate and characterize, by using the Cauchon
algorithm, the matrices having positive determinants and all other minors nonpositive, i.e., the +t.n.p.

matrices. By the nonsingularity of these matrices, it suffices to assume that the entry in the bottom-right
position is negative to conclude by Proposition 4.1 that all entries in their last rows and columns are negative.
In the following theorem, we present some properties of the entries in the matrix that we obtain after
application of the Cauchon algorithm to such a +t.n.p. matrix.

Theorem 4.5. Let = ∈ ×
A aij

n n�( ) be +t.n.p. and <a 0nn . Then, application of the Cauchon Algorithm to A
results in the following properties:
(i) ≠ã 0ii , for = −i n3,…, 1.
(ii) If =ã 0j2 for >j 2, then =ã 0i2 , for all = −i j2,…, 1, or =ã 0j1 .
(iii) If =ã 0i2 for >i 2, then =ã 0j2 , for all = −j i2,…, 1, or =ã 0i1 .

Proof. Since A is +t.n.p. , we conclude that A n n1, …, 2, …,[ ∣ ] andA n n2, …, 1, …,[ ∣ ] are t.n.p.. Let Ã be the matrix
obtained by application of the Cauchon algorithm to A. By Theorem 4.4, A n n˜ 1, …, 2, …,[ ∣ ] and A n n˜ 2, …, 1, …,[ ∣ ]

are Cauchon matrices since all entries of the above matrices coincide with the corresponding entries of the
matrices obtained by running the Cauchon algorithm on A n n1, …, 2, …,[ ∣ ] and A n n2, …, 1, …,[ ∣ ]. The reason is
that the entries of the first column and first row do not affect the calculation of the new entries of the latter
matrices.

(i) We prove this statement by decreasing induction on i, for = −i n 1,…, 3. Suppose that >ã 0jj , for
= − +j n i1,…, 1, and =ã 0ii . Since A n n˜ 1, …, 2, …,[ ∣ ] and A n n˜ 2, …, 1, …,[ ∣ ] are Cauchon matrices, we distin-

guish between the following three cases:
Case (1) =ã 0is , for all = −s i1,…, 1. By application of Procedure 3.6 to A i n n˜ , …, 1, …,[ ∣ ], we construct the

lacunary sequence + + + +i i i i n n1, 1 , 2, 2 , …, ,(( ) ( ) ( )) for the Cauchon matrix A i n n˜ , …, 1, …,[ ∣ ]. By Theorem
3.7, the rank of the matrix A i n n, …, 1, …,[ ∣ ] is −n i, which is a contradiction to the linear independence of the
rows of A (note that A is Ns as a +t.n.p. matrix).

Case (2) =ã 0ti , for all = −t i1,…, 1. By application of Procedure 3.6 to A n i n˜ 1, …, , …,[ ∣ ], we obtain the
lacunary sequence + + + +i i i i n n1, 1 , 2, 2 , …, ,(( ) ( ) ( )) and similarly, as in case (1), a contradiction to the
linear independence of the columns of A.

Case (3) =ã 0is , for = −s i2,…, 1, ≠ã 0i1 , =ã 0ti , for = −t i2,… 1, and ≠ã 0i1 . Since A n n˜ 1, …, 2, …,[ ∣ ] and
A n n˜ 2, …, 1, …,[ ∣ ] are Cauchon matrices, Ã has the following form:

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

− +

+

− − + −

+

+ + + − + + + +

− +

A

a a a a a a

a a a

a a a

a a a

a a a a a a

a a a a a a

˜

˜ ˜ … ˜ ˜ ˜ … ˜

˜ 0 … 0 0 ˜ … ˜

˜ 0 … 0 0 ˜ … ˜

˜ 0 … 0 0 ˜ … ˜

˜ ˜ … ˜ ˜ ˜ … ˜

˜ ˜ … ˜ ˜ ˜ … ˜

.

i i i n

i n

i i i i n

i i i in

i i i i i i i i i n

n n n i ni n i nn

11 12 1, 1 1, 1, 1 1

21 2, 1 2

1,1 1, 1 1,

1 , 1

1,1 1,2 1, 1 1, 1, 1 1,

1 2 , 1 , 1
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By application of Procedure 3.6 to A n n˜ 2, …, 1, …,[ ∣ ], we construct the lacunary sequence
+ + − −i i i n n n n, 1 , 1, 1 , …, 1, 1 , ,(( ) ( ) ( ) ( )) for the Cauchon matrix A n n˜ 2, …, 1, …,[ ∣ ]. By Theorem 3.7, the

rank of the matrix A n n2, …, 1, …,[ ∣ ] is − +n i 1. Since ≥i 3, we obtain − + ≤ −n i n1 2, which is a contra-
diction to the linear independence of the rows of this matrix which proves (i).

(ii) Let =ã 0j2 for >j 2. Then, since A n n˜ 1, …, 2, …,[ ∣ ] is a Cauchon matrix, we obtain that =ã 0i2 , for
= −i j2,…, 1, or =ã 0j1 .

(iii) Let =ã 0i2 for >i 2. Then, since A n n˜ 2, …, 1, …,[ ∣ ] is a Cauchon matrix, we obtain that =ã 0j2 , for
= −j i2,…, 1, or =ã 0i1 . □

Corollary 4.6. Let = ∈ ×
A aij

n n�( ) be +t.n.p. and <a 0nn . Then,
(i) If =ã 0ij , for >i 2 and <i j , then =ã 0sj , for = −s i1,…, 1.
(ii) If =ã 0ij , for >j 2 and >i j, then =ã 0it , for = −t j1,…, 1.

Proof. By the hypotheses, A n n˜ 1, …, 2, …,[ ∣ ] and A n n˜ 2, …, 1, …,[ ∣ ] are Cauchon matrices as in the proof of
Theorem 4.5. It suffices to prove only (i).

Suppose that =ã 0ij for >i 2 and <i j . We want to show that =ã 0sj , for = −s i1,…, 1. Suppose on the
contrary that ≠ã 0sj for some ∈ −s i1, …, 1{ }. Then, since =ã 0ij and A n n˜ 1, …, 2, …,[ ∣ ] is a Cauchon matrix, it
follows that =ã 0ik , for all = −k j2,…, 1. Now since >j i, we conclude that =ã 0ii , for >i 2, which provides a
contradiction to Theorem 4.5 (i). □

Theorem 4.7. Let = ∈ ×
A aij

n n�( ) be +t.n.p. with <a 0nn , and let =A a˜ ˜ij( ) be the matrix obtained by the
Cauchon algorithm. Then,
(i) − <A n ndet 1, …, 1 2, …, 0[ ∣ ] , and − <A n ndet 2, …, 1, …, 1 0[ ∣ ] ;
(ii) − <A ndet 2, …, 1 0[ ] ;
(iii) >− −a a˜ , ˜ 0i i i i, 1 1, , for = −i n2,…, 1;
(iv) if =ã 0j2 for some ∈ −j n4, …, 1{ }, then =ã 0j1 , and if =ã 0i2 for some ∈ −i n4, …, 1{ }, then =ã 0i1 .

Proof. Since A is a +t.n.p. matrix, its submatrices A n n1, …, 2, …,[ ∣ ] and A n n2, …, 1, …,[ ∣ ] are t.n.p. with <a 0nn .
By Theorem 4.4, we obtain that A n n A n n˜ 1, …, 2, …, and ˜ 2, …, 1, …,[ ∣ ] [ ∣ ] are Cauchon matrices.

(i) Set the matrix = ≔ − −
C c SA Sij

1 1( ) , where = − − +
S diag 1, 1 …, 1 n 1( ( ) ). For ∈α β Q,

l n,
, =l n1,…, , we obtain

by the formula for the minors of the inverse matrix, e.g., [24, 0.8.4],

= − =−
C α β A α β

A β α

A

det 1 det
det

det
,s

c c

1[ ∣ ] ( ) [ ∣ ]
[ ∣ ] (7)

where = ∑ +=s α β
i

l

i i1( ), and α
c and β

c denote the complement of α and β in n1, …,{ }, respectively. Since for
= −l n1,…, 1, ≤A β αdet 0c c[ ∣ ] and >Adet 0, we obtain that ≤C α βdet 0[ ∣ ] , for = −l n1,…, 1. Moreover, for

=α β n, 1, …,( ),

= >C

A

det
1

det
0,

whence C is +t.n.p. . By (7), we obtain that

=
−

c

A n n

A

det 1, …, 1 2, …,

det
.n1

[ ∣ ] (8)

We claim that c n1 is negative by which we conclude that −A n ndet 1, …, 1 2, …,[ ∣ ] is negative. Suppose on the
contrary that =c 0n1 . Since C is Ns, it has neither a zero row nor a zero column. Hence, we may assume that

≠c c, 0j in1 , for some ∈i n2, …,{ }, ∈ −j n1, …, 1{ }. Then, we obtain

≥ = − =C i j n c c c c c c0 det 1, , ,j in n ij j in1 1 1[ ∣ ]

but since c c,j in1 are negative, the right-hand side is positive which is a contradiction. Therefore, <c 0n1 .
The proof for − <A n ndet 2, …, 1, …, 1 0[ ∣ ] is similar by using
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=
−

c

A n n

A

det 2, …, 1, …, 1

det
.n1

[ ∣ ]

(ii) Since ≠ã 0ii by Theorem 4.5, for =i n3,…, , we construct the lacunary sequence n n2, 2 , 3, 3 , …, ,(( ) ( ) ( ))

with respect to the Cauchon matrix A n n˜ 2, …, 1, …,[ ∣ ], see Theorem 4.4 (iv). Since A n2, …,[ ] is t.n.p. , we obtain
by Theorem 4.4 (iv) that A n˜ 2, …,[ ] is a Cauchon matrix. Moreover, by Theorem 3.8 we conclude that

= ⋅ ⋅ ⋅A n a a adet 2, …, ˜ ˜ … ˜ .nn22 33[ ] (9)

If =ã 022 , application of Lemma 2.1 to the matrix A yields

− = − − − −A n A A n A n A n n A n ndet 2, …, 1 det det 1, …, 1 det 2, …, det 1, …, 1 2, …, det 2, …, 1, …, 1 .[ ] [ ] [ ] [ ∣ ] [ ∣ ]

Since >Adet 0 and − − <A n n A n ndet 1, …, 1 2, …, , det 2, …, 1, …, 1 0[ ∣ ] [ ∣ ] by (i), and since (9) gives =A ndet 2, …, 0[ ] ,
we conclude that

− <A ndet 2, …, 1 0.[ ] (10)

If >ã 022 , then (9) provides by Theorem 4.5 (i) and = <a a˜ 0nn nn that A n2, …,[ ] is Ns, and by Theorem 3.15
we conclude that (10) holds.

(iii) It suffices to prove only that >−ã 0i i, 1 , for = −i n2, 3,…, 1. By (i), −A n n2, …, 1, …, 1[ ∣ ] is Ns.t.n.p.

Hence, by Theorem 3.15 (ii), we obtain

− − <A i n i ndet , …, 1, …, 1 0,[ ∣ ] (11)

for = −i n2,…, 1. Recall that = <− −a ã 0n n n n, 1 , 1 . To prove that >−ã 0i i, 1 , we verify the following formula:

=
− −

+ −−a

A i n i n

A i n i n

˜
det , …, 1, …, 1

det 1, …, , …, 1
.i i, 1

[ ∣ ]

[ ∣ ]
(12)

We will do this by decreasing induction on i, for = −i n 1,…, 2. We construct the lacunary sequence
− − −n n n n1, 2 , , 1(( ) ( )) for the matrix − − −A n n n n˜ 1, 2, 1[ ∣ ]. By Theorem 3.8, we conclude that

− − − = ⋅− − −A n n n n a adet 1, 2, 1 ˜ ˜ ,n n n n1, 2 , 1[ ∣ ]

or equivalently,

=
− − −

−− −a

A n n n n

A n n

˜
det 1, 2, 1

det 1
.n n1, 2

[ ∣ ]

[ ∣ ]

Since by (11), − − − <A n n n ndet 1, 2, 1 0[ ∣ ] , we obtain >− −ã 0n n1, 2 .
Suppose that >−ã 0i i, 1 , for = − +i n k1,…, 1, ≥k 2. Now, for =i k , ≠+ + + − −a a a˜ , ˜ ,…, ˜ 0k k k k n n1, 2, 1 1, 2 , by the

induction hypothesis. So we find the lacunary sequence − + −k k k k n n, 1 , 1, , …, , 1(( ) ( ) ( )) for the Cauchon
matrix − −A k n k n˜ , …, 1, …, 1[ ∣ ], and by Theorem 3.8 we conclude that

− − = ⋅ ⋅ ⋅− + −A k n k n a a adet , …, 1, …, 1 ˜ ˜ … ˜ .k k k k n n, 1 1, , 1[ ∣ ]

Moreover, it follows by the induction hypothesis that

+ − = ⋅ ⋅+ −A k n k n a adet 1, …, , …, 1 ˜ … ˜ ,k k n n1, , 1[ ∣ ]

which yields

=
− −

+ −−a

A k n k n

A k n k n

˜
det , …, 1, …, 1

det 1, …, , …, 1
,k k, 1

[ ∣ ]

[ ∣ ]

where − −A k n k ndet , …, 1, …, 1[ ∣ ], + − <A k n k ndet 1, …, , …, 1 0[ ∣ ] , by (11). Thus >−ã 0k k, 1 , as desired.
(iv) It suffices to prove only the first statement. Let =ã 0j2 for some ∈ −j n4, …, 1{ }. Then, by Theorem 4.5

(ii), we obtain that either =ã 0k2 , for = −k j2,…, 1, or =ã 0j1 . Since ≠ã 023 by (iii), which excludes =ã 0k2 , for
= −k j2,…, 1, we obtain that =ã 0j1 . □

12  Imad Hassuneh et al.



The following two theorems will show that the entry ã22 is the most critical one. The next theorem presents
necessary and sufficient conditions for a given matrix to be +t.n.p. under certain conditions.

Theorem 4.8. Let = ∈ ×
A aij

n n�( ) with <a 0nn , and let the matrix =A a˜ ˜ij( ) obtained by the Cauchon algorithm
satisfy >ã 022 .
(a) If A is +t.n.p. , then the following statements hold

(i) Ã is a Cauchon matrix;
(ii) >ã 0ii , for all = −i n3,…, 1;
(iii) <ã 011 ;
(iv) ≥ã 0ij , for = −i n1,…, 1, = −j n2,…, 1, and = −i n2,…, 1, =j 1;
(v) >− −a a˜ , ˜ 0i i i i, 1 1, , for = −i n2,…, 1.

(b) Conversely, assume that − ≤A ndet 1, …, 1 0[ ] , ≤A 1, 2 0[ ] , <a a, 0ni in , for = −i n1,…, 1, and (i)–(v) hold.
Then, A is +t.n.p. .

Proof. To prove the necessity, let A be +t.n.p. with <a 0nn and >ã 022 .
(i) Since A is +t.n.p. with <a 0nn , then as in the proof of Theorem 4.5, A n n˜ 1, …, 2, …,[ ∣ ] is a Cauchon matrix.

By Corollary 4.6, if =ã 0ij , for some >i 2 and <i j , then =ã 0sj , for = −s i1,…, 1, and if =ã 0ij for >j 2 and
>i j, then =ã 0it , for = −t j1,…, 1. If =ã 0j2 for some >j 2 or =ã 0i2 for some >i 2, then by Theorem 4.5

and >ã 022 , we conclude that =ã 0j1 or =ã 0i1 . Hence, Ã is a Cauchon matrix.
(ii) Since A is +t.n.p. and <a 0nn , we obtain by Theorem 4.5 (i) that ≠ã 0ii , for = −i n3,…, 1. To prove the

positivity of these entries, we will proceed using decreasing induction for = −i n 1,…, 3.
Let = −i n 1. Since Ã is a Cauchon matrix, − −n n n n1, 1 , ,(( ) ( )) is a lacunary sequence for Ã. By ≠ã 0ii ,
for = −i n n1, , it follows from Theorem 3.8 that

≥ − = ⋅ ≠− −A n n a a0 det 1, ˜ ˜ 0.n n nn1, 1[ ]

Because = <a a˜ 0nn nn , we obtain that >− −ã 0n n1, 1 .
Suppose that − − + +a a˜ ,…, ˜n n i i1, 1 1, 1 are positive. Since Ã is a Cauchon matrix by (i), + +i i i i n n, , 1, 1 , …, ,(( ) ( ) ( ))

is a lacunary sequence for Ã. Because ≠ã 0ii , for =i n,…, 3, by Theorem 3.8, we obtain that

≥ = ⋅ ⋅ ⋅ ≠+ +A i n a a a0 det , …, ˜ ˜ … ˜ 0.ii i i nn1, 1[ ]

Since = <a a˜ 0nn nn and − − + +a a˜ ,…, ˜n n i i1, 1 1, 1 are positive by the induction hypothesis, we conclude
that >ã 0ii .

(iii) Since Ã is a Cauchon matrix, >ã 022 , and ≠ã 0ii , for =i n3,…, , n n1, 1 , …, ,(( ) ( )) is a lacunary sequence for
Ã, and it follows by Theorem 3.8 that

< = ⋅ ⋅ ⋅A a a a0 det ˜ ˜ … ˜ .nn11 22

By = <a a˜ 0nn nn , >− −a a˜ ,…, ˜ 0n n22 1, 1 , we conclude that <ã 0.11

(iv) Since A is +t.n.p. , the matrices A n n1, …, 2, …,[ ∣ ] and A n n2, …, 1, …,[ ∣ ] are t.n.p. . By Theorem 4.4 (iii), we
conclude that the matrices − −A n n˜ 1, …, 1 2, …, 1[ ∣ ] and − −A n n˜ 2, …, 1 1, …, 1[ ∣ ] are nonnegative, from
which (iv) follows.

(v) This is just Theorem 4.7 (iii).

For the converse direction, we will prove that ≤A α βdet 0,[ ∣ ] for all ∈α β Q,
k n,

, = −k n1,…, 1, and >Adet 0.

Since Ã is a Cauchon matrix, <a 0nn , >ã 022 , and by (ii) and (iii), we have that ≠ã 0ii , for all =i n1,…, . We
conclude by Corollary 3.9 that

= = ⋅ ⋅ ⋅ ⋅− −A n A a a a adet 1, …, det ˜ ˜ … ˜ ˜ ,n n nn11 22 1, 1[ ]

whence >Adet 0.
In the same manner, we obtain from Theorem 3.8 that <A k ndet , …, 0[ ] , for = −k n2,…, 1. Moreover, by

following the proof of Theorem 3.9 in [1], we obtain
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≤A α βdet 0,[ ∣ ] (13)

for all ∈α β Q,
l n,

with =α nl , = −l n1,…, 1, and for all ∈α β Q,
l n,

with =β n
l

, = −l n1,…, 1. Hence, A n2, …,[ ] is
Ns.t.n.p. by Theorem 3.15 and the fact that =A n A n˜ 2, …, 2, …,[ ] [ ] and the assumptions that ≤a 022 , <a a a, , 0nn n n2 2 .

Furthermore, we obtain in the same manner by (v) and <− −a a, 0n n n n, 1 1, , that

− − <
− − <

A i n i n

A i n i n

det , …, 1, …, 1 0,

det 1, …, 1 , …, 0,

[ ∣ ]

[ ∣ ]

for =i n2,…, , and by (13), we have for =k n2,…, ,

≤ ∈
≤ ∈

− + −

− + −

A k n β β Q

A α k n α Q

det , …, 0, for all ,

det , …, 0, for all .

n k n

n k n

1, 1

1, 1

[ ∣ ]

[ ∣ ]

In addition, since A n2, …,[ ] is Ns.t.n.p. , we obtain for =k n3,…, , that2

− − ≤ ∈
− − ≤ ∈

− +

− +

A α k n α Q

A k n β β Q

det 1, …, 1 0, for all ,

det 1, …, 1 0, for all .

n k n

n k n

1, 2, … ,

1, 2, … ,

[ ∣ ]

[ ∣ ]

{ }

{ }

Hence, by Theorem 3.15, −A n n2, …, 1, …, 1[ ∣ ] and −A n n1, …, 1 2, …,[ ∣ ] are Ns t n p. . . .
In order to complete the proof, by employing Theorem 3.10, it is sufficient to show that ≤A α βdet 0,[ ∣ ] for

= + + = ∈α s s l β β β Q1, …, , , …,
l l n1 ,

( ) ( ) with = − −s n l0, 1,…, 1 , = −l n1,…, 1, and <β n
l

. For =l 1, this is
fulfilled by the fact that −A n n1, …, 1 2, …,[ ∣ ] and −A n n2, …, 1, …, 1[ ∣ ] are Ns.t.n.p. and the assumption

≤A 1, 2 0[ ] . If + ≥s 1 2 and ≥β 2
1

, then ≤A α βdet 0[ ∣ ] , since A α β[ ∣ ] is a submatrix of A n2, …,[ ]. If + ≥s 1 2

and =β 1
1

, then A α β[ ∣ ] is a submatrix of −A n n2, …, 1, …, 1[ ∣ ]; in this case ≤A α βdet 0[ ∣ ] since −A n n2, …, 1, …, 1[ ∣ ]

is Ns t n p. . . . If + =s 1 1 and ≥β 2
1

, then ≤A α βdet 0[ ∣ ] , since A α β[ ∣ ] is a submatrix of the Ns.t.n.p. matrix
−A n n1, …, 1 2, …,[ ∣ ]. In the following, we will consider only the remaining case + =s 1 1 and =β 1

1
.

By Proposition 2.2, properties of determinants, and rearrangement, we obtain

∪
= ∪

+ ∪

A l β A l t β t

A l β A l t β t

A l t β A l β t

det 1, …, det 2, …, ,

det 2, …, det 1, …, ,

det 2, …, , det 1, …, ,

1 1̂ 2

1̂ 1 2

1 1̂ 2

[ ∣ ] [ ∣ { }]

[ ∣ ] [ ∣ { }]

[ ∣ ] [ ∣ { }]

(14)

for all >t l1 and ∈t n β1, …, \2 { } .
The minors ∪A l t β tdet 2, …, , 1 1̂ 2[ ∣ { }], A l βdet 2, …,

1̂
[ ∣ ], A l t βdet 2, …, , 1[ ∣ ], and ∪A l β tdet 1, …,

1̂ 2[ ∣ { }] are non-
positive since the corresponding submatrices lie in A n2, …,[ ] or −A n n1, …, 1 2, …,[ ∣ ] or −A n n2, …, 1, …, 1[ ∣ ],
which are t.n.p. matrices. For =t n1 or =t n2 , ∪ ≤A l t β tdet 1, …, , 01 2[ ∣ { }] .

In the following, we first consider the case < −l n 1.
If for =t n1 or =t n2 , and ∪ <A l t β tdet 2, …, , 01 1̂ 2[ ∣ { }] , then, we conclude that ≤A l βdet 1, …, 0[ ∣ ] , as desired.

Otherwise, ∪ =A l t β tdet 2, …, , 01 1̂ 2[ ∣ { }] for =t n1 and ∈t n β1, …, \2 { } , or =t n2 and >t l1 . If <A l βdet 2, …, 0
1̂

[ ∣ ] , then
together with ∪ =A l t β ndet 2, …, , 01 1̂

[ ∣ { }] for >t l1 , we conclude that A n2, …,[ ] is singular, which is a contradiction.
Hence, in the following, we assume that =A l βdet 2, …, 0

1̂
[ ∣ ] . By (14), ∪ =A l t β A l β tdet 2, …, , det 1, …, 01 1̂ 2[ ∣ ] [ ∣ { }] for

all >t l1 and ∈t n β1, …, \2 { } .
If the rows of A l β2, …,[ ∣ ] or the columns of A l β1, …,

1̂
[ ∣ ] are linearly dependent, then =A l βdet 1, …, 0[ ∣ ] , as

desired. Hence, the rows of A l β2, …,[ ∣ ] and the columns of A l β1, …,
1̂

[ ∣ ] are linearly independent. Moreover,
=A l t βdet 2, …, , 01[ ∣ ] for all >t l1 , or ∪ =A l β tdet 1, …, 0

1̂ 2[ ∣ { }] for ∈t n β1, …, \2 { } , since otherwise by (14), we
have a nonzero quantity equal to a zero quantity.

Whence by =A l t βdet 2, …, , 01[ ∣ ] for all >t l1 and linear independence of the rows of A l β2, …,[ ∣ ], we
conclude that ≤ −A n β lrank 2, …, 1( [ ∣ ]) , which is a contradiction to the nonsingularity of A n2, …,[ ].

Now, if = −l n 1, then = −A l β A ndet 1, …, det 1, …, 1[ ∣ ] [ ], which is nonpositive by assumption. This com-
pletes the proof of the theorem. □



2 The notation n2, …,{ } means that the underlying index range n1, …,{ } is replaced by n2, …,{ }.

14  Imad Hassuneh et al.



A practical procedure (which, however, is only sufficient) to test a given matrix for being +t.n.p. is given by
the following algorithm:

Algorithm 4.9. Let = ∈ ×
A ai j

n n

, �( ) with <a 0n n, .
1. If ≤A 1, 2 0[ ] , and <a a, 0ni in , for = −i n1,…, 1, go to 2, otherwise exit.
2. Run the Cauchon algorithm on A to obtain =A a˜ ˜ij( ).
3. If the following conditions:

<ã 011 ,
> = −a i n˜ 0, 2,…, 1ii ,
≥ = − = − = − =a i n j n i n j˜ 0, for 1,…, 1, 2,…, 1, and 2,…, 1, 1ij ,

> = −− −a a i n˜ , ˜ 0, for 2,…, 1i i i i, 1 1, ,
are all fulfilled, go to 4, otherwise exit.

4. Compute −A ndet 1, …, 1[ ], e.g., by Corollary 3.9 (if possible).
5. If − ≤A ndet 1, …, 1 0[ ] , then A is +t.n.p. .

If Algorithm 4.9 is terminated by exit in Steps 1 or 3, it cannot be decided whether A is t.n.p.+.
The condition that − ≤A ndet 1, …, 1 0[ ] in Theorem 4.8 is necessary to conclude that a given matrix is

+t.n.p. as the following example shows.

Example 4.10. Let

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

− − − −

− − − −

− − − −

− − − −

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

A

36.25

11

9

11
1 4

57151

33

916

11
4 4

14875

22

357

11

3

2
1

5000 240 11 2

.

The application of the Cauchon algorithm yields

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

− −

−

−

− − − −

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Ã

905.5

122

139

11
3 4

3
61

22
2 4

0
3

11
4 1

5000 240 11 2

.

The matrix Ã satisfies all the conditions listed in Theorem 4.8 (b), with the exception of = >Adet 1, 2, 3 0
288

11
[ ] ,

and so A is not +t.n.p. .
In the following theorem, we present a property of the matrix that we obtain after application of the

Cauchon algorithm to a +t.n.p. matrix, where the entry 2, 2( ) in the resulting matrix vanishes.

Theorem 4.11. Let = ∈ ×
A aij

n n�( ) be +t.n.p. with <a 0nn , and let the matrix =A a˜ ˜ij( ) obtained by the Cauchon
algorithm satisfy =ã 022 . Then, ≠a a˜ , ˜ 012 21 holds.

Proof. Suppose by contradiction that =ã 012 . By Theorem 4.5 (i) and similar arguments as in the proof of
Theorem 4.8 (i), it follows that >ã 0ii , for = −i n3,…, 1. By application of Procedure 3.6 to A n n˜ 1, …, 2, …,[ ∣ ], we
obtain the lacunary sequence − −n n n n3, 3 , …, 1, 1 , ,(( ) ( ) ( )). Hence, by Theorem 3.7, the rank of the matrix
A n n1, …, 2, …,[ ∣ ] is −n 2, which is a contradiction to the linear independence of the columns of A n n1, …, 2, …,[ ∣ ].
For =ã 021 , we proceed similarly working with A n n˜ 2, …, 1, …,[ ∣ ]. □
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4.3 Matrix intervals

We consider now the checkerboard ordering introduced in Section 2.1 and matrix intervals with respect to this
partial ordering. For ∈ ×

A B, n n� , =A aij( ), =B bij( ), if ≤A B* , i.e.,

− ≤ − =+ +
a b i j n1 1 , , 1,…, ,i j

ij

i j

ij( ) ( )

we introduce

≔ ∈ ≤ ≤×
A B Z A Z B, * * .n n�[ ] { ∣ }

The matrices A and B are called the corner matrices. By ×n n� �( ) we denote the set of all matrix intervals of
order n with respect to the checkerboard partial ordering. In [1,4, 6,7], matrix intervals of NsTN (with a
weakening of the nonsingularity [3]), Ns.t.n.p. matrices, and matrices having a negative determinant and
all of their other minors nonnegative have been studied.

Lemma 4.12. [27, Corollary 3.5] Let ∈ ×
A B Z, , n n� and let A and B be Ns with ≤ − −

A B0 ,1 1. If ≤ ≤A Z B, then Z is
Ns and ≤ ≤− − −

B Z A
1 1 1.

Theorem 4.13. [6, Theorem 6.7] Let ∈ ×
A B, n n� �[ ] ( ) with ∈Z A B,[ ]. If A and B are Ns.t.n.p. with <b 0nn , then

≤A B˜ * ˜, ∈Z A B˜ ˜ , ˜[ ], and Z is Ns t n p. . . .

Theorem 4.14. Let ∈ ×
A B, n n� �[ ] ( ) with ∈Z A B,[ ]. If =A aij( ) and =B bij( ) are +t.n.p. and <b 0nn , then Z

is +t.n.p. .

Proof. First of all, since <b 0nn and therefore, <a 0nn , we may conclude that all the entries in the last row and
column of A and B are negative. For = ∈Z z A B,ij( ) [ ] we have

− ≤ − ≤ − =+ + +
a z b i j n1 1 1 , , 1,…, ,i j

ij

i j

ij

i j

ij( ) ( ) ( )

thus all the entries in the last row and column of Z are negative, too, and ≤Z 1, 2 0[ ] .
The entries −

a
ij

1 of −
A

1 can be represented as

= −
− + − +− +

a

A j j n i i n

A

1
det 1, …, 1, 1, …, 1, …, 1, 1, …,

det
.

ij

i j1 ( )
[ ∣ ] (15)

Since A is +t.n.p. , if +i j is even, then ≤−
a 0

ij

1 , and if +i j is odd, then ≥−
a 0

ij

1 . Thus, − ≥−
SA S 01 , and analo-

gously − ≥−
SB S 01 , where = − − +

S diag 1, 1, …, 1 n 1( ( ) ).
Since − ≥ − ≥ −SAS SZS SBS , we obtain by Lemma 4.12 that −SZS is Ns, and so Z is Ns. Since Z is chosen

arbitrarily and >A Bdet , det 0, it follows that >Zdet 0. Moreover, we obtain

− ≤ − ≤ −− − −
SA S SZ S SB S.1 1 1 (16)

It follows from (15) and (16) that for =− −
Z z

ij

1 1( )

≥
−

= ≥ =
−− −A n

A

a z

Z n

Z

0
det 1, …, 1

det

det 1, …, 1

det
,

nn nn

1 1
[ ] [ ]

which implies − ≤Z ndet 1, …, 1 0[ ] .
We may conclude by Theorem 4.7 (i) that −A n n1, …, 1 2, …,[ ∣ ], −A n n2, …, 1, …, 1[ ∣ ], −B n n1, …, 1 2, …,[ ∣ ],

and −B n n2, …, 1, …, 1[ ∣ ] are Ns.t.n.p. Since

− ≤ − ≤ −
− ≤ − ≤ −

B n n Z n n A n n

B n n Z n n A n n

1, …, 1 2, …, * 1, …, 1 2, …, * 1, …, 1 2, …, ,

2, …, 1, …, 1 * 2, …, 1, …, 1 * 2, …, 1, …, 1 ,

[ ∣ ] [ ∣ ] [ ∣ ]

[ ∣ ] [ ∣ ] [ ∣ ]

it follows from Theorem 4.13 that −Z n n1 …, 1 2, …,[ ∣ ] and −Z n n2, …, 1, …, 1[ ∣ ] are Ns.t.n.p. , too.
To show that Z is +t.n.p. , we employ Theorem 4.8 (b). We first assume that A n2, …,[ ] and B n2, …,[ ] are Ns.

Then, by Theorem 4.13, Z n2, …,[ ] is Ns.t.n.p. , too, and by =Z n Z n˜ 2, …, 2, …,[ ] [ ], we have
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− ≤ − ≤ − =+ + +
a z b i n1 ˜ 1 ˜ 1 ˜ , 2,…, .i j

ij

i j

ij

i j

ij( ) ( ) ( )

By Theorem 4.4 (iv), =A n A n2, …, ˜ 2, …,[ ] [ ] is a Cauchon matrix, and thus by Theorems 3.8 and 3.15 (ii), ã22 can
be represented as

=a

A n

A n

˜
det 2, …,

det 3, …,
,22

[ ]

[ ]

which is positive. Analogously, we obtain that >b̃ 022 . Hence, we may apply Theorem 4.8 (ii), (iv), and (v), to
conclude that >ã 0ii , for = −i n2,…, 1, ≥a b˜ , ˜ 0ij ij , for = −i j n, 2,…, 1, and >− −b b˜ , ˜ 0i i i i, 1 1, , for = −i n2,…, 1,
which implies that >z̃ 0ii , for = −i n2,…, 1, ≥z̃ 0ij , for = −i j n, 2,…, 1, and >− −z z˜ , ˜ 0i i i i, 1 1, , for = −i n3,…, 1.
Furthermore, by Theorem 4.4 (iv), Z n˜ 2, …,[ ] is a Cauchon matrix.

To conclude the proof, it remains to show that <z̃ 011 , >z z˜ , ˜ 012 21 , ≥z z˜ , ˜ 0j i1 1 , for = −i j n, 2,…, 1, and Z̃ is a
Cauchon matrix.

Claim: ≥z̃ 0i1 and =z̃ 0i1 if =z̃ 0i2 , for = −i n3,…, 1.
We proceed by decreasing induction on i.
For = −i n 1, we consider the submatrix −Z n n n˜ 1, 1, …,[ ∣ ]. which is obviously a Cauchon matrix. We

choose the lacunary sequence −n n1, 1 , , 2(( ) ( )) since = <z z˜ 0n n2 2 . Hence, by Theorem 3.8, we obtain

=
−

−z

Z n n

z

˜
det 1, 1, 2

.n

n

1,1

2

[ ∣ ]

Herein the numerator is nonpositive since the underlying submatrix lies in −Z n n2, …, 1, …, 1[ ∣ ], hence
≥−z̃ 0n 1,1 .

If =−z̃ 0n 1,2 , the sequence −n n1, , 2, 3(( ) ( )) is lacunary for the matrix −Z n n n˜ 1, 1, …,[ ∣ ], whence
− = ⋅ =−Z n n z zdet 1, 2, 3 ˜ ˜ 0.n n1,2 3[ ∣ ] Thus, the matrix −Z n n1, 2, 3[ ∣ ] has rank 1. By Lemma 3.14, either the

rows −n 1 and n or the columns 2 and 3 are linearly dependent in −Z n n2, …, 1, …, 1[ ∣ ], which is a contradiction
to the nonsingularity of this matrix, or the right shadow of −Z n n1, 2, 3[ ∣ ], which is −Z n n2, …, 2, …, 1[ ∣ ], has rank 1.
Since Z n2, …,[ ] is Ns.t.n.p. , we obtain by Theorem 3.15 (iii) that − <Z ndet 2, …, 1 0[ ] , which is a contradiction.
Hence, the only option that is left is that the left shadow of −Z n n1, 2, 3[ ∣ ], which is −Z n n1, 1, 2, 3[ ∣ ], has rank 1. The
sequence −n n1, 1 , , 2(( ) ( )) is lacunary for the matrix −Z n n n˜ 1, 1, …,[ ∣ ], and by Theorem 3.8, we obtain that

= − = ⋅−Z n n z z0 det 1, 1, 2 ˜ ˜ .n n1,1 2[ ∣ ]

Since = <z z˜ 0n n2 2 , we obtain =−z̃ 0n 1,1 .
As the induction hypothesis, suppose that ≥z̃ 0i1 and =z̃ 0i1 , if =z̃ 0i2 for = + −i k n1,…, 1. Then, the

matrix Z k n n˜ , …, 1, …,[ ∣ ] is a Cauchon matrix. Define =i j k, , 10 0
( ) ( ) and for =s 1, 2,… ,

≔ < ≤ < ≤ ≠− −i j i j i i n j j n z, min , : , , ˜ 0 ,s s s s ij1 1
( ) {( ) }

where the minimum is taken with respect to the colexicographical order. Assume that the sequence that is
generated by this procedure is k i j i j, 1 , , , …, ,r r1 1

(( ) ( ) ( )). By construction, it is easy to see that this sequence is
a lacunary sequence for the Cauchon matrix Z k n n˜ , …, 1, …,[ ∣ ], =i nr and ≤ −j n 1

r
, since >z̃ 0ii , for

= −i n2,…, 1, and <z 0ni , for =i n1,…, . Hence, by Theorem 3.8, we obtain

=z

Z k i i j j

Z i i j j

˜
det , , …, 1, , …,

det , …, , …,
,k

r r

r r

1

1 1

1 1

[ ∣ ]

[ ∣ ]

where the underlying submatrices in the numerator and denominator lie in −Z n n2, …, 1, …, 1[ ∣ ]. Hence
≥z̃ 0k1 , since the latter submatrix is Ns t n p. . . .
If =z̃ 0k2 , then by the above procedure construct a lacunary sequence starting from k , 2( ) and call the

resulting sequence k α β α β, 2 , , , …, ,r r1 1
(( ) ( ) ( )), where =α nr and ≤ −β n 1

r
. Then, by Theorem 3.8, we obtain

= =z

Z k α α β β

Z α α β β

˜
det , , …, 2, , …,

det , …, , …,
0.k

r r

r r

2

1 1

1 1

[ ∣ ]

[ ∣ ]

By Theorem 3.16, the above ratio can be written as a ratio of two contiguous minors as they lie in
−Z n n˜ 2, …, 1, …, 1[ ∣ ]. Hence, we obtain
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=
+ + +
+ + +

=z

Z k k k r r

Z k k r r

˜
det , 1, …, 2, 3, …,2

det 1, …, 3, …,2
0,k2

[ ∣ ]

[ ∣ ]

which implies that + + +Z k k k r r, 1, …, 2, 3, …, 2[ ∣ ] has rank r .
Using Lemma 3.14, we proceed similarly as for = −k n 1. Since neither the rows +k k r,…, nor

the columns + r2,…, 2 are linearly dependent in −Z n n2, …, 1, …, 1[ ∣ ], we consider the right shadow of
+ +Z k k r r, …, 2, …,2[ ∣ ], which is + −Z k r n2, …, 2, …, 1[ ∣ ]. Since ≥k 3 and Z n2, …,[ ] is Ns.t.n.p. , we obtain

by Theorem 3.15 (iii) + ≥ +Z k r rrank 2, …, 2( [ ]) . Thus, the only option which is left is that the left shadow,
which is +Z k n r, …, 1, …,2[ ∣ ], has rank r . By construction and since =z̃ 0k2 , it is easy to see that the sequence

k α β α β, 1 , , , …, ,r r1 1
(( ) ( ) ( )) is lacunary for Z k n n˜ , …, 1, …,[ ∣ ].

Hence, by Theorem 3.16, we obtain that

= =z

Z k α α β β

Z α α β β

˜
det , , …, 1, , …,

det , …, , …,
0,k

r r

r r

1

1 1

1 1

[ ∣ ]

[ ∣ ]

since Z k α α β β, , …, 1, , …,r r1 1
[ ∣ ] lies in the left shadow of + +Z k k r r, …, 2, …,2[ ∣ ]. This completes the proof of

the claim.
Since Z n˜ 2, …,[ ] is a Cauchon matrix with nonzero diagonal entries, we conclude by the claim that Z̃ is a

Cauchon matrix.
Furthermore, n n1, 1 , …, ,(( ) ( )) is a lacunary sequence for the Cauchon matrix Z̃ . By Theorem 3.8, we obtain

= <z

Z

Z n

˜
det

det 2, …,
0.11

[ ]

Finally, since >− −z z˜ , ˜ 0i i i i, 1 1, , for = −i n3,…, 1, the sequences −n n2, 1 , 3, 2 , …, , 1(( ) ( ) ( )) and
−n n1, 2 , 2, 3 , …, 1,(( ) ( ) ( )) are lacunary for the Cauchon matrix Z̃ . By Theorem 3.8, we obtain

=
−
−

>z

Z n n

Z n n

˜
det 2, …, 1, …, 1

det 3, …, 2, …, 1
021

[ ∣ ]

[ ∣ ]

and

=
−
−

>z

Z n n

Z n n

˜
det 1, …, 1 2, …,

det 2, …, 1 3, …,
0.12

[ ∣ ]

[ ∣ ]

Since all conditions of Theorem 4.8 (b) are satisfied, we conclude that Z is +t.n.p. .
In the sequel, we consider the case that A n2, …,[ ] or B n2, …,[ ] are singular. For ∈ ×

C
n n� , we use the

following notation ≔ +C C εEε n n, , where ε is a small positive real number, =C c εε ij( ( )). If A n2, …,[ ] or B n2, …,[ ]

are singular, then, we replace A, B, and Z by Aε, Bε, and Zε, respectively, and obviously,

≤ ≤A Z B* * .ε ε ε

Furthermore, Aε and Bε are +
t n p. . for all sufficiently small real numbers ε, and A n B n2, …, , 2, …,ε ε[ ] [ ] are Ns.

Indeed, application of Laplace expansion to Aε and A n2, …,ε[ ] along their last row yields

= + − >A A ε A ndet det det 1, …, 1 0ε [ ]

and

= + − <A n A n ε A ndet 2, …, det 2, …, det 2, …, 1 0,ε[ ] [ ] [ ]

for all sufficiently small positive numbers ε, since by Theorem 4.7 (ii), − <A ndet 2, …, 1 0[ ] . Moreover, for all
∈α β Q,

l n,
with ≠α nl or ≠β n

l
, the minors A α βdet ε[ ∣ ] are also minors of A and therefore, nonpositive. If <l n,

=α nl , and =β n
l

, Laplace expansion along the last row of A α βε[ ∣ ] yields

= + ≤A α β A α β ε A α βdet det det 0.ε l l
ˆ ˆ[ ∣ ] [ ∣ ] [ ∣ ]

In the same way we obtain that Bε is +t.n.p. with B n2, …,ε[ ] Ns. By proceeding as above, we may conclude that Zε is
+t.n.p. for all sufficiently small positive numbers ε. Since >Zdet 0 and by letting →ε 0, we obtain that Z is +t.n.p. . □
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Remark 4.15.
(i) In the case that all minors of A and B are nonzero, the statement of Theorem 4.14 follows from [18,

Theorem 1].
(ii) The research by Choudhury [12] may be used to derive an interval property of the +t.n.p. matrices (without

the assumption of Theorem 4.14 that <b 0nn ); however, at the expense of checking an exponentially (in n)
growing number of vertex matrices: Let ∈ ×

A B, n n� �[ ] ( ) and ≔D ε εdiag , …,ε n1( ) for ∈ −ε 1, 1 n{ } . If the

vertex matrices + + − ′A B D B A Dε ε

1

2
[( ) ( ) ] are +t.n.p. for all ′ ∈ −ε ε, 1, 1 n{ } , then ∈Z A B,[ ] is +t.n.p. , too.

In fact, since A and B are vertex matrices, we obtain by the beginning of the proof of Theorem 4.14 that
>Zdet 0( ) . Furthermore, since all proper minors of the vertex matrices are nonpositive, we conclude by

[12, Theorem 5.5] that all proper minors of Z are nonpositive.

Using Theorem 4.14, we obtain the interval property of further classes of NsSR matrices.

Theorem 4.16. Let ∈ ×
A B, n n� �( ) with ∈Z A B,[ ] and let =A aij( ) and =B bij( ) be NsSR matrices with the same

signature =ε ε ε, …, n1( ). Let ε be one of the following signatures:
(i) = − = − = −+

ε i n ε1 , 1,…, 1, 1i

i

n

n1( ) ( ) ,

(ii) = − = − = −+− −
ε i n ε1 , 1,…, 1, 1 ,i n

1
i i n n1

2

1

2( ) ( )
( ) ( )

(iii) = − = − = −++ +
ε i n ε1 , 1,…, 1, 1i n

1
i i n n1

2

1

2( ) ( )
( ) ( )

,

and assume that in case
(i) >b 0nn ,
(ii) <a bmax , 0n n1 1{ } ,
(iii) >a bmin , 0n n1 1{ } .

Then, Z is NsSR with signature ε.

Proof. The matrices ≔ − − −D diag 1, 1, …, 1( ) and T , see Section 2.1, are NsSR with signatures = −ε 1i

i( ) and

= − =
−

ε i n1 , 1,…,i

i i 1

2( )
( )

, respectively, and =−
D D

1 and =−
T T

1 . Hence, if A and B are NsSR matrices with the
same signature, which is given in one of (i)–(iii), then by Lemma 3.11, the following holds. If ε is the signature in
case (i) then DA and DB, (ii) then TA and TB, (iii) then DTA and DTB are +t.n.p. with negative entries in their
bottom-right position, and by Theorem 4.14, Z is NsSR with the same signature. □

- By Theorem 4.16 and by the respective interval properties of NsTN matrices [4], of Ns t.n.p. matrices [6], and of
NsSR matrices with further signatures [7, Theorems 5.2 and 5.3], [19, IP 3.2.6], we summarize the interval property of
the following classes of NsSR matrices. Let ∈ ×

A B Z, , n n� (with a possible requirement on the sign of one
coefficient of either A or B, e.g., Theorem 4.16) be such that ≤ ≤A Z B* * , and let A and B be NsSR matrices
with the same signature =ε ε ε, …, n1( ). Let ε be one of the following eight periodic (of length 4) signatures

− − − −
− − − −

− − − −
− − − −

1, 1, 1, 1, … , 1, 1, 1, 1, … ,

1, 1, 1, 1, … , 1, 1, 1, 1, … ,

1, 1, 1, 1, … , 1, 1, 1, 1, … ,

1, 1, 1, 1, … , 1, 1, 1, 1, … ,

( ) ( )

( ) ( )

( ) ( )

( ) ( )

or of one of the eight signatures obtained from these sequences by reversing the sign of εn. Then, Z is NsSR

with the same signature ε. In particular, in case =n 4, all possible signatures are covered.

5 Conclusion

In this study, we have provided by using the Cauchon algorithm a characterization of the matrices having a
negative entry in their bottom-right position, all their proper minors nonpositive, and a positive determinant,
i.e., the class of the +t.n.p. matrices. Using this characterization, we have shown that these and related SR

Matrices with nonpositive minors and a positive determinant  19



matrices possess the so-called interval property. This result provides further classes of NsSR matrices which
have the interval property [6]. In a future study, we will treat by perturbation the case that the entry in the
bottom-right position of a +t.n.p. matrix is 0.
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