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1 Introduction

Many interesting control system design and analysis problems can be recast as

systems of inequalities for multivariate polynomials in real variables. In partic-

ular, for linear time-invariant systems, important control issues such as robust

stability and robust performance can be reduced to such systems. Typically, the

variables in the (multivariate) polynomials come from plant (controlled system)

and compensator (controller) parameters. In this chapter, we describe a method

for solving such systems of inequalities. By solving we mean that we end up with

a collection of axis-parallel boxes in the parameter space whose union provides an

inner approximation of the solution set, i.e., the polynomial inequalities are ful�lled

for each parameter vector taken from such a box. This method is based on the

expansion of a multivariate polynomial into Bernstein polynomials. It provides an

alternative to symbolic methods like quanti�er elimination whose application to

control problems was demonstrated in [1]. The number of operations required by

quanti�er elimination methods is still doubly exponential in the number of variables,

so that only relatively small problems can actually be solved, whereas Bernstein
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expansion has been applied to larger robust stability problems [2, 3, 4]. However, it

should be noted that in contrast to symbolic methods Bernstein expansion requires

a priori bounds on the design parameter range. This is not a hard restriction since

the designer often can estimate the interesting parameter range.

We mention a third approach, the probabilistic approach, e.g.,[5, 6], to solve

problems in control theory which can be formulated as systems of strict inequalities.

Here again bounds on the parameter range must be known. This approach is

applicable to very complex systems but it provides only 'probabilistic' answers.

Notation: For compactness, we de�ne a multi-index I as an ordered l-tupel of

nonnegative integers (i

1

; : : : ; i

l

). We will use multi-indices e.g. to shorten power

products: For x = (x

1

; : : : ; x

l

) 2 R

l

we set x

I

= x

i

1

1

x

i

2

2

� : : : � x

i

l

l

. For simplicity, we

sometimes suppress the brackets in the notation of multi-indices. We write I � N

if N = (n

1

; : : : ; n

l

) and if 0 � i

k

� n

k

, k = 1; : : : ; l. Further, let S = fI : I � Ng.

Then we can write an l-variate polynomial p in the form

p(x) =

X

I2S

a

I

x

I

; x 2 R

l

; (1)

and refer to N as the degree of p and to

n̂ = maxfn

i

: i = 1; : : : ; lg: (2)

as the total degree of p. Also, we write I=N for (i

1

=n

1

; : : : ; i

l

=n

l

) and

�

N

I

�

for

�

n

1

i

1

�

� : : : �

�

n

l

i

l

�

.

Problem statement: Let p

1

; : : : ; p

n

be l-variate polynomials and let an axis-

parallel box Q in the R

l

be given. We want to �nd

� := fx 2 Q : p

i

(x) > 0; i = 1; : : : ; ng; (3)
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the set � is called the solution set of the system of polynomial inequalities.

This chapter is organized as follows: The next section contains a short review

of quanti�er elimination methods and their application to control problems. In

Section 3 we recall the Bernstein expansion and apply it to the solution of systems

of polynomial inequalities in Section 4. Our algorithm is explained in Section 5.

Numerical examples are presented in Section 6 and conclusions are given in Section

7.

2 Quanti�er Elimination

In many practical control problems some of the polynomial variables are quanti�ed

by the logic quanti�er 8 (for all) or 9 (there exists). Typically, 8 quanti�es the plant

parameters (for robust design) and 9 quanti�es the controller parameters (to de�ne

the feasible controller-parameter set). In addition, the polynomial inequalities are

combined by the Boolean operators ^ (and) and _ (or). Examples from control

theory can be found in [1, 7, 8].

The problem to �nd an equivalent expression involving only unquanti�ed variables is

called the quanti�er elimination (QE) problem. In 1948, Tarski [9] showed that there

is a procedure that solves this problem in a �nite number of steps. Although Tarski

gave a constructive proof, the resulting algorithm is inpractical even with the power

of the today's computers. One of the �rst attempts to use QE methods to solve

control design problems was made in 1975 by Anderson et al. [10] to solve the static

output-feedback stabilization problem. However, the computational complexity and

lack of software severely limited the interest in their results. In 1975, Collins [11]
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introduced a more e�cient approach, the cylindrical algebraic decomposition (CAD).

For an introduction to CAD see the excellent exposition [8]. Given a set of l-variate

polynomials, the CAD algorithm decomposes theR

l

into components over which the

polynomials have constant signs. For systems of polynomial inequalities (and even

equations) the CAD method has value of its own: Once a decomposition is found,

a solution (if there exists one) to any system determined by the given polynomials

can be found. However, utilizing this method the QE problem could be solved only

for very small problems.

In [12, 13, 14] signi�cantly more e�cient QE algorithms based on partial CAD were

presented. Software packages have been written for the implementation of the new

algorithms, e.g., the software package QEPCAD for quanti�er elimination by partial

cylindrical algebraic decomposition by Hoon Hong from the Research Institute for

Symbolic Computation in Linz (Austria) with contributions by G.E. Collins, J.R.

Johnson, and M.J. Encarnaci�on.

The CAD algorithms always completely solve any QE problem. However, the

number of operations required is still doubly exponential (for details cf. [15]) so that

only problems with modest size can be handled. We mention two papers [16, 17]

treating the special case of systems of strict polynomial inequalities { the proper

subject of this chapter. In [16, 17] algorithms are described which allow to decide

whether such a system has a solution and which are much faster than the general

CAD algorithm. The simpli�ed CAD algorithm in [17] �nds a �nite set of solutions

such that any other solution can be connected by a continuous path of solutions

with one of the solution set. We were told from Wolfram Research, Inc., that this

algorithm is included in the 3.0 version of Mathematica [18] in the Standard Add-on

Package [19] covering manipulating and solving algebraic inequalities and that the
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upcoming version of Mathematica will contain in the kernel algorithms for deciding

existence of solutions of systems of polynomial equations and inequalities based on

CAD and QE methods.

3 Bernstein Expansion

3.1 Bernstein Transformation of a Polynomial

In this subsection we expand a given multivariate polynomial (1) into Bernstein

polynomials to obtain bounds for its range over an l-dimensional box. This approach

was used in the univariate case for the �rst time in [20] and subsequently in a

series of papers, e.g., [21, 22]. Generalizations to the multivariate case were given

in [23, 24, 25, 26]. For a nearly complete bibliography see [27]. Without loss of

generality we consider the unit box U = [0; 1]

l

since any nonempty box of R

l

can

be mapped a�nely onto this box.

The ith Bernstein polynomial of degree n is de�ned as

b

n;i

(x) =

�

n

i

�

x

i

(1� x)

n�i

; 0 � i � n;

for an arbitrary x 2 R. In the multivariate case, the Ith Bernstein polynomial of

degree N is de�ned by

B

N;I

(x) = b

n

1

;i

1

(x

1

) � : : : � b

n

l

;i

l

(x

l

); x = (x

1

; : : : ; x

l

) 2 R

l

: (4)

The transformation of a polynomial from its power form (1) into its Bernstein form

results in

p(x) =

X

I2S

b

I

(U)B

N;I

(x); (5)

where the Bernstein coe�cients b

I

(U) of p on U are given by
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b

I

(U) =

X

J�I

�

I

J

�

�

N

J

�

a

J

; I 2 S: (6)

We collect the Bernstein coe�cients in an array B(U), i.e., B(U) = (b

I

(U))

I2S

.

A similar notation will be employed for other sets of related coe�cients. In [23]

a method was presented for calculating the Bernstein coe�cients e�ciently by a

di�erence table scheme (which is similar to the sweep procedure, cf. Sect. 3.2) that

avoids the binomial coe�cients and products appearing in (6).

In the following, we will use a special subset of the index set S comprising those

indices which correspond to the indices of the vertices of the array B(U), i.e.,

S

0

= f0; n

1

g � � � � � f0; n

l

g:

We list two useful properties of the Bernstein coe�cients, e.g., [22, 23, 28].

3.1. Lemma. Let p be a polynomial (1) of degree N . Then the following properties

hold for its Bernstein coe�cients b

I

(U) (6):

(i) Sharpness of special coe�cients:

8 I 2 S

0

: b

I

(U) = p(I=N) (7)

(ii) Convex hull property:

8 x 2 U : min

I2S

b

I

(U) � p(x) � max

I2S

b

I

(U) (8)

with equality in the left (resp., right) inequality if and only if min

I2S

b

I

(U) (resp.,

max

i2S

b

I

(U)) is assumed at a Bernstein coe�cient b

I

(U) with I 2 S

0

:

Formula (7) follows immediately from (6). Property (8) relies on two fundamental
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properties of the Bernstein polynomials, viz. their nonnegativity on the unit box U

and the fact that they form a partition of unity.

3.2 Sweep Procedure

In this subsection we follow the exposition in [4]. We de�ne a sweep in rth direction

(1 � r � l) similarly to de Casteljau's algorithm in Computer Aided Geometric

Design, e.g., [28], as recursively applied linear interpolation. Let D be any subbox

of U generated by sweep operations (at the beginning we have D = U , then

subsequently D is obtained by successively halving). Starting with B

(0)

(D) = B(D)

we set for k = 1; : : : ; n

r

b

(k)

i

1

;:::;i

r

;:::;i

l

(D) =

8

>

<

>

:

b

(k�1)

i

1

;:::;i

r

;:::;i

l

(D) : i

r

= 0; : : : ; k � 1

1

2

(b

(k�1)

i

1

;:::;i

r

�1;:::;i

l

(D) + b

(k�1)

i

1

;:::;i

r

;:::;i

l

(D)) : i

r

= k; : : : ; n

r

:

(9)

To obtain the new coe�cients, we apply formula (9) for i

j

= 0; : : : ; n

j

,

j = 1; : : : ; r � 1; r + 1; : : : ; l.

Then the Bernstein coe�cients on D

0

1

, where the subbox D

0

is given by

D

0

= [d

1

;

�

d

1

]� � � � � [d

r

; (d

r

+

�

d

r

)=2]� � � � � [d

l

;

�

d

l

];

are obtained as B(D

0

) = B

(n

r

)

(D). At no extra cost we get as intermediate values

the Bernstein coe�cients B(D

1

) on the neighbouring subbox D

1

1

D

1

= [d

1

;

�

d

1

]� � � � � [(d

r

+

�

d

r

)=2;

�

d

r

]� � � � � [d

l

;

�

d

l

]

1

i.e., the Bernstein coe�cients of the polynomial shifted from this subbox to U
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since for k = 0; : : : ; n

r

the following relation holds [24]: b

i

1

;:::;n

r

�k;:::;i

l

(D

1

) =

b

(k)

i

1

;:::;n

r

;:::;i

l

(D).

It is important to note that by the sweep procedure the explicit transformation of

the subboxes generated by the sweeps back to U is avoided. Let n̂ denote the total

degree (2) of polynomial (1). Since we have to perform formula (9) n

r

(n

r

+ 1)=2

times, we need altogether O(n̂

l+1

) additions and multiplications.

3.3 Selection of the Sweep Direction

The de�nition of the sweep procedure shows that we are free in choosing the

sweep direction. In order to increase the probability for �nding a nonpositive

sharp Bernstein coe�cient proving that the polynomial under consideration is not

positive, we suggest to sweep in that coordinate direction in which the �rst partial

derivative is largest. Our selection rule pro�ts from the easy calculation of the

partial derivatives of a polynomial in Bernstein form, e.g., [28, 29].

To shorten some expressions in the sequel we associate with an index I =

(i

1

; : : : ; i

r

; : : : ; i

l

) the index I

r;k

= (i

1

; : : : ; i

r

+ k; : : : ; i

l

), where 0 � k + i

r

� n

r

.

Then the �rst partial derivative with respect to x

r

of p (5) is given by the following

formula (1 � r � l):

@p

@x

r

(x)=n

r

X

I�N

r;�1

[b

I

r;1

(D)� b

I

(D)]B

N

r;�1

;I

(x):

To decide which sweep direction to choose we estimate

max

x2D

�

�

�

@p

@x

r

(x)

�

�

�
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from above by

~

I

r

= max

I�N

r;�1

n

r

jb

I

r;1

(D)� b

I

(D)j:

We choose that r

0

with maximum value

~

I

r

0

= max

j=1;:::;l

~

I

j

: (10)

4 Approximation of the Solution Set

In this section we use a similar approach as in [2, 30]. The algorithm which we

will describe in the next section was applied in [31] to approximate the stability

region of a polynomial family with polynomial parameter dependency. Since we

are able to describe the solution set � only in simplest cases, we are seeking for a

good approximation to it. We obtain an inner approximation of � by the union of

some subboxes of Q on which all polynomials p

i

are positive. Similarly, an outer

approximation is given by the union of some subboxes of Q with the property that

on each there is a polynomial p

i

being nonpositive there. The boundary @� of �

can be approximated by the union of some subboxes of Q on which each polynomial

p

i

assumes positive as well as nonpositive values, cf. Figure 1.
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Figure 1: Inner and outer approximation of � and approximation of @� (Figure

taken from [32])

By �

i

and �

o

we denote the set of subboxes which provide the inner and outer

approximation, respectively. For a �xed positive number ", �

b

(") is the list of

subboxes with volume less than " the union of which approximates the boundary

@�. In our algorithm we check (non)positivity of a polynomial by the sign of its

Bernstein coe�cients. From Lemma 3.1 we obtain immediately:

4.1. Lemma. Positivity test of a multivariate polynomial

Let p be an l-variate polynomial and let b

I

be its Bernstein coe�cients on Q: Then

it holds:

min

I2S

b

I

> 0 =) p(x) > 0 8 x 2 Q; (11)

max

I2S

b

I

� 0 =) p(x) � 0 8 x 2 Q; (12)

9 I 2 S

0

: b

I

> 0 =) 9 x 2 Q : p(x) > 0; (13)
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9 I 2 S

0

: b

I

� 0 =) 9 x 2 Q : p(x) � 0: (14)

According to Lemma 4.1, the sets �

i

;�

o

; and �

b

(") consist of the subboxes

~

Q

generated by sweeps which ful�l the following conditions:

�

i

: The Bernstein coe�cients (b

(i)

I

)

I2S

of all polynomials p

i

; i = 1; 2; : : : ; n; are

positive; then by (11) all polynomials p

i

; i = 1; : : : ; n; are positive on

~

Q.

�

o

: The Bernstein coe�cients (b

(i

�

)

I

)

I2S

of a polynomial p

i

�

are all nonpositive;

then by (12) the polynomial p

i

�

is nonpositive on

~

Q:

�

b

(") : The volume of

~

Q is less than " and each polynomial p

i

possesses sharp positive

and nonpositive Bernstein coe�cients; then according to (13) and (14), each

polynomial p

i

assumes on

~

Q positive and nonpositive values.

2

Of course, if it turns out that a polynomial p

i

is positive over a subbox

~

Q of Q we

can discard this polynomial from the list of polynomials to be checked further for

positivity on any subbox of

~

Q:

5 The Algorithm

The procedure Test checks a subbox

~

Q of Q to which list this box will be appended.

This procedure returns AP (for all positive) if

~

Q will be added to �

i

; EN (for exists

a nonpositive polynomial) if it will belong to �

o

, and UD (for undecided) if

~

Q will

be appended to �

b

(").

The procedure TerminateSearch terminates the search for subboxes of Q on which

the polynomials p

i

are positive or nonpositive if all subboxes have a volume less than

2

In order to avoid to introduce a fourth list, we collect for simplicity in �

b

(") all subboxes

generated by sweeps having volume less than " which belong neither to �

i

nor to �

o

:
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": For a �xed recursion depth d (i.e., a �xed number of sweeps performed on the

initial box), we obtain boxes with volume 2

�d

vol(Q):

On the other hand, to achieve boxes with volume less than " we have to choose the

depth d as the smallest integer number greater than

ln(vol(Q))� ln(")

ln(2)

:

In our algorithm we use a maximum recursion depth d which leads to parameter

boxes with volume less than a given ":

The main procedure SolutionSet returns a collection of subboxes on which all

polynomials p

i

are nonnegative. These subboxes are listed in a stack �

i

: The stack

BC consists of the Bernstein coe�cients of the polynomials p

i

; i = 1; : : : ; n; denoted

by B(D): We assume that the standard operations MakeStack, Push, Pop, and

Isempty are implemented, e.g., [33, 34].
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Procedure 1 SolutionSet(B(D))

begin BC =MakeStack(); �

i

= MakeStack();

Push(BC,B(D));

while (: Isempty(BC)) do

B(D) = Pop(BC);

fB(D

0

); B(D

1

)g = Sweep(B(D));

t0=Test(B(D

0

)); t1=Test(B(D

1

));

if (t0=UD) then

if (: TerminateSearch()) then

Push(BC,B(D

0

));

end if

else if (t0=AP) then

Push(�

i

,D

0

);

end if

if (t1=UD) then

if (: TerminateSearch()) then

Push(BC,B(D

1

));

end if

else if (t1=AP) then

Push(�

i

,D

1

);

end if

end while

end

6 Examples

All examples were run (on a PC equipped with a Pentium 133) with the maximum

recursion depth d = 15: For simplicity, we apply the sweep selection rule (10) only

to the �rst of the list of the polynomials so that the direction of the sweeps is

completely determined by this polynomial. We denote by 2� the smallest box in

Q containing �:
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The �rst two examples utilize one of the Li�enard-Chipart stability criteria, cf. p.

155 in [35], which states that a polynomial

p(s) = a

0

s

m

+ a

1

s

m�1

+ : : :+ a

m�1

s+ a

m

with a

0

> 0

is stable, i.e., all its zeros have negative real parts, if and only if

a

m

> 0; a

m�2

> 0; a

m�4

> 0; : : : ;

and

�

1

> 0;�

3

> 0;�

5

> 0; : : : ;

where �

j

is the leading principal minor of order j of the Hurwitz matrix, i.e.,

�

j

= det(h

ik

)

i;k=1;:::;j

with

h

ik

= a

2k�i

; i; k = 1; : : : ; m;

where by convention a

r

= 0 if r < 0 or r > m:

Example 1: Our �rst example involves only two parameters, i.e., l = 2; so that we

are able to visualize the approximations �

i

;�

o

; and �

b

(") obtained by our algorithm.

We consider the static output-feedback problem presented in [10], cf. [1], which

leads to the problem to �nd the set of all parameters v; w such that the closed-loop

characteristic polynomial

p(s) = s

3

+ vs

2

+ (w � 5v � 13)s+ w:

is stable. The Li�enard-Chipart criterion gives us the conditions

v; w > 0;

�5v

2

� 13v + vw � w > 0:
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The results for v 2 [2; 10]; w 2 [40; 50] are presented in Figure 2. The white region

is the inner approximation and the grey domain is the outer approximation to

�. The approximation of @� is given by the black region. The algorithm �nds

2� = [2; 5:59375]� [41:9922; 50] in 0:27 s.

Figure 2: Solution set of Example 1.

Example 2: The problem taken from [1] is to �nd a (stable) second-order

compensator with three parameters which simultaneously stabilize the three di�erent

plants with the following transfer functions

2� s

(s

2

� 1)(s+ 2)

;

2� s

s

2

(s+ 2)

;

2� s

(s

2

+ 1)(s+ 2)

:

In order to reduce the number of parameters to be considered we assume a second-
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order compensator of the form

A(s+B)

2

(s+D)

2

with D > 0: To achieve stability, we utilize the Li�enard-Chipart criterion. After

some simpli�cations, we obtain the following set of inequalities in the parameters

A;B; and D :

A;B;D > 0

AB

2

�D

2

> 0

�AB + A+D

2

�D � 1 > 0

AB � AD � 2A+D

3

+ 4D

2

+ 4D > 0

AB

3

� AB

2

D � 4AB

2

+ 2ABD + 4AB + 2BD

3

+ 5BD

2

+ 2BD �D

3

� 4D

2

� 4D > 0

AB � 2A� BD

2

� 4BD � 4B + 2D

2

+ 3D � 2 > 0

We have choosen A 2 [100; 120]; B 2 [0; 2]; D 2 [10; 20]: Note that the software pack-

age QEPCAD, cf. Sect. 2, needs already 2 hours of CPU time to solve the existence

problem, i.e., to show that there is a solution of the above system of inequalities [1].

In 1.3 s our algorithm �nds 2� = [100; 120]� [1:15625; 1:60938]� [12:1875; 17:3438]:

Figure 3 shows the set of acceptable values of B and D for �xed A = 110 obtained

in 0:5 s.
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Figure 3: The set of acceptable values of B;D for A = 110:

Example 3: [2] We consider a plant which is assumed to be an unstable �rst-order

system with transfer function

p

1

1� s=p

2

;

where p

1

and p

2

are uncertainty parameters. To control the plant a proportional

plus integral (PI) compensator is used with transfer function

C(s; q) = q

1

1 + s=q

2

s

;

where q

1

and q

2

are the design parameters. The controller to be designed has

to meet some performance speci�cations represented by the following polynomial

inequalities:

(1.) Closed loop stability: q

2

> 0;�q

1

> 0;�p

1

q

1

� q

2

> 0
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(2.) Tracking error (at steady state) for unit ramp: p

2

1

q

2

1

� 2500 > 0

(3.) Closed loop bandwith: aw

4

+ bw

2

+ c; where

a = �q

2

2

b = p

2

1

p

2

2

q

2

1

� 2p

1

p

2

q

1

q

2

2

� 2p

1

p

2

2

q

1

q

2

� p

2

2

q

2

2

c = p

2

1

p

2

2

q

2

1

q

2

2

(4.) Resonance peak of the closed loop transfer function: aw

4

+ bw

2

+ c; where

a = 1:96q

2

2

b = 0:96p

2

1

p

2

2

q

2

1

+ 1:96p

2

2

q

2

+ 3:92p

1

p

2

2

q

1

q

2

+ 3:92p

1

p

2

q

1

q

2

2

c = 0:96p

2

1

p

2

2

q

2

1

q

2

2

(5.) Control e�ort: aw

4

+ bw

2

+ c; where

a = 400q

2

2

� q

2

1

;

b = 400p

2

1

p

2

2

q

2

1

+ 800p

1

p

2

2

q

1

q

2

+ 800p

1

p

2

q

1

q

2

2

� p

2

2

q

2

1

+ 400p

2

2

q

2

2

� q

2

1

q

2

2

;

c = 400p

2

1

p

2

2

q

2

1

q

2

2

� p

2

2

q

2

1

q

2

2

:

The design parameters (q

1

; q

2

) are taken from [�300; 0]�[0; 15], the plant parameters

p

1

; p

2

are chosen from [0:8; 1:25]; and the variable w varies in [0; 300]: Our algorithm

found in 8:436 s the following parameter intervals:

q

1

2 [�300;�56:25]; q

2

2 [0:11; 15]; p

1

; p

2

2 [0:8; 1:25]; w 2 [0; 18:75]. We note that

the software package QEPCAD was not able to solve this problem [7]. For the

solution using QEPCAD of the simpli�ed model involving only the design parameter

q

1

with the simple output feedback C(s; q) = q

1

see [7].
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7 Conclusions

Bernstein expansion provides a method for testing a multivariate polynomial for

positivity over a box and therefore for �nding an inner approximation of the solution

set of a system of strict polynomial inequalities. Compared to quanti�er elimination

methods, Bernstein expansion is not so widely applicable:

� Only strict inequalities can be handled. However, many problems in linear

control theory can be reduced to such systems.

� Bernstein expansion requires a priori bounds on the parameter range. How-

ever, the designer has often a region of special interest.

The applicability of quanti�er elimination methods is severely limited by the number

of the variables. So many problems of practical importance are beyond the

capabilities of these methods. The development of both better algorithms and of

fast algorithms for special classes of problems in a very active area for research so

that it is hoped that the solution of signi�cantly more complicated problems will

be possible in near future. Bernstein expansion can handle presently more complex

problems. But its e�ciency drastically decreases if the number of parameters exceeds

about seven. Quanti�er elimination provides an explicit description of the solution

set which is complicated in general. From the point of view of the designer the

description of the entire solution set is often not necessary. What the designer

really wants is a good inner approximation of the solution set or even only a large

box inside this set. But that is what Bernstein expansion provides.
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