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1 Introduction

Stability of a polynomial plays an important part in the

analysis and design of control systems. A standard ap-

proach to robustness analysis of linear dynamic systems is

to examine the characteristic polynomial in the presence

of parametric uncertainties. So far, the main attention

has been paid to the case of a�ne and multia�ne para-

meter dependency of the coe�cients of the characteristic

polynomial, see, e.g., [2, 6, 20] and the references therein.

However, these cases do not cover most real-life problems.

Therefore, we are concerned here with the far more general

case of polynomial dependency:

The Robust Stability Problem Let the parameter set

Q be an l-dimensional box, i.e.

Q = [q

1

; q

1

]� � � � � [q

l

; q

l

]:

Let a family of polynomials be given by

p(s;q) = a

0

(q)s

m

+ : : :+ a

m�1

(q)s + a

m

(q); (1)

where the coe�cients are depending polynomially on

parameters q

i

, i = 1; : : : ; l, q = (q

1

; : : : ; q

l

), i.e. for k =

0; : : : ;m

a

k

(q) =

d

X

i

1

;:::;i

l

=0

a

(k)

i

1

:::i

l

q

i

1

1

: : : q

i

l

l

: (2)

Question: Is the family of polynomials (robustly) stable

for Q, i.e. are the polynomials p(q) stable for all q 2 Q?

Here stability is meant in the sense of Hurwitz or asymp-

totical stability, i.e. we want to show that p(s;q) 6= 0 for

all s 2 C with Re s � 0, q 2 Q. To avoid dropping in de-

gree we assume for simplicity throughout this paper that

a

0

(q) > 0 for all q 2 Q.

y
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Unfortunately, most of the methods known from lit-

erature, e.g. [4, 5, 14, 15, 16, 18, 23, 32, 34, 35, 36],

can only treat problems with polynomial dependency with

only a few parameters and/or polynomials of lower de-

gree. The genetic algorithm [25] appears to be an excep-

tion. However, this algorithm seems not be fully tested

for large control problems and gives no guarantee for �nd-

ing the global solution. In Ex. 4 in Ch. 5 we present an

example in which this algorithm fails to give the correct

solution.

A possible approach is to consider the Hurwitz de-

terminant associated with the family of polynomials, e.g.

[14, 16, 18, 23, 34, 35]. In principle, by space and time

limitations this approach is restricted to problems with a

moderate number of parameters and to lower degree poly-

nomials.

The �rst algorithmwe present in this paper adopts this

approach and is based on the expansion of the Hurwitz

determinant into Bernstein polynomials. This leads to a

fast algorithm. Focusing on larger control problems we

develop then a second algorithm which avoids the blowing

up of the problem caused by using the Hurwitz determ-

inant. The underlying idea of the algorithm is to watch

for zero crossing over the imaginary axis by inspecting the

so-called value set. Here we pro�t again from the convex

hull property of the Bernstein expansion.

The organization of the paper is as follows: In Ch. 2

we �rst introduce the Bernstein expansion of a polyno-

mial and explain then the sweep procedure which is fun-

damental for subsequent developments of both algorithms.

Our �rst algorithm is presented in Ch. 3, where also the

selection rules are introduced which have led to a consid-

erable speeding up of the algorithm. The second algorithm

which is designed for larger control problems is introduced

in Ch. 4. To demonstrate the e�ciency of both algorithms

we present in Ch. 5 numerical results to real-world prob-

lems like that of the Fiat Dedra engine studied in [6]. Brief

conclusions and directions for future research are given in

Ch. 6.

The results of this paper are presented in greater de-

tail in the report [37] which is available upon request. We

note that the approach the �rst algorithm is based on can

be applied to other stability regions as well as to matrix

stability using the determinantal criteria listed in [30], e.g.

Ch. 17 in [6], however often at the expense of an increase

of dimensionality. For the related problem of Schur stabil-

ity and the problem of computing the stability margin see

[28].
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2 Bernstein Expansion

For compactness, we de�ne a multi-index I as an ordered

l-tupel of nonnegative integers (i

1

; : : : ; i

l

). We will use

multi-indices e.g. to shorten power products: For x =

(x

1

; : : : ; x

l

) 2 R

l

we set x

I

= x

i

1

1

x

i

2

2

� : : : � x

i

l

l

. For simpli-

city, we suppress sometimes the brackets in the notation of

multi-indices.

We write I � N if N = (n

1

; : : : ; n

l

) and if 0 � i

k

� n

k

,

k = 1; : : : ; l. Further, let S = fI : I � Ng. Then we can

write an l-variate polynomial p in the form

p(x) =

X

I2S

a

I

x

I

; x 2 R

l

; (3)

and refer to N as the degree of p. We de�ne the total

degree of polynomial (3) as

n̂ = maxfn

i

: i = 1; : : : ; lg: (4)

Also, we write I=N for (i

1

=n

1

; : : : ; i

l

=n

l

) and

�

N

I

�

for

�

n

1

i

1

�

� : : : �

�

n

l

i

l

�

.

2.1 Bernstein Transformation of a Poly-

nomial

In this section we expand a given multivariate polynomial

(3) into Bernstein polynomials to obtain bounds for its

range over an l-dimensional box. This approach was used

in the univariate case for the �rst time in [7] and sub-

sequently in a series of papers, e.g. [11, 22, 27, 29]. Gener-

alizations to the multivariate case were given in [13, 14, 21,

23]. Without loss of generality we consider the unit box

U = [0; 1]

l

since any nonempty box of R

l

can be mapped

a�nely

1

onto this box.

The ith Bernstein polynomial of degree n is de�ned as

b

n;i

(x) =

�

n

i

�

x

i

(1� x)

n�i

; 0 � i � n;

for an arbitrary x 2 R. In the multivariate case, the

Ith Bernstein polynomial of degree N is de�ned by

B

N;I

(x) = b

n

1

;i

1

(x

1

)b

n

2

;i

2

(x

2

) � : : : � b

n

l

;i

l

(x

l

); (5)

where x = (x

1

; : : : ; x

l

) 2 R

l

.

The transformation of a polynomial from its power

form (3) into its Bernstein form results in

p(x) =

X

I2S

b

I

(U )B

N;I

(x); (6)

where the Bernstein coe�cients b

I

(U ) of p over U are

given by

1

The corresponding shift of the polynomial can be performed ef-

�ciently by the multidimensional Horner scheme, cf. [8].

b

I

(U ) =

X

J�I

�

I

J

�

�

N

J

�a

J

; I 2 S: (7)

We collect the Bernstein coe�cients in an array B(U ),

i.e. B(U ) = (b

I

(U ))

I2S

. A similar notation will be em-

ployed for other sets of related coe�cients. In [13] a method

was presented for calculating the Bernstein coe�cients ef-

�ciently by a di�erence table scheme (which is similar to

the sweep procedure, cf. Sect. 2.2) that avoids the binomial

coe�cients and products in (7).

In the following, we will use a special subset of the

index set S comprising those indices which correspond to

the indices of the vertices of the array B(U ), i.e.

S

0

= f0; n

1

g � � � � � f0; n

l

g:

We list some useful properties of the Bernstein coe�-

cients, e.g. [9, 13, 27]. As usual, we denote the convex hull

of a set A by ConvA.

Lemma: Let p be a polynomial (3) of degree N . Then

the following properties hold for its Bernstein coe�cients

b

I

(U ) (7):

i) Sharpness of special coe�cients:

8I 2 S

0

: b

I

(U ) = p(I=N ) (8)

ii) Convex hull property:

Convf(x; p(x)) : x 2 Ug

� Convf(I=N; b

I

(U )) : I 2 Sg:

(9)

Formula (8) follows immediately from (7). The prop-

erty (9) relies on two fundamental properties of the Bern-

stein polynomials, viz.

8x 2 U : B

N;I

(x) � 0; I 2 S (10)

and

8x 2 R

l

:

X

I2S

B

N;I

(x) = 1: (11)

This shows that the polynomial p in (6) is represented

as a convex combination of Bernstein polynomials.

2.2 Sweep Procedure

The exposition in this section is based on the preliminary

results in [13, 14]. We de�ne a sweep in rth direction

(1 � r � l) similarly to de Casteljau's algorithm in CAGD,

e.g. [9], as recursively applied linear interpolation. Let D

be any subbox of U generated by sweep operations (at the

beginning we haveD = U , then subsequently D is obtained

by successively dividing). Starting with B

(0)

(D) = B(D)

we set for k = 1; : : : ; n

r

2



b

(k)

i

1

;:::;i

r

;:::;i

l

(D) =

8

>

<

>

:

b

(k�1)

i

1

;:::;i

r

;:::;i

l

(D) : i

r

= 0; : : : ; k � 1

(1 � �)b

(k�1)

i

1

;:::;i

r

�1;:::;i

l

(D)+

�b

(k�1)

i

1

;:::;i

r

;:::;i

l

(D) : i

r

= k; : : : ; n

r

:

(12)

So, if � = 1=2, we recursively form the arithmetic

mean of two neighbouring subarrays of B

(k�1)

(D) having

only in the rth coordinate full dimension, whereas some

subarrays remain unchanged. To obtain the new coef-

�cients, we apply formula (12) for i

j

= 0; : : : ; n

j

, j =

1; : : : ; r � 1; r+ 1; : : : ; l.

Then the Bernstein coe�cients on D

0

, where the sub-

box D

0

is given by

D

0

= [d

1

; d

1

]� � � � � [d

r

; d

r

+ �(d

r

� d

r

)]� � � � � [d

l

; d

l

];

are obtained as B(D

0

) = B

(n

r

)

(D). At no extra cost

we get as intermediate values the Bernstein coe�cients

B(D

1

) on the neighbouring subbox D

1

D

1

= [d

1

; d

1

]� � � � � [d

r

+ �(d

r

� d

r

); d

r

]� � � � � [d

l

; d

l

]

since for k = 0; : : : ; n

r

the following relation holds [14]

b

i

1

;:::;n

r

�k;:::;i

l

(D

1

) = b

(k)

i

1

;:::;n

r

;:::;i

l

(D):

In analogy to CAGD we call the arrays of Bernstein

coe�cients B(D

0

) and B(D

1

) patches. It is important to

note that by the sweep procedure the explicit transforma-

tion of the subboxes generated by the sweeps back to U is

avoided. Fig. 1 illustrates the sweeping process for l = 2

and � = 1=2.

B(D) B(D

0

) B(D

1

)

6

-

-

Sweep(B(D); 1)

� = 1=2
0,1

0,0

x

2

x

1

1,0

1,1 0,1

0,0
1/2,0

1/2,1
1,1

1,0

Fig. 1 Domain-splitting by the sweep procedure gives two

new patches.

The algorithms presented in this paper work with the

�xed value � = 1=2 for the splitting-point. Then the mul-

tiplications required in (12) simplify to binary shifts. Let

n̂ denote the total degree (4) of polynomial (3). Since we

have to perform formula (12) n

r

(n

r

+ 1)=2 times we need

altogether O(n̂

l+1

) additions and binary shifts.

3 The Improved Bernstein Algorithm

The basic Bernstein Algorithm [14] was designed to check

positivity of a multivariate polynomial over a box. To

show robust stability of a family of polynomials (1) we

may make use of the Boundary-Crossing-Theorem [12], cf.

Sect. 4.3 in [2]. Then we have to check the Hurwitz determ-

inant associated with the family ~p(q) = detH(p(q)) for

positivity over the box Q which can be assumed without

loss of generality to be the unit box U . The underlying

m-by-m matrix H(p) = (h

i;k

(p)) is de�ned by h

i;k

(p) =

a

2k�i

(q), i; k = 1; : : : ;m, where by convention a

n

(q) = 0

if n < 0 or n > m. Since ~p(q) is an l-variate polyno-

mial in q = (q

1

; : : : ; q

l

) we are able to apply the Bernstein

expansion provided in Sect. 2.1. If the minimum of the

Bernstein coe�cients b

I

(U ), I 2 S, is positive it follows

by (9) that p(q) is stable for Q. If there exists a nonposit-

ive sharp Bernstein coe�cient b

I

0

(U ), I

0

2 S

0

, the family

of polynomials (1) is not stable for all q 2 Q since the

Hurwitz determinant associated with the family assumes

nonpositive values on U . If both cases do not apply the

sweep procedure is performed splitting U to obtain two

new patches on which we proceed as before.

The basic Bernstein Algorithm uses subdivisions which

we can express as a sequence of 2

l�1

sweeps. The disad-

vantage of the subdivision based algorithm is, that we can

test positivity only after a complete subdivision step. But,

since properties like the convex hull property remain true

for the patches generated by one sweep, we can perform

the positivity test after each sweep. This saves a lot of

computational work.

Further improvements concern the selection of the sweep

direction and the patch selection of the depth �rst strategy

(see below). We show in Ex. 1 in Ch. 5 that the im-

provements have led to a signi�cant speeding up of the

algorithm.

3.1 Basic Procedures

Selection of the Sweep Direction The de�nition of

the sweep procedure shows that we are free in choosing

the sweep direction. Our selection rules are based on the

observation that in many cases it may be advantageous

to sweep in a particular coordinate direction to increase

the probability for �nding a nonpositive sharp Bernstein

coe�cient thus proving that the polynomial is not positive.

Our selection rules pro�t from the easy calculation of the

partial derivatives of a polynomial in Bernstein form, e.g.

[9, 10].

To shorten some expressions in the sequel we associ-

ate with an index I = (i

1

; : : : ; i

r

; : : : ; i

l

) the index I

r;k

=

(i

1

; : : : ; i

r

+ k; : : : ; i

l

), where 0 � k + i

r

� n

r

. Then the

�th partial derivative with respect to x

r

of (6) is given by

the following formula (1 � r � l):
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@

�

p

@x

�

r

(x)=

n

r

!

(n

r

� �)!

X

I�N

r;��

4

(�)

r

b

I

(D)B

N

r;��

;I

(x); (13)

where the di�erence operator 4

r

is de�ned recursively

by

4

(0)

r

b

I

(D) = b

I

(D) and for k = 1; : : : ; �

4

(k)

r

b

I

(D) = 4

(k�1)

r

b

I

r;1

(D) �4

(k�1)

r

b

I

(D):

To decide which sweep direction to choose we estimate

max

x2D

�

�

�

�

@

�

p

@x

�

r

(x)

�

�

�

�

(14)

neglecting the factorials from above by

~

I

(�)

r

= max

I�N

r;��

j4

(�)

r

b

I

(D)j: (15)

Here we have used the triangle inequality and proper-

ties (10), (11).

For � 2 f1; 2g we choose that r

0

with maximum value

~

I

(�)

r

0

= max

j=1;:::;l

~

I

(�)

j

: (16)

We de�ne a function

SelectSweepDirection(B(D); �)

which returns the value for r

0

for a �xed � 2 f1; 2g.

It should be noted that more re�ned measures for the

curvature on the basis of (14) can be established { at the

cost of higher computational e�ort. However, Ex. 1 in Ch.

5 shows that the rule based on the second partial derivative

(16) is su�cient for practical purposes.

Depth First Strategy In case of an unstable family of

polynomials we have to �nd a short path through a given

binary tree that leads to a nonpositive sharp Bernstein

coe�cient. Since we do not want to visit too many nodes

of the tree the choice of an appropriate path (without the

need of walking back) is of great importance. An easily

implemented rule is the selection rule: Choose the patch

with minimum Bernstein coe�cient. Of course, we are

considering here only patches with at least one nonpositive

Bernstein coe�cient which is not sharp because otherwise

local positivity or global nonpositivity is shown. Similar

to the procedure for selecting the sweep direction we de�ne

a function

PatchSelection(B(D

0

); B(D

1

))

that returns the index value for which the minimum Bern-

stein coe�cient is attained.

Test Procedure By the test procedure a patch is checked

for local positivity or sharp nonpositive coe�cients. If the

coe�cients are neither locally positive nor exists a sharp

nonpositive coe�cient the test procedure returns undecid-

able.

Test(B(D)) =

8

<

:

US : 9I

0

2 S

0

: b

I

0

(D) � 0

ST : 8I 2 S : b

I

(D) > 0

UD : otherwise

:

3.2 The Algorithm

Our algorithmworks with a stack and we assume the stand-

ard operations MakeStack, Push, Pop, and Isempty to be

implemented, e.g. [19, 31]. A stack element is de�ned as

a pointer to the Bernstein coe�cients B(U ). Then the

Improved Bernstein Algorithm reads as follows:

Procedure Bernstein(B(D),�)

begin S=MakeStack();

t

0

=t

1

=Test(B(D));

if (t

0

=UD) then Push(S,B(D));

while (t

0

6= US ^t

1

6= US ^ :Isempty(S)) do

begin

B(D)=Pop(S);

r

0

=SelectSweepDirection(B(D),�);

fB(D

0

);B(D

1

)g = Sweep(B(D),r

0

);

t

0

=Test(B(D

0

)); t

1

=Test(B(D

1

));

if (t

0

=UD ^ t

1

=UD)

if (PatchSelection(B(D

0

),B(D

1

))=0)

Push(S,B(D

1

)); Push(S,B(D

0

));

else

Push(S,B(D

0

)); Push(S,B(D

1

));

else if (t

0

=UD) Push(S,B(D

0

));

else if (t

1

=UD) Push(S,B(D

1

));

end

if (t

0

=ST ^ t

1

=ST) return RS;

else return :RS;

end

Algorithm 1

The algorithm returns robustly stable (RS) if the stack

is empty and the last two patches are locally positive. Oth-

erwise, if a nonpositive sharp coe�cient is found it returns

not robustly stable (:RS).

4 The Convex Hull Bernstein Al-

gorithm

The numerical results in [28] show that already the basic

Bernstein Algorithm [14] applied to robust stability prob-

lems with a moderate number of parameters is fast. A

considerable speeding up of the algorithm was achieved by

its improvements explained in Ch. 3. But a serious draw-

back of the approach is that the Hurwitz determinant has

4



to be computed (which however can be done by a sym-

bolic manipulation package if the number of parameters

is moderate) and that the algorithm works with this de-

terminant. This causes a considerable blowing up of the

original problem. E.g. one array of Bernstein coe�cients

has a space complexity of O((md)

l

), for d see (2). In con-

trast, the algorithm to be introduced in the sequel has a

space complexity of O(maxfm; dg

l+1

) and that is in the

most cases considerably less.

The new algorithm explores the value set of the family

of polynomials (1)

P(
) = fp(j!;q) : ! 2 
 ^ q 2 Qg; 
 � R:

Having found a stable member of the family it su�ces

by the continuous dependency of the zeros of a polynomial

from its coe�cients to test 0 =2 P(R). In [37] we discuss

how one can �nd a tight compact interval 
 � [0;1) such

that from 0 =2 P(
) we can conclude the robust stability

of the family (1).

We split the polynomial p(j!;q) into its even and odd

parts

p(j!;q) = p

e

(!

2

;q) + j!p

o

(!

2

;q); (17)

where

p

e

(!

2

;q) = a

m

(q)� a

m�2

(q)!

2

+ a

m�4

(q)!

4

�+ : : :

p

o

(!

2

;q) =a

m�1

(q) � a

m�3

(q)!

2

+ a

m�5

(q)!

4

�+ : : : :

It should be noted that an improvement of the order

of complexity can be obtained by substituting � = !

2

and by considering the pair (p

e

(�); p

o

(�)) rather than (17).

However, to keep the presentation simpler we use the form

(17).

By running some of the earlier developed procedures

twice { simultaneously for the real part p

e

(q) and for the

imaginary part !p

o

(q) { we obtain a set of points in the

complex plane. Then we compute their convex hull what

can be done in optimal time using O(� log �) operations,

e.g. [24, 26], where � denotes the number of points, and

check whether the origin of the complex plane is contained

in this convex hull. If it is outside and if there exists

a stable member, the family of polynomials is robustly

stable. Otherwise (if the origin is inside the convex hull)

we perform an inclusion test for the value set (see below).

If it fails, i.e. it can not be veri�ed that the origin is in

the value set, we apply our sweep procedure splitting the

domain to obtain two new patches on which we proceed

as before. If no patch remains and all inclusion tests have

failed the family of polynomials is robustly stable (again

under assumption that there is a stable member). Other-

wise, if an inclusion test is successful the algorithm aborts

immediately because we have found an unstable polyno-

mial.

In order to use our previous notation we assume dimQ =

l�1. So we write (x

1

; : : : ; x

l

) = (!; q

1

; : : : ; q

l�1

). Then we

map 
�Q a�nely onto the unit cube U . Transforming the

real and imaginary part of (17) into Bernstein form yields

complex valued Bernstein coe�cients b

I

(D), I 2 S, where

D is any subbox of U generated by sweeps. In the sequel

we suppress the explicit reference to D and write ConvB

for Convfb

I

: I 2 Sg.

In [27] it is shown that the convex hull property also

holds for univariate polynomials having complex coe�-

cients. By (10) and (11) it is easy to see that

Convfp(x) : x 2 Dg � ConvB:

By any standard convex hull algorithm, cf. [24, 26],

we can check whether the origin belongs to ConvB. If

it is inside we apply the sweep procedure to get a better

approximation of the value set. An approach based merely

on the sweep procedure and a convex hull algorithm is

only su�cient to verify robust stability. However, to show

that a family of polynomials is not robustly stable we need

warranty that the origin is contained in the value set.

4.1 Geometric Inclusion Test

In case of an unstable family of polynomials the sweeping

process has to be terminated by a criterion which gives a

guarantee that the origin belongs to the value set P(U ).

Otherwise, if no inclusion test is applied, the algorithm

would produce sequences of convex hulls converging to

zeros of polynomial (17).

By (10), (11), and the de�nition of the Bernstein poly-

nomials B

N;I

(x) (5) we immediately obtain the following

local convex hull result.

Edge-Lemma: Let an edge of U be parameterized as

w

�

= I

0

=N + �(I

1

=N � I

0

=N ); � 2 [0; 1];

with I

0

= (i

1

; : : : ; 0; : : : ; i

l

), I

1

= (i

1

; : : : ; n

r

; : : : ; i

l

) 2 S

0

.

Then Convfp(w

�

) : � 2 [0; 1]g

� Convfb

i

1

;:::;i

r

;:::;i

l

: i

r

= 0; 1; : : : ; n

r

g.

The lemma tells that the convex hull of the image of an

edge of U under p is contained in the convex hull of the

Bernstein coe�cients associated with this edge.

Now we consider four elements of S

0

, where we manip-

ulate the rth and sth index,

I

0;0

= (i

1

; : : : ; 0 ; : : : ; 0 ; : : : ; i

l

)

I

1;0

= (i

1

; : : : ; n

r

; : : : ; 0 ; : : : ; i

l

)

I

1;1

= (i

1

; : : : ; n

r

; : : : ; n

s

; : : : ; i

l

)

I

0;1

= (i

1

; : : : ; 0 ; : : : ; n

s

; : : : ; i

l

):
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To state our inclusion condition we denote by R a

region in the complex plane circumscribed by the edges

(t 2 [0; 1])

tb

I

1;0

+ (1� t)b

I

0;0

tb

I

1;1

+ (1� t)b

I

1;0

tb

I

0;1

+ (1� t)b

I

1;1

tb

I

0;0

+ (1� t)b

I

0;1

:

(18)

Accordingly, we de�ne the four sets of Bernstein coef-

�cients associated with the edges

B

1

= fb

i

1

;:::;i

r

;:::;0 ;:::;i

l

: i

r

= 0; : : : ; n

r

g

B

2

= fb

i

1

;:::;n

r

;:::;i

s

;:::;i

l

: i

s

= 0; : : : ; n

s

g

B

3

= fb

i

1

;:::;i

r

;:::;n

s

;:::;i

l

: i

r

= 0; : : : ; n

r

g

B

4

= fb

i

1

;:::; 0 ;:::;i

s

;:::;i

l

: i

s

= 0; : : : ; n

s

g:

For a set A, A

�

and A denotes as usual its (topological)

interior and its closure, respectively. We set

C =

4

[

i=1

(ConvB

i

)

�

:

Now we are in the position to state our inclusion test

based on the four edges, cf. Fig. 2.
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�
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�

�

r

r

rr

Z

Z

"

"

P

P

P
P

-

6

Im

Re

H(x

r

; 0)

H(x

r

; 1)

%

%

h

h

h

h

h
h

L

L

L

Fig. 2 Geometry of the inclusion condition.

Four-Edges-Test: Let Y = R

�

nC and assume that Y 6=

;. Then the origin is contained in P(U ) if it is contained

in Y .

Proof Without loss of generality we may assume that

the edges of R (18) have no proper intersection points than

the Bernstein coe�cients and that these points are pairwise

di�erent. Otherwise R degenerates or can be split into two

triangles and we may proceed similarly. Let the function

H be de�ned by

H(x

r

; x

s

) = p(i

1

=n

1

; : : : ; x

r

; : : : ; x

s

; : : : ; i

l

=n

l

):

By the Edge-Lemma it follows that the paths gener-

ated by H(x

r

; 0) and H(x

r

; 1), x

r

2 [0; 1], are contained

in ConvB

1

and ConvB

3

, respectively. Since p is contin-

ous we have found a continous deformation ofH(x

r

; 0) into

H(x

r

; 1) such that the set Y is completely covered by func-

tion values of the map p(x) with x 2 U . This proves the

statement. 2

Time Complexity of the Inclusion Test Each Bern-

stein patch has 2

l

�

l

0

�

sharp coe�cients, 2

l�1

�

l

1

�

edges and

2

l�2

�

l

2

�

(twodimensional) faces. In worst case we have to

check O(2

l

l

2

) faces by the inclusion test. For each face we

test �rst if the origin is inside of R and if yes, we check

the four convex hulls associated with the edges for zero

inclusion. To test R costs a number of operations which is

independent of l and the total degree n̂ (4), i.e. O(1) op-

erations. The construction of the four convex hulls of the

edges costs O(n̂ log n̂), and the zero inclusion tests for the

convex hulls require additional O(log n̂) operations, e.g.

[26]. So we have a total time complexity for the inclusion

test of O(2

l

l

2

(n̂ log n̂+ log n̂)) = O(2

l

l

2

n̂ log n̂).

4.2 Basic Selection Procedures

Selection of the Sweep Direction The choice of the

sweep direction is based on the partial derivatives of the

complex valued function p similarly to the selection rule

(16).

Patch Selection After sweeping along an axis we have

still the choice between two patches. Let p

(w)

i

, i = 1; : : : ; �

w

,

be the etreme points of ConvB(D

w

), i.e.

ConvB(D

w

) = Convfp

(w)

i

: i = 1; : : : ; �

w

g; w = 0; 1:

We take that patch B(D

w

) for which the Euclidean

distance of the center of gravity of the equally weighted

points p

(w)

i

to the origin, i.e.

1

�

w

j

�

w

X

i=1

p

(w)

i

j; w = 0; 1;

is minimal. The procedure

PatchSelection(B(D

0

); B(D

1

))

again returns the value from f0; 1g identifying the patch

to be swept �rst.

Test Procedure The test procedure is based on the

Four-Edges-Test and is somehow di�erent to that intro-

duced for the �rst algorithm. As convex hull algorithm we

have implemented Graham's algorithm [26]. We further

need a procedure for testing whether a point is located

inside a convex hull or not, cf. [26].

Test(B) =

8

<

:

US : 0 2 Y

ST : 0 =2 ConvB

UD : otherwise

:
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The CHB Algorithm The body of the Convex Hull

Bernstein Algorithm (shortly CHBA) is nearly identical

to the improved Bernstein procedure. We exchange only

the sweep direction procedure, the patch selection, the test

procedure and we have to run the sweep procedure twice:

For the real and simultaneously for the imaginary part of

the polynomial.

5 Examples

For each example we give the number of sweeps required

to obtain the result and the sweep depth that describes

the maximum number of sweeps performed on one patch.

Furthermore, we present the running times (on a Hew-

lett Packard workstation 9000/755) and in case of value

set analysis we give the interval on the imaginary axis the

analysis can be restricted to.

5.1 Positivity Tests

We use the Improved Bernstein Algorithm for testing the

Hurwitz determinant for positivity. For the selection of the

sweep direction we work with the second partial derivative

of the polynomial, cf. Sect. 3.1.

Ex. 1 [1] We consider the following polynomial p of third

degree with coe�cients depending multia�nely on l para-

meters q

i

, where q

i

2 [0; 3] for i = 1; : : : ; l:

p(s;q) = s

3

+ a

1

(q)s

2

+ a

2

(q)s + a

3

(q);

where

a

1

(q) = a

2

(q) = l +

l

X

i=1

q

i

and

a

3

(q) = l(l � 1) + �

2

+ 2(l + 1)

l

X

i=1

q

i

+ 2

l�1

X

i=1

l

X

j=i+1

q

i

q

j

:

We have run positivity tests for � = 10

�3

and di�erent

values of l. Tab. 1 shows the characteristics of each test.

l sweep depth sweeps t/sec.

6 69 69 0.5

7 81 81 2.4

8 94 94 22.4

9 106 106 131.8

10 117 118 663.5

11 129 129 3789.0

Tab. 1 Results for the l parameter polynomial.

The program reports that the family of polynomials is

not robustly stable. In fact, the family has an unstable

sphere of radius � centered around q

�

= (1; : : : ; 1) [1].

For comparison we give the results for l = 6; 7 for

the subdivision based Bernstein Algorithm [28], cf. the re-

marks in Ch. 3. The computing times for l = 6 were 36.6

sec. and for l = 7 approximately 19 min.

Now we would like to demonstrate the e�ciency of

the sweep direction selection: We vary the intervals for

the parameters for �xed l = 6, viz. we set q

i

= 0 for

i = 1; : : : ; 6 and vary the upper bounds q = (q

1

; : : : ; q

6

).

q sweep depth sweeps t/sec.

(3, 3, 3, 3, 3, 6) 70 70 0.46

(3, 3, 3, 3, 6, 6) 71 71 0.46

(3, 3, 3, 6, 6, 6) 72 72 0.45

(3, 3, 6, 6, 6, 6) 73 73 0.41

(3, 6, 6, 6, 6, 6) 74 74 0.47

(6, 6, 6, 6, 6, 6) 75 75 0.46

(3,6,12,24,48,96) 84 84 0.51

Tab. 2 Variation of the upper bounds.

Tab. 2 shows that if we double the parameter box the

algorithm needs exactly one more sweep. We see that the

number of sweeps and the sweep depth in Tabs. 1,2 are

nearly identical. This documents the e�ciency of our se-

lection rules.

5.2 Value Set Based Tests

We give some numerical results of the CHBA, where the

algorithm uses the �rst partial derivative for selecting the

sweep direction, cf. Sect. 4.2.

Ex. 2 We consider now the characteristic polynomial of

a control problem associated with the Daimler-Benz city-

bus [33], p. 46.

p(s; v;m) = 4:49876 � 10

14

v

2

+ 3:6215 � 10

15

vs+ 5:24855 �

10

14

v

2

s+4:22509 �10

15

vs

2

+1:12469 �10

14

v

2

s

2

+5:69531 �

10

9

mv

2

s

2

+4:19884 �10

15

s

3

+9:05376 �10

14

vs

3

+6:90414 �

10

9

mv

2

s

3

+3:35907�10

14

s

4

+1:67933�10

10

mvs

4

+1:4446�

10

9

mv

2

s

4

+1:34363�10

13

s

5

+1:34347�10

9

mvs

5

+8:30756�

10

5

mv

2

s

5

+1:5625�10

4

m

2

v

2

s

5

+2:68726�10

11

s

6

+5:37386�

10

7

mvs

6

+1:66151�10

4

mv

2

s

6

+1:25�10

3

m

2

v

2

s

6

+1:07477�

10

6

mvs

7

+ 50m

2

v

2

s

7

+m

2

v

2

s

8

We have inspected the family of polynomials for ! 2

[0:18; 751], where the intervals for the parameters are given

by

v 2 [1; 20] m 2 [9950; 32000]:

After 0.05 sec. we have the result that this family is ro-

bustly stable. The CHBA reports 50 sweeps with a sweep

depth of 21. Fig. 3 shows an approximation of the value set.
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Fig. 3 Subset of the value set associated with the citybus.

Ex. 3 Control of the Fiat Dedra engine [6], pp. 29-36,

154-159, 358-360. The characteristic polynomial is of sev-

enth degree with seven parameters entering quadratically

into the transfer function. The frequency and the para-

meters vary inside the intervals

! 2 [0:0058; 2:1738] q

1

2 [2:1608; 3:4329]

q

2

2 [0:1027; 0:1627] q

3

2 [0:0357; 0:1139]

q

4

2 [0:2539; 0:5607] q

5

2 [0:0100; 0:0208]

q

6

2 [2:0247; 4:4962] q

7

2 [1:0000; 10:000]:

The CHBA reports after 10.6 sec. that this family is

robustly stable, cf. Fig. 4, where 83 sweeps with a sweep

depth of 17 are required.

Fig. 4 Subset of the value set associated with the Fiat

Dedra engine.

Ex. 4 Our next example has a multia�ne parameter de-

pendency, where thirteen parameters are involved [3].

p

1

(s; c

1

; d

1

;m

1

) = m

1

s

2

+ d

1

s+ c

1

+ c

12

p

2

(s; c

2

; d

2

;m

2

) = m

2

s

2

+ d

2

s+ c

2

+ c

12

N

c

(s;b) = b

3

s

3

+ b

2

s

2

+ b

1

s + b

0

D

c

(s; a) = s

3

+ a

2

s

2

+ a

1

s + a

0

For �xed c

12

= 1 the family of polynomials to be

checked for zero exclusion is given by (p

1

p

2

� 1)D

c

+ N

c

.

As in [3, 25] we choose the following parameter intervals

and analyze the value set for ! 2 [0; 70].

m

1

2 [1; 3] d

1

2 [0:5; 2] c

1

2 [1; 2]

m

2

2 [2; 5] d

2

2 [0:5; 2] c

2

2 [2; 4]

a

0

2 [17100; 20900] b

0

2 [212062:5; 259187:5]

a

1

2 [1305; 1595] b

1

2 [805837:5; 984912:5]

a

2

2 [55:8; 68:2] b

2

2 [721012:5; 881237:5]

b

3

2 [424125:0; 518375:0]:

The CHBA �nds after 9 sweeps with a sweep depth of

9 in 37.8 sec. that this familymust have unstable members.

This stands in contradiction to [25], where this family was

checked by a genetic algorithm, and [3], where the value

set was analyzed using tree structured decomposition

2

.

For further analysis we have tested a subfamily choos-

ing m

1

2 [1; 1:1] and the other parameters as corners of

their respective parameter intervals: m

2

= 2, d

1

= 0:5,

d

2

= 0:5, c

1

= 1, c

2

= 2, a

0

= 17100, a

1

= 1305,

a

2

= 68:2, b

0

= 212062:5, b

1

= 805837:5, b

2

= 881237:5,

b

3

= 518375. Then the following polynomial

p(s;m

1

) = 2m

1

s

7

+136:9m

1

s

6

+s

6

+2647:1m

1

s

5

+72:45s

5

+

35057:1m

1

s

4

+ 1597:35s

4

+ 12465m

1

s

3

+ 541196:75s

3

+

51300m

1

s

2

+ 957516s

2

+ 855112:5s+ 297562:5

with ! 2 [1; 25] results. The CHBA veri�es after 5

sweeps with a sweep depth of 4 in less then 0.01 sec. that

this subfamily is not robustly stable. In Fig. 5 the origin

is overlapped by the value set of this subfamily con�rming

our conclusion.

Fig. 5 Part of the value set of the subfamily.

2

We were informed that the result in [3] was obtained by choosing

the interval for ! to tight.

8



6 Conclusions

We have presented two algorithms for checking robust sta-

bility of a family of polynomials with coe�cients depend-

ing polynomially on parameters. The improved Bernstein

Algorithm is based on a positivity test of the Hurwitz de-

terminant. In case of polynomials with a moderate number

of parameters and/or of not too high degree it is very fast.

But in case of larger problems it is impossible to calculate

the Hurwitz determinant because of space limitations. In

such cases the new algorithm based on the value set ana-

lysis is advantageous because the memory requirements do

not increase as fast as they would if we would work with

the Hurwitz determinant.

We have seen that the Convex Hull Bernstein Algorithm

solves larger problems. But in case of unstable polyno-

mials the algorithm could be faster if the patch selection

and the selection of the sweep direction would be more

e�cient by preventing the algorithm to follow ine�cient

paths. Further research should address also the question

of reducing the storage needed since the application of the

algorithms to very large problems is complicated by their

excessive memory requirements. Future research should

be directed to the investigation of the convergence proper-

ties of the algorithm. In [23] it was shown that the basic

Bernstein Algorithm with breadth �rst strategy converges

quadratically. There is some evidence that the convergence

of the Convex Hull Bernstein Algorithm is also quadratic.

An advantage of the Convex Hull Bernstein Algorithm

is the capability to visualize the value set. This could fa-

cilitate the design of dynamic systems.
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