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 A B S T R A C T

A sign regular matrix is a matrix having the property that its non-zero minors of all orders 
have, for each order, an identical sign. Such matrices arise in a wide range of applications. In 
this paper, intervals of real matrices with respect to the usual entry-wise partial ordering are 
considered. Using variation diminution, it is shown that all matrices in such an interval are 
sign-regular with the same signature of their minors if a specified finite set of element matrices 
in the interval has this property.

. Introduction

A real 𝑚×𝑛 matrix 𝐴 is variation diminishing if for any 𝑛-vector 𝑥, the vector 𝐴𝑥 has no more sign changes than 𝑥. This property is 
ntimately connected with the following property. A real 𝑚× 𝑛 matrix is called sign regular1 (abbreviated SR) if all its non-vanishing 
inors of the same order are all positive or all negative. It is termed strictly sign regular (SSR) if it is SR and all its minors are non-zero. 
uch matrices arise, e.g., in mechanics [1], computer aided geometric design [2], computer vision [3], and dynamic systems [4]. 
n the most important case, all minors are nonnegative or positive; these SR matrices are called totally nonnegative (TN) and totally 
ositive (TP), respectively. Properties of these matrices can be found in [1,5,6].
In this paper, we consider intervals of matrices with respect to the usual entry-wise partial ordering. We ask under which 

onditions all matrices in such a matrix interval are SR. The motivation for this question stems from the investigation of the linear 
omplementarity problem [7]. Often properties of this problem like solvability, uniqueness, convexity, and finite number of solutions 
re reflected by properties of the constraint matrix (for a large collection of respective matrix classes see [8]). In passing, we note 
hat also the SR matrices have to be added to these classes [9]. In the case that one considers the linear complementarity problem 
ith uncertain data modeled by intervals [10,11], it is important to know whether the matrices obtained by choosing all possible 
alues in the intervals are in the same matrix class. Then it is an enormous advantage if one could ascertain this containment by 
hecking a finite set of matrices [12,13] - in the ideal case, from only two matrices. Collections of matrix classes which possess such 
roperties can be found in the survey articles [14,15].
The organization of our paper is as follows. In Section 2, we introduce our notation and give some auxiliary results which we 

se in the subsequent section. In Section 3, we present our main results.
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1 Named sign-definite in the monograph [1].
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2. Notation, definitions, and auxiliary results

2.1. Notation and definitions

For 𝑥 = (𝑥1,… , 𝑥𝑛)𝑇 ∈ R𝑛, we denote by 𝑆−(𝑥) the number of sign changes in the sequence 𝑥1,… , 𝑥𝑛 after discarding zero 
components. We set 𝑆−(0) ∶= 0. We denote by 𝑆+(𝑥) the maximum possible number of sign changes in the sequence which results 
when we replace each zero entry by 1 or −1 with the convention 𝑆+(0) ∶= 𝑛. The signature of an [𝑆]𝑆𝑅 matrix 𝐴 ∈ R𝑚×𝑛 is the 
ordered tuple 𝜖 = (𝜖1,… , 𝜖min{𝑚,𝑛}), where 𝜖𝑖 is the sign of the non-zero determinants of all 𝑖× 𝑖 submatrices of 𝐴, 𝑖 = 1,… ,min{𝑚, 𝑛}. 
We simply say that 𝐴 is [𝑆]𝑆𝑅(𝜖). We set 𝜖0 ∶= 1. An 𝑆𝑅 matrix 𝐴 is of oscillatory type if there is an integer 𝑘 such that 𝐴𝑘 is 𝑆𝑆𝑅.

We consider R𝑚×𝑛 endowed with the usual entry-wise partial ordering, i.e., for 𝐴,𝐵 ∈ R𝑚×𝑛,

𝐴 ≤ 𝐵 if and only if 𝑎𝑖𝑗 ≤ 𝑏𝑖𝑗 , for 𝑖 = 1,… , 𝑚, 𝑗 = 1,… , 𝑛.

Intervals of matrices in R𝑚×𝑛 with respect to this ordering are denoted by [𝐴] = [𝐴,𝐴] = {𝐴 ∈ R𝑚×𝑛 ∣ 𝐴 ≤ 𝐴 ≤ 𝐴}, with the corner 
matrices 𝐴 = (𝑎𝑖𝑗 ) and 𝐴 = (𝑎𝑖𝑗 ). The set of all matrix intervals in R𝑚×𝑛 is denoted by I(R𝑚×𝑛). A matrix 𝐴 = (𝑎𝑖𝑗 ) ∈ [𝐴] = [𝐴,𝐴] with 
𝑎𝑖𝑗 ∈

{

𝑎𝑖𝑗 , 𝑎𝑖𝑗
}

, for 𝑖 = 1,… , 𝑚, 𝑗 = 1,… , 𝑛, is called a vertex matrix. Of special interest are the following vertex matrices: Each matrix 
interval [𝐴] = [𝐴,𝐴] can be represented as {𝐴 ∈ R𝑚×𝑛 ∣ |𝐴 − 𝐴𝑐 | ≤ 𝛥

}

, where 𝐴𝑐 =
1
2 (𝐴+𝐴) is the midpoint matrix and 𝛥 = 1

2 (𝐴−𝐴)
is the radius matrix, in particular, 𝐴 = 𝐴𝑐 − 𝛥 and 𝐴 = 𝐴𝑐 + 𝛥.

With 𝑌𝑝 =
{

𝑦 ∈ R𝑝 ∣ |𝑦𝑖| = 1, 𝑖 = 1,… , 𝑝
} and 𝑇𝑦 = diag(𝑦1, 𝑦2,… , 𝑦𝑝), for integer 𝑝, we define the matrices 𝐴𝑦𝑧 = 𝐴𝑐 − 𝑇𝑦𝛥𝑇𝑧 for 

all 𝑦 ∈ 𝑌𝑚, 𝑧 ∈ 𝑌𝑛. The definition implies that for all 𝑖 = 1,… , 𝑚, 𝑗 = 1,… , 𝑛,

(𝐴𝑦𝑧)𝑖𝑗 = (𝐴𝑐 )𝑖𝑗 − 𝑦𝑖(𝛥)𝑖𝑗𝑧𝑗 =

{

𝑎𝑖𝑗  if 𝑦𝑖𝑧𝑗 = −1,
𝑎𝑖𝑗  if 𝑦𝑖𝑧𝑗 = 1,

so that all matrices 𝐴𝑦𝑧, in particular, 𝐴 and 𝐴, are vertex matrices. We denote by 𝑉 ([𝐴]) the set of matrices 𝐴𝑦𝑧 for all 𝑦 ∈ 𝑌𝑚, 𝑧 ∈ 𝑌𝑛. 
Since 𝐴−𝑦,−𝑧 = 𝐴𝑦𝑧, the cardinality of 𝑉 ([𝐴]) is at most 2𝑚+𝑛−1. The vertex matrices which are obtained for 𝑦 = (1,−1, 1,… , (−1)𝑚+1)
and 𝑧 = (1,−1, 1,… , (−1)𝑛+1), 𝑧 = (−1, 1,−1,… , (−1)𝑛), are the matrices 

↓ 𝐴 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑎11 𝑎12 𝑎13 …

𝑎21 𝑎22 𝑎23 …

𝑎31 𝑎32 𝑎33 …

⋮ ⋮ ⋮ ⋱

⎤

⎥

⎥

⎥

⎥

⎥

⎦

↑ 𝐴 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑎11 𝑎12 𝑎13 …

𝑎21 𝑎22 𝑎23 …

𝑎31 𝑎32 𝑎33 …

⋮ ⋮ ⋮ ⋱

⎤

⎥

⎥

⎥

⎥

⎥

⎦

The matrix interval [𝐴] ∈ I(R𝑚×𝑛) can also be represented as a matrix interval with respect to the checkerboard partial ordering
on R𝑚×𝑛 given by

𝐴 ≤∗ 𝐵  if 𝐷𝑚𝐴𝐷𝑛 ≤ 𝐷𝑚𝐵𝐷𝑛, where 𝐷𝑝 ∶= diag(1,−1, 1,… , (−1)𝑝+1), 𝑝 ∈ {𝑚, 𝑛} ,

with the matrices ↓ 𝐴 and ↑ 𝐴 as corner matrices.

2.2. Auxiliary results

The following proposition is an application of the Cauchy–Binet Formula, see, e.g., [6, Theorem 1.1.1].

Proposition 2.1 ([5, Theorem 3.1]). If 𝐴,𝐵 ∈ R𝑛×𝑛 are 𝑆𝑅 with signatures 𝜖 = (𝜖1,… , 𝜖𝑛) and 𝛿 = (𝛿1,… , 𝛿𝑛), respectively, then 𝐴𝐵 is 
𝑆𝑅 with signature (𝜖1𝛿1,… , 𝜖𝑛𝛿𝑛).

Theorem 2.2 ([16, Corollary 3.5]). Let [𝐴] = [𝐴,𝐴] ∈ I(R𝑛×𝑛) and assume that 𝐴 and 𝐴 are nonsingular with 𝐴−1, 𝐴
−1

≥ 0. Then all 
matrices 𝐴 ∈ [𝐴] are nonsingular and 𝐴−1

≤ 𝐴−1 ≤ 𝐴−1.

The key to the proofs of our results are the following characterizations.

Theorem 2.3 ([17, Theorem C]). Given 𝐴 ∈ R𝑚×𝑛 and 𝜖 = (𝜖 ,… , 𝜖 ), the following statements are equivalent:
1 min{𝑚,𝑛}

2 
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(i) 𝐴 is 𝑆𝑅(𝜖).
(ii) For all 𝑥 ∈ R𝑛, we have 𝑆−(𝐴𝑥) ≤ 𝑆−(𝑥). Moreover, for all 𝑥 ∈ R𝑛 with 𝐴𝑥 ≠ 0 and 𝑆−(𝐴𝑥) = 𝑆−(𝑥) = 𝑟, if 0 ≤ 𝑟 ≤ min{𝑚, 𝑛} − 1, 

then the sign of the first (last) non-zero component of 𝐴𝑥 agrees with 𝜖𝑟𝜖𝑟+1 times the sign of the first (last) non-zero component of 
𝑥.

Theorem 2.4 ([17, Theorem B]). Given 𝐴 ∈ R𝑚×𝑛 and 𝜖 = (𝜖1,… , 𝜖min{𝑚,𝑛}), the following statements are equivalent:

(i) 𝐴 is 𝑆𝑆𝑅(𝜖).
(ii) For all 0 ≠ 𝑥 ∈ R𝑛, we have 𝑆+(𝐴𝑥) ≤ 𝑆−(𝑥). Further, for all 𝑥 ∈ R𝑛 with 𝐴𝑥 ≠ 0 and 𝑆+(𝐴𝑥) = 𝑆−(𝑥) = 𝑟, if 0 ≤ 𝑟 ≤ min{𝑚, 𝑛}−1, 

then the sign of the first (last) component of 𝐴𝑥 (if zero, the unique sign given in determining 𝑆+(𝐴𝑥)) agrees with 𝜖𝑟𝜖𝑟+1 times the 
sign of the first (last) non-zero component of 𝑥.

As shown in [17], one can reduce in Theorems  2.3 and 2.4 the set of test vectors 𝑥, i.e., the entire set R𝑛∖{0}, to a single test 
vector for each square submatrix (in case of Theorem  2.4, formed from consecutive rows and columns) of 𝐴.

The next theorem specifies a theorem by Gantmacher and Krein to the situation in this paper.

Theorem 2.5 ([1, Theorem 9 in Chapter V]). Let 𝐴 ∈ R𝑛×𝑛 be 𝑆𝑅(𝜖) of oscillatory type. Then the eigenvalues 𝜆𝑖 of 𝐴 are real and their 
absolute values are distinct. If they are ordered such that

|𝜆1| > |𝜆2| > ⋯ > |𝜆𝑛| > 0,

then

sign(𝜆𝑖) =
𝜖𝑖
𝜖𝑖−1

, 𝑖 = 1,… , 𝑛.

3. Main results

Theorem 3.1.  Let [𝐴] ∈ I(R𝑚×𝑛) and let 𝜖 = (𝜖1,… , 𝜖min{𝑚,𝑛}) be a fixed signature. Then the following statements hold:

(i) All matrices in [𝐴] are 𝑆𝑅(𝜖) if and only if all matrices in 𝑉 ([𝐴]) are 𝑆𝑅(𝜖). In addition, for 𝑚 = 𝑛, all matrices in [𝐴] are nonsingular 
if and only if the vertex matrices ↓ 𝐴 and ↑ 𝐴 are nonsingular.

(ii) If 𝑚 = 𝑛, all matrices in [𝐴] are 𝑆𝑅(𝜖) of oscillatory type if and only if all matrices 𝐴 ∈ 𝑉 ([𝐴]) are 𝑆𝑅(𝜖) of oscillatory type.

Proof.  Let [𝐴] = [𝐴,𝐴] ∈ I(R𝑚×𝑛). For simplicity, we write 𝑉  for 𝑉 ([𝐴]). We have to show only the necessity, and assume that all 
matrices in 𝑉  are SR(𝜖).

(i) Let 𝐴 = (𝑎𝑖𝑗 ) ∈ [𝐴] and 𝑥 ∈ R𝑛. We construct the vertex matrix 𝐵 = (𝑏𝑖𝑗 ) ∈ 𝑉  row by row (𝑖 = 1,… , 𝑛) as follows.
If 0 ≤ (𝐴𝑥)𝑖, then 

𝑏𝑖𝑗 =

{

𝑎𝑖𝑗 , if 𝑥𝑗 ≥ 0,
𝑎𝑖𝑗 , if 𝑥𝑗 < 0;

(1)

and if 0 > (𝐴𝑥)𝑖, then 

𝑏𝑖𝑗 =

{

𝑎𝑖𝑗 , if 𝑥𝑗 ≥ 0,
𝑎𝑖𝑗 , if 𝑥𝑗 < 0.

(2)

Then we obtain, in the case 0 ≤ (𝐴𝑥)𝑖 that

0 ≤ (𝐴𝑥)𝑖 =
𝑛
∑

𝑗=1
𝑎𝑖𝑗 𝑥𝑗 ≤

∑

𝑥𝑗≥0
𝑎𝑖𝑗 𝑥𝑗 +

∑

𝑥𝑗<0
𝑎𝑖𝑗 𝑥𝑗 = (𝐵𝑥)𝑖,

and similarly, in the case 0 > (𝐴𝑥)𝑖 that
0 > (𝐴𝑥)𝑖 ≥

∑

𝑥𝑗≥0
𝑎𝑖𝑗 𝑥𝑗 +

∑

𝑥𝑗<0
𝑎𝑖𝑗 𝑥𝑗 = (𝐵𝑥)𝑖.

Therefore, we get 
𝑆−(𝐴𝑥) ≤ 𝑆−(𝐵𝑥) ≤ 𝑆−(𝑥), (3)

since 𝐵 ∈ 𝑉 , and we conclude that 𝑆−(𝐴𝑥) ≤ 𝑆−(𝑥), i.e., we have shown the first part of (ii) in Theorem  2.3.
To show the remaining part, let 𝑥 ∈ R𝑛 with 𝐴𝑥 ≠ 0 and assume that 𝑆−(𝐴𝑥) = 𝑆−(𝑥) = 𝑟, where 0 ≤ 𝑟 ≤ min{𝑚, 𝑛} − 1. It follows 

from (3) that 𝑆−(𝐵𝑥) = 𝑆−(𝑥) = 𝑟. Since 𝐴𝑥 ≠ 0, there is an index 𝑖, 1 ≤ 𝑖 ≤ 𝑚, with (𝐴𝑥)𝑖 ≠ 0 which implies (𝐵𝑥)𝑖 ≠ 0.
Without loss of generality, we may assume that 1 ≤ 𝑟. Assume that we discard all zero components in 𝐴𝑥 and call the resulting 

vector 𝑣. Then we discard the non-zero components in 𝐵𝑥 and call the resulting vector 𝑤. If there is a sign change in 𝑣 at indices 
𝑖  and 𝑖  with 𝑖 < 𝑖  and no sign change between them, then 𝑤 has also a sign change at 𝑖  and 𝑖  and no sign change between 
1 2 1 2 1 2

3 
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them, and vice versa since 𝑆−(𝐴𝑥) = 𝑆−(𝐵𝑥). Assume that 𝐵𝑥 and 𝐴𝑥 have their first non-zero components at indices 𝑗1 and 𝑗2, 
respectively. Then 𝑗1 ≤ 𝑗2. By the definition of 𝐵, 𝑗1 < 𝑗2 is only possible if (𝐴𝑥)𝑗2 > 0, because in the case that (𝐴𝑥)𝑗2 < 0, if 
(𝐵𝑥)𝑗1 < 0, then also (𝐴𝑥)𝑗1 < 0 and 𝑗2 is not the first non-zero component of 𝐴𝑥, and in the case that (𝐵𝑥)𝑗1 > 0, we obtain a 
contradiction to 𝑆−(𝐴𝑥) = 𝑆−(𝐵𝑥). By the last argument, (𝐴𝑥)𝑗2 > 0 implies that (𝐵𝑥)𝑗 ≥ 0, for all 𝑗1 ≤ 𝑗 < 𝑗2. So the sign of the first 
non-zero component of 𝐴𝑥 equals the sign of the first non-zero component of 𝐵𝑥, which in turn agrees by Theorem  2.3 with 𝜖𝑟𝜖𝑟+1
times the sign of the first non-zero component of 𝑥. The arguments for the last non-zero components of 𝐴𝑥 and 𝑥 are similar.

Assume now that for 𝑚 = 𝑛, the matrices ↓ 𝐴 and ↑ 𝐴 are nonsingular; their inverses have a checkerboard signed pattern. 
Multiplication of ↓ 𝐴−1 and ↑ 𝐴−1 by 𝐷𝑛 from the left and from the right results in entry-wise nonnegative or nonpositive matrices 
according to the sign of 𝜖𝑛−1𝜖𝑛. By application of Theorem  2.2, we obtain that all matrices 𝐴 ∈ [𝐴] are nonsingular.
(ii) Let 𝑚 = 𝑛. By Proposition  2.1 it follows that for an 𝑆𝑅(𝜖) matrix 𝐴, its even powers are 𝑇𝑁 and its odd powers are 𝑆𝑅(𝜖). 
Assume that for each matrix 𝐴 ∈ 𝑉 , 𝐴 is 𝑆𝑅(𝜖) and there is an integer 𝑘𝐴 such that 𝐴𝑘𝐴  is 𝑆𝑆𝑅. Set 𝑘 ∶= max{𝑘𝐴 ∣ 𝐴 ∈ 𝑉 }. Then 
it follows from the Cauchy–Binet Formula that for each matrix 𝐴 ∈ 𝑉 , 𝐴𝑘 is 𝑆𝑆𝑅, and without loss of generality, we may assume 
that 𝐴𝑘 is 𝑇𝑃 .

Assume first that 𝜖1 = 1, i.e., 0 ≤ 𝐴. Let 𝐴 = (𝑎𝑖𝑗 ) ∈ [𝐴]. Then we obtain with

𝐴𝑘 = (𝑎(𝑘)𝑖𝑗 ), 𝐴𝑘 = (𝑎(𝑘)𝑖𝑗 ), 𝐴
𝑘
= (𝑎(𝑘)𝑖𝑗 ),

the relation

0 < 𝐴𝑘 ≤ 𝐴𝑘 ≤ 𝐴
𝑘
.

Let 𝑥 ∈ R𝑛, 𝑥 ≠ 0. Then 𝐴𝑘𝑥 ≠ 0. Choose a fixed assignment of ∓1 to the zero components of 𝐴𝑘𝑥, which results in 𝑆+(𝐴𝑘𝑥). The 
following inequalities hold for 𝑖 = 1,… , 𝑛:

∑

𝑥𝑗≥0
𝑎(𝑘)𝑖𝑗 𝑥𝑗 +

∑

𝑥𝑗<0
𝑎(𝑘)𝑖𝑗 𝑥𝑗 ≤

𝑛
∑

𝑗=1
𝑎(𝑘)𝑖𝑗 𝑥𝑗 ≤

∑

𝑥𝑗≥0
𝑎(𝑘)𝑖𝑗 𝑥𝑗 +

∑

𝑥𝑗<0
𝑎(𝑘)𝑖𝑗 𝑥𝑗 .

We form the vertex matrix 𝐵 = (𝑏𝑖𝑗 ) ∈ 𝑉  row by row (𝑖 = 1,… , 𝑛) by using (1), (2), and 𝑎𝑖𝑗 and 𝑎𝑖𝑗 replaced by 𝑎
(𝑘)
𝑖𝑗  and 𝑎(𝑘)𝑖𝑗 , 

respectively. If 0 < (𝐴𝑘𝑥)𝑖, then take (1), and if 0 > (𝐴𝑘𝑥)𝑖, then use (2). If (𝐴𝑘𝑥)𝑖 = 0, then take (1) and (2) if the sign according to 
the assignment above is 1 or −1, respectively. If then (𝐵𝑥)𝑖 = 0, choose the sign according to the assignment above. By definition 
of 𝐵, we get 𝑆+(𝐴𝑘𝑥) = 𝑆+(𝐵𝑥) ≤ 𝑆−(𝑥) by [6, Theorem 4.3.5] because 𝐵 is 𝑇𝑃 . Now assume 𝑆+(𝐴𝑘𝑥) = 𝑆−(𝑥) = 𝑟, where 
0 ≤ 𝑟 ≤ 𝑚𝑖𝑛{𝑚, 𝑛} − 1. It follows that 𝐵𝑥 ≠ 0 and 𝑆+(𝐵𝑥) = 𝑆−(𝑥) = 𝑟. By definition of 𝐵, the sign of (𝐴𝑘𝑥)1 (if it is zero, the unique 
sign according to the assignment above) equals the sign of (𝐵𝑥)1 which in turn agrees by Theorem  2.4 with the sign of the first 
non-zero component of 𝑥. The arguments for the last non-zero components of 𝐴𝑥 and 𝑥 are similar. It follows from Theorem  2.4 
that 𝐴𝑘 is 𝑇𝑃  and thus 𝐴 is of oscillatory type.

We proceed similarly if 𝜖1 = −1, i.e., 0 ≥ 𝐴.  ■

Remark 3.2. 

(1) Reduction of the set 𝑉 ([𝐴]): The following vertex matrices are not needed. The vertex matrices 𝐵 with either 𝑏𝑖𝑗 = 𝑎𝑖𝑗 , 𝑖 = 1,… , 𝑚, 
or 𝑏𝑖𝑗 = 𝑎𝑖𝑗 , 𝑖 = 1,… , 𝑚, 𝑗 = 1,… , 𝑛, are chosen if 𝑆−(𝑥) = 0. Multiplication of an entry-wise nonnegative or nonpositive matrix 
by a vector without any sign change results in turn in such a single-signed vector.

(2) In the proof of part (ii) of Theorem  3.1, it follows from 𝑆+(𝐴𝑘𝑥) ≤ 𝑆−(𝑥) for all 𝑥 ∈ 𝑅𝑛, 𝑥 ≠ 0, by [17, Theorem A] that 𝐴𝑘

is 𝑆𝑆𝑅. As an alternative to the use of the second part of (ii) in Theorem  2.3, in order to show that 𝐴𝑘 is 𝑇𝑃 , too, one can 
proceed as follows: Assume that 𝐴 is 𝑆𝑆𝑅(𝛿) but not 𝑇𝑃 . By Theorem  2.5, the following inequalities hold for 𝐴:

𝛿1𝜆1(𝐴) >
𝛿2
𝛿1

𝜆2(𝐴) > ⋯ >
𝛿𝑛
𝛿𝑛−1

𝜆𝑛(𝐴) > 0.

Let 𝑞, 1 < 𝑞 < 𝑛−1, be the smallest index such that 𝛿𝑞 = −1. Take a continuous path 𝜑(𝑡), 𝑡 ∈ [0, 1], with 𝜑(0) = 𝐴 and 𝜑(1) = 𝐴. 
Since all matrices in [𝐴] are nonsingular, 𝜆𝑞(𝜑(𝑡)) is non-zero for all 𝑡 ∈ [0, 1]. Thus the inequality

𝛿𝑞
𝛿𝑞−1

𝜆𝑞(𝐴) = −𝜆𝑞(𝜑(1)) > 0

provides by 𝜆𝑞(𝜑(0)) = 𝜆𝑞(𝐴) > 0 a contradiction.

We mention a related result which can be proven by an obvious extension of the proof of Theorem 1 in [18]; see also Theorem 
B in [19].

Theorem 3.3.  Let [𝐴] ∈ I(𝑅𝑚×𝑛) and 𝜖 = (𝜖1,… , 𝜖𝑚𝑖𝑛{𝑚,𝑛}) be a fixed signature. Then all matrices in [𝐴] are SSR(𝜖) if and only if the 
vertex matrices ↓ 𝐴 and ↑ 𝐴 are SSR(𝜖). □
4 
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4. Conclusions

We conclude this paper with a discussion of similar results obtained so far for intervals of special SR matrices. Firstly, we note 
a large gap in the number of vertex matrices required to conclude that all matrices in the interval are SR with a certain signature 
and possibly additional properties. On one side, we have classes of nonsingular SR matrices for which the two vertex matrices ↓ 𝐴
and ↑ 𝐴 suffice. These include the matrices which are SSR, see Theorem 3.3, nonsingular and almost SSR (a class between the 
nonsingular SR and the SSR matrices) [20, Theorem 6.5], and nonsingular, tridiagonal SR [20, Theorem 6.11]. A list of nonsingular
SR matrices with 16 periodic signatures (possibly with an additional (strict) sign condition for one entry) can be found in [21]. On 
the other hand, Theorem  3.1 requires the set 𝑉 ([𝐴]) of vertex matrices. A related result is that the classes of the matrices having 
all their minors up to a certain order either nonnegative [19, Theorem D] or nonpositive [22, Theorem 5.5] require also the set 
𝑉 ([𝐴]) of vertex matrices. If 𝑛 = 𝑚, an open question, see [14, Conjecture 3.1], is whether for nonsingular SR matrices the set 𝑉 ([𝐴])
of vertex matrices can be further reduced — in the ideal case to the vertex matrices ↓ 𝐴 and ↑ 𝐴. For general, not necessarily 
nonsingular 𝑆𝑅 matrices, ↓ 𝐴 and ↑ 𝐴 do not suffice, as the counterexamples for 𝑛 = 3 in [6, Section 3.2] and for 𝑛 = 4 in [18] 
show.
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