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Bernstein Polynomials

Bi(x) =
(

l
i

)

xi(1 − x)l−i, 0 ≤ i ≤ l

given: p(x) =
l

∑

i=0
aix

i

wanted: p(I) = {p(x) | x ∈ I} w.l.o.g. I = [0,1]

power form −→ Bernstein form

p(x) =
l

∑

i=0
biBi(x), where

bi =
i

∑

j=0

(

i
j

)

(

l
j

)aj, 0 ≤ i ≤ l Bernstein coefficients

in particular, b0 = a0 = p(0), bl =
l

∑

i=0
ai = p(1)

can be calculated economically by difference table method
(similarly to the de Casteljau algorithm).



Convex Hull Property
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Interval Enclosing Property

Theorem 1 For all x ∈ I

min
0≤i≤l

bi ≤ p(x) ≤ max
0≤i≤l

bi.



Notations

Multiindices i = (i1, . . . , in)T are vectors, where the components are

nonnegative integers. (The vector 0 denotes the multiindex with all

components equal to 0.)

Comparisons and arithmetic operators on multiindices are defined

componentwise such that i⊙ l := (i1⊙ l1, . . . , in⊙ ln)T , for ⊙ = +,−,×,

and / (with l > 0).

For x ∈ Rn its multipowers are xi :=
n
∏

µ=1
x

iµ
µ .

We use the notations
l

∑

i=0
:=

l1
∑

i1=0
. . .

ln
∑

in=0
and

(

l
i

)

:=
n
∏

µ=1

(

lµ
iµ

)

.



Interval Enclosing Property

Theorem 1 For all x ∈ I

min
0≤i≤l

bi ≤ p(x) ≤ max
0≤i≤l

bi.



Monomial Analysis

Now suppose that we have a polynomial

p(x) =
l

∑

i=0

aix
i, x = (x1, . . . , xn),

in n variables, x1, . . . , xn, of degree l = (l1, . . . , ln), and a box

X := [x1, x1] × . . . × [xn, xn].

The generalised Bernstein coefficients bi over X are given by

bi =
i

∑

j=0

(

i
j

)

(

l
j

)(x − x)j
l

∑

k=j

(k

j

)

xk−jak, 0 ≤ i ≤ l.



Bernstein coefficients of monomials

Theorem 2 The multivariate Bernstein coefficients of a monomial

are the products of the univariate Bernstein coefficients of its mono-

mial components.

Theorem 3 Let p(x) = akxk, x = (x1, . . . , xn), for some 0 ≤ k ≤ l and

let X be a box which is restricted to a single orthant of Rn. Then

the Bernstein coefficients of p (of degree l) over X are monotone wrt

each variable xj, j = 1, . . . , n.

In this case, it is not necessary to explicitly compute the whole set of

Bernstein coefficients. For boxes which intersect two or more orthants

of Rn, the box can be bisected, and the Bernstein coefficients of each

single-orthant sub-box can be computed separately.



An implicit Bernstein form for polynomials

If the polynomial p consists of t terms, i.e.

p(x) =
t

∑

j=1

aijx
ij , 0 ≤ ij ≤ l, x = (x1, . . . , xn),

then (due to the linearity of the Bernstein form) each Bernstein coef-

ficient is equal to the sum of the corresponding Bernstein coefficients

of each term:

bi =
t

∑

j=1

b
(j)
i ,0 ≤ i ≤ l,

where b
(j)
i are the Bernstein coefficients of the jth term of p.



Instead of computing and storing the whole set of Bernstein coeffi-

cients, we can instead, for each term, compute the Bernstein coeffi-

cients of each component univariate monomial.

The space complexity is O(nt(l̂ + 1)), as opposed to O((l̂ + 1)n) for

the explicit form, where l̂ := max{lj | j = 1, . . . , n}.

Each Bernstein coefficient can be computed as required from the

implicit form as a sum of t products, requiring (n + 1)t arithmetic

operations.



Example

Let n := 2, p(x) := x3
1x2

2 − 30x1x2, l := (3,2), and the box X :=

[1,2]× [2,4]. The sum of the corresponding Bernstein coefficients of

each term gives the Bernstein coefficients of p:

{bi} =











4 8 16
8 16 32
16 32 64
32 64 128











+











−60 −90 −120
−80 −120 −160
−100 −150 −200
−120 −180 −240











=











−56 −82 −104
−72 −104 −128
−84 −118 −136
−88 −116 −112











.



The implicit form of these coefficients can be depicted as
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Determination of the minimum (or maximum) Bernstein coef-

ficient

We wish to determine the value of the multiindex imin, 0 ≤ imin ≤ l,
of the minimum Bernstein coefficient in each direction. In order to
reduce the search space (among the (l̂ + 1)n Bernstein coefficients)
we can exploit Theorem 3 and employ the following tests:

• Uniqueness: If a variable xj appears only once, then the Bernstein coefficients
of the term in which it appears determines iminj

.

• Monotonicity: If all terms containing xj are likewise monotone wrt xj, then
iminj

= 0 or lj.

• Dominance: Otherwise, all the terms containing xj can be split into two sets,
depending on whether they are increasing or decreasing wrt xj. If the width of
the Bernstein enclosure of one set is less than the minimum difference between
Bernstein coefficients among the terms of the other set, then the first set can
make no contribution to the determination of iminj

, and the monotonicity clause
applies.



Example

p(x) = 3x1x5
2+2x4

1x2−8x2
1x6

3x2
4−x1x8

4+3x3
2x5−10x5

4x5
5x5

6+0.01x2
5x2

6+4x3
5x4

7

X = [1,2]7.

The degree, l, is (4,5,6,8,5,5,4) and the number of Bernstein coef-

ficients is 340200 (5 × 6 × 7 × 9 × 6 × 6 × 5).



p(x) = 3x1x5
2+2x4

1x2−8x2
1x6

3x2
4−x1x8

4+3x3
2x5−10x5

4x5
5x5

6+0.01x2
5x2

6+4x3
5x4

7

• Uniqueness: x3 appears only in term 3, which is decreasing wrt it. Therefore
imin3 = 6.

• Uniqueness: x7 appears only in term 8, which is increasing wrt it. Therefore
imin7 = 0.

• Monotonicity: x2 appears in terms 1 and 2, both of which are increasing wrt
it. Therefore imin2 = 0.

• Monotonicity: x4 appears in terms 3, 4, and 6, all of which are decreasing wrt
it. Therefore imin4 = 8.

• Dominance: x6 appears in terms 6 and 7, one of which is decreasing and one
of which is increasing wrt it. However term 6 dominates term 7 to such an
extent that term 7 plays no role in determining imin6. Therefore imin6 = 5, since
term 6 is decreasing wrt x6.



p(x) = 3x1x5
2+2x4

1x2−8x2
1x6

3x2
4−x1x8

4+3x3
2x5−10x5

4x5
5x5

6+0.01x2
5x2

6+4x3
5x4

7

imin = (?,0,6,8, ?,5,0)

The dimensionality of the search space has thus been reduced from

7 to 2. The number of Bernstein coefficients to compute is conse-

quently reduced from 340200 to 30 (5×6), plus those needed for the

implicit Bernstein form, 78 (8 + 7 + 13 + 11 + 6 + 18 + 6 + 9), 108

total.



Numerical Results

• Simulation of a branch and bound approach:

– A bisection in each direction in turn is performed.

– One of the two resulting subboxes is retained and the other is

discarded.

– After each bisection, the Bernstein enclosure is recomputed

over the new box.

– This process is iterated 100 times.

• Verified computation: the Bernstein coefficients are stored as in-

tervals, and interval arithmetic is used.



The first test problem (test1) is

p(x) = 3x2
1x3

2x4
3 + 1x3

1x2x4
3 − 5x1x2x5

4 + 1x3x4x3
5

over the box

X = [1,2] × [2,3] × [4,6] × [−5,−2] × [2,10].

The second (test2) is the example previously presented. The remain-

ing test problems are drawn from GLOBALLib; where unspecified, a

suitable single-orthant starting box of unit width was chosen.

A. P. Smith “Fast construction of constant bound functions for sparse polynomi-

als”, J. Global Optimization 43 (2-3), pp. 445–458 (2009)

J. Garloff, A. P. Smith “Rigorous affine lower bound functions for multivariate poly-

nomials and their use in global optimisation”, Lect. Notes Management Sci. 1, pp.

199–211 (2008)



Bernstein Form Implicit Bernstein Form
Name n t l Iters. # BCs time (s) Iters. # BCs time (s)

test1 5 4 (3,3,4,5,3) 1-100 1920 0.01 1-3 60
4-5 12 0.0001

6-100 2
test2 7 8 (4,5,6,8, 1-100 340200 6.05 1-9 60

5,5,4) 10-100 12
0.0004

mhw4d 5 17 (2,3,4,4,4) 1-100 1500 0.04 1-3 1000
4-100 200

0.0068

meanvar 7 49 (2,2,2,2, 1-100 2187 0.24 1-100 2 0.0008
2,2,2)

ex2 1 5 10 16 (2,2,2,2,2, 1-100 17496 0.83 1-100 2 0.0003
2,2,1,1,1)

harker 20 40 (3,3,3,3,3, 1-100 1.96 > 105 1-100 2 0.0019
3,3,3,3,3, ×1011

3,3,3,3,2,

2,2,2,2,2)



Earlier Applications

• Robust control problems, e.g., checking stability of a polynomial

with coefficients depending polynomially on parameters varying in

given intervals

• Enclosure of the solution set of systems of polynomial equations

and inequalities



Recent Applications to Global Optimization

• We have a constrained global optimization problem, where one

or more of the objective or constraint functions are multivariate

polynomials.

• In a branch and bound framework, relaxations may be used. For

each subbox, the objective function and some of the constraints

may be replaced by bounding functions (convex, affine, constant)

which are easier to handle.
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Rigorous Bound Functions

Due to rounding errors, inaccuracies may be introduced into the cal-

culation of the Bernstein coefficients and the corresponding bound

functions. As a result, the computed affine function may not stay

below the given polynomial over the box of interest. We also wish

to consider the case of uncertain polynomial coefficients, assuming

that for each coefficient a lower and an upper bound are known. In

either case, it is often desirable to compute the affine lower bound

functions in such a way that it can be guaranteed to stay below the

given polynomial.



Verified version for interval data

1. Compute the Bernstein coefficients as before, using interval arith-

metic. Since each polynomial coefficient contributes only once to

each Bernstein coefficient, this can be done without overestima-

tion.

2. Compute the linear least squares approximation as before, using

the midpoints of the control points / Bernstein coefficients.

3. Compute the discrepancy and perform downward shift according

to lower bounds of the control points / Bernstein coefficients.

Only the first and last steps need to be performed rigorously, so that

little extra computational effort is required.



Application to Parametric Linear Systems

Given: A(p) · x = b(p),

where A(p) ∈ Rn×n, b(p) ∈ Rn are depending on p ∈ [p] = ([p1], . . . , [pk])
T .

Parametric solution set

Σp = Σ(A(p), b(p), [p]) := {x ∈ R
n |A(p) · x = b(p) for some p ∈ [p]}

wanted: 2Σp = [infΣp, supΣp] or a tight enclosure for it.



Parametric Residual Iteration (Popova ’05, Rump ’90)

Define p̌ := mid([p]), Ǎ := A(p̌), b̌ := b(p̌).

Let R ≈ Ǎ−1, x̃ ≈ Rb̌ and define [z], [y] ∈ IR
n, [C] ∈ IR

n×n by

[z] := 2 {R(b(p) − A(p)x̃) | p ∈ [p]} ,

[y] := [z] + [−ε, ε] · rad([z]),

[C] := 2 {I − R · A(p) | p ∈ [p]} .

Define [v] ∈ IR
n by means of the following Einzelschrittverfahren

1 ≤ i ≤ n : [vi] :=
{

[z] + [C] · ([v1], . . . , [vi−1], [yi], . . . , [yn])
T

}

i
.

If [v]
⊂
6=[y], then R and every matrix A(p) with p ∈ [p] are regular, and

for every p ∈ [p] the unique solution x̂ = A−1(p)b(p) satisfies x̂ ∈ x̃+[v].



Software tools for the rigorous enclosure of the solution set of a

parametric linear system involving rational dependencies provided by

E. Popova in a Mathematica environment:

Parametic Solve: Based on the arithmetic of proper and improper

intervals.

polyRational Solve: Uses software for the Bernstein enclosure pro-

vided by A. P. Smith (based on the C++ interval library filib++).



Example: Two-Bay Two-Story Frame



1st problem: Parametric linear system of order 18 with 13 uncertain

parameters

Columns (HE 280 B) Beams (IPE 400)

Cross-sectional area Ac = 0.01314m2, Ab = 0.008446m2

Moment of inertia Ic = 19270 ∗ 10−8 m4, Ib = 23130 ∗ 10−8 m4

Modulus of elasticity Ec = 2.1 ∗ 108 kN/m2, Eb = 2.1 ∗ 108 kN/m2

Rotational spring stiffness c = 108 kN
Uniform vertical load w1 = . . . = w4 = 30kN/m
Concentrated lateral forces f1 = f2 = 100kN

tolerances: material properties 1%, spring stiffness and all applied

loadings 10%

Parametic Solve ca. 14 s
polyRational Solve ca. 1.3 s



2nd problem: Same structure as before, but assuming that each

structural element has properties varying independently (within 1%

tolerance) results in a system with 37 parameters.

Parametic Solve ca. 13 min
polyRational Solve ca. 4 min



Present Work

• More complex models of the FEM, e.g., problems with uncertain

node locations.

Future Work

• Construction of affine bound functions for polynomials, based

upon the implicit Bernstein form. Affine bound functions pro-
vide shape information and bound the graph of the polynomial

more tightly, but (currently) require many explicit Bernstein co-

efficients.

• Further deployment and testing of the constant and affine bound

functions in the branch and bound framework in existing software
packages for the solution of global optimization problems, e.g., at

the University of Vienna (COCONUT) and at the Indian Institute

of Technology Bombay.


