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Linear independence
Elementary bidiagonal factorization

1. Introduction

A fundamental problem in mathematics and its applications is the determination of 
the rank of a matrix. The rank of a given real n-by-m matrix can be determined by, 
for example, Gaussian elimination. In this paper, we present an alternative approach 
to calculating the rank and bidiagonal factorization for matrices that admit a Cauchon 
matrix upon application of the Cauchon algorithm. This method relies on Cauchon 
diagrams, Cauchon matrices, and the so-called (condensed) Cauchon algorithm. Like 
Gaussian elimination, single computations of the Cauchon algorithm can be represented 
as the computation of minors of order two. In this way, a series of intermediate matrices 
is produced. The algorithm culminates with a matrix from which we can easily determine 
the rank of the original matrix.

This algorithm was applied in [1–4], [9], [11], [13] to problems related to totally non-
negative matrices, that is, matrices having all their minors nonnegative. For properties of 
these matrices, the reader is referred to the monographs [7] or [12]. In [1], [3], a condensed 
form of the Cauchon algorithm was derived by which the amount of required arithmetic 
operations was reduced by one order of magnitude to bring it in line with the complexity 
of performing conventional Gaussian elimination, viz. O(n3) for a nonsingular n-by-n
matrix. In the first part of our paper, we apply the condensed form of the Cauchon al-
gorithm to matrices that admit a Cauchon matrix upon application of this algorithm in 
order to determine their ranks and linear independence of sets of consecutive row vectors. 
The class of matrices that admit a Cauchon matrix upon application of the Cauchon 
algorithm contains the totally nonnegative matrices [11], totally nonpositive matrices 
(matrices with all of its minors nonpositive) [4], and matrices satisfying the descending 
rank conditions, see Section 4.

In the second part of the paper, we link Cauchon diagrams to the factorization of 
matrices into elementary bidiagonal matrices, namely, one-banded, unit diagonal matri-
ces having at most one nonzero off-diagonal entry, see [7, Chapter 2], [12, Chapter 6]. 
Elementary bidiagonal factorization itself is linked to certain types of rank conditions 
associated with submatrices called descending rank conditions [10]; see [8] for an ear-
lier paper discussing these conditions. We directly link Cauchon diagrams (or matrices) 
to the descending rank conditions hereby reducing the complexity by some orders of 
magnitude.

We point out that all of our results are valid if R is replaced by any field of charac-
teristic zero.

The organization of our paper is as follows: In the next section we introduce the nota-
tion used in our paper and provide some auxiliary results and the concept of a lacunary 
sequence which are employed in the subsequent sections. In Section 3 we use lacunary 
sequences in order to determine the rank of a certain matrix, and to check the linear 
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independence of its row or column vectors. Finally, in Section 4, we present relations be-
tween Cauchon diagrams, elementary bidiagonal factorization, and the descending rank 
conditions.

2. Notation and auxiliary results

2.1. Notation

We now introduce the notation used in our paper. For integers κ, n, we denote by 
Qκ,n the set of all strictly increasing sequences of κ integers chosen from {1, 2, . . . , n}. 
We employ the set theoretic notation to denote less precisely but intuitively sequences 
from Qκ,n, the membership ∈ in a sequence, and the union ∪, intersection ∩, and differ-
ence \ of two sequences, where we consider the resulting sequences as strictly increasing 
ordered. For α ∈ Qκ,n, we put αc : = {1, . . . , n} \ α. For a sequence α, |α| denotes the 
number of its members. Let A be a real n-by-m matrix. For α = {α1, α2, . . . , ακ} , β =
{β1, β2, . . . , βκ} ∈ Qκ,n, we denote by A[α|β] the κ-by-κ submatrix of A contained in 
the rows indexed by α1, α2, . . . , ακ and columns indexed by β1, β2, . . . , βκ. We suppress 
the brackets when we enumerate the indices explicitly. We set A# := TAT , where 
T = (tij) is the permutation matrix of order n (antidiagonal matrix) with tij := δi,n−j+1, 
i, j = 1, . . . , n. By Eij we denote the elementary bidiagonal (EB) matrix in Rn,m which 
has in position (i, j) a one, while all other entries are zero. A matrix A ∈ Rn,m is called 
totally nonnegative if detA[α|β] ≥ 0, for all α ∈ Qκ,n, β ∈ Qκ,m, κ = 1, 2, . . . , n′, where 
n′ := min {n,m}. We denote by ≤ the lexicographic order on N2, i.e.,

(g, h) ≤ (i, j) :⇔ (g < i) or (g = i and h ≤ j).

2.2. Auxiliary results

In this subsection we compile a list of relevant facts and existing related results that 
will be employed in Sections 3 and 4 which contain the main contributions in this work.

Lemma 2.1. [5, Corollary 1] Let A be an n-by-m matrix such that detA[γ|δ] �= 0, where 
γ ∈ Qκ,n and δ ∈ Qκ,m and let B = (bij) be the matrix obtained from A by setting

bij := detA[γ ∪ {i} |δ ∪ {j}]
detA[γ|δ] , for all (i, j) ∈ γc × δc. (1)

Then it holds that

rankA[γ ∪ γ′|δ ∪ δ′] = |γ| + rankB[γ′|δ′],

where γ′ and δ′ are strictly increasing sequences taken from {1, . . . , n} and {1, . . . ,m}, 
respectively, such that γ ∩ γ′ = δ ∩ δ′ = φ.
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We now turn our attention to Cauchon diagrams and the (condensed) Cauchon al-
gorithm which will play a key role moving forward. Cauchon diagrams are named after 
Gérard Cauchon who used these diagrams in his study of quantum matrices [6]. It should 
be noted that they appear also independently in the work of Alexander Postnikov [13]
who called them Le-diagrams.

Definition 2.2. An n-by-m Cauchon diagram C is an n-by-m grid consisting of nm squares 
colored black and white, where each black square has the property that either every 
square to its left (in the same row) or every square above it (in the same column) is 
black.

We denote by Cn,m the set of all n-by-m Cauchon diagrams. We fix positions in a 
Cauchon diagram in the following way: For C ∈ Cn,m and i ∈ {1, . . . , n} , j ∈ {1, . . . ,m} ,
(i, j) ∈ C if the square in row i and column j is black. Here we use the usual matrix 
notation for the (i, j) position in a Cauchon diagram, i.e., the square in the (1, 1) position 
of the Cauchon diagram is in its top left corner.

Definition 2.3. Let A ∈ Rn,m and let C ∈ Cn,m. We say that A is a Cauchon matrix 
associated with the Cauchon diagram C if for all (i, j), i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, 
we have aij = 0 if and only if (i, j) ∈ C. If A is a Cauchon matrix associated with an 
unspecified Cauchon diagram, we just say that A is a Cauchon matrix.

Algorithm 2.4 (Condensed form of the Cauchon Algorithm). [1, Algorithm 3.3], [3, Al-
gorithm 3.2] Let A = (aij) ∈ Rn,m. Set A(n) := A.
For k = n − 1, . . . , 1 define A(k) = (a(k)

ij ) ∈ Rn,m as follows:
For j = 1, . . . , m − 1,
set sj := min

{
h ∈ {j + 1, . . . ,m} | a(k+1)

k+1,h �= 0
}

(we set sj := ∞ if this set is empty),
for i = 1, . . . , k,

a
(k)
ij :=

⎧⎪⎨
⎪⎩

a
(k+1)
ij −

a
(k+1)
k+1,ja

(k+1)
isj

a
(k+1)
k+1,sj

if sj < ∞,

a
(k+1)
ij if sj = ∞,

and for i = k + 1, . . . , n, j = 1, . . . , m, and i = 1, . . . , k, j = m

a
(k)
ij := a

(k+1)
ij .

Put Ã := A(1); Ã is called the matrix obtained from A (by the condensed form of the 
Cauchon Algorithm).

We recall from [11] the definition of a lacunary sequence associated with Cauchon 
diagrams.
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Definition 2.5. Let C ∈ Cn,m. We say that a sequence

γ := ((ik, jk), k = 0, 1, . . . , t), (2)

which is strictly increasing in both arguments is a lacunary sequence with respect to C
if the following conditions hold:

1. (ik, jk) /∈ C, k = 1, . . . , t;

2. (i, j) ∈ C for it < i ≤ n and jt < j ≤ m.

3. Let s ∈ {1, . . . , t− 1}. Then (i, j) ∈ C

(a) either for all (i, j), is < i < is+1 and js < j,
or for all (i, j), is < i < is+1 and j0 ≤ j < js+1

and
(b) either for all (i, j), is < i and js < j < js+1

or for all (i, j), i < is+1, and js < j < js+1.

We call t the length of γ.

In [3], [11] algorithms are presented which construct for a given Cauchon diagram 
C and any fixed square of C a lacunary sequence (with respect to C) starting at this 
square. The following proposition was given in [11, Proposition 4.1] with a sign condition 
which was removed in [4, Proposition 4.11].

Proposition 2.6. Let A ∈ Rn,m and C ∈ Cn,m. For each position in C fix a lacunary 
sequence γ = ((i0, j0), (i1, j1), . . . , (it, jt)) with respect to C starting at this position. 
Assume that for all (i0, j0), we have

0 = detA[i0, i1, . . . , it|j0, j1, . . . , jt] if and only if (i0, j0) ∈ C.

Then

detA[i0, i1, . . . , it|j0, j1, . . . , jt] = ãi0,j0 · ãi1,j1 · · · ãit,jt (3)

holds for all lacunary sequences γ given by (2).

3. Rank determination

We begin this section with a construction of a uniquely determined sequence related 
to the rank of certain matrices. All of the matrices A that are considered in this and the 
next section are assumed to be different from the null matrix. We point out that all of 
our results are valid if R is replaced by any field of characteristic zero.
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Procedure 3.1. Let A ∈ Rn,m be a Cauchon matrix. Construct the sequence

γ = ((ip, jp), . . . , (i0, j0)) (4)

as follows:

• Put (i−1, j−1) := (n + 1, m + 1).
• For k = 0, 1, . . . , p, define

Mk := {(i, j) | 1 ≤ i < ik−1, 1 ≤ j < jk−1, aij �= 0} .

If Mk = φ, put p := k − 1. Otherwise, put (ik, jk) := maxMk, where the maximum 
is taken with respect to the lexicographical order.

Lemma 3.2. Let A ∈ Rn,m be a Cauchon matrix and γ given by (4) be the sequence 
obtained by applying Procedure 3.1. Then γ is a lacunary sequence with respect to CA.

Proof. Conditions 1 and 2 of Definition 2.5 hold trivially. For Condition 3 we consider 
only the part of the sequence between any two adjacent pairs (is+1, js+1) and (is, js) for 
s = p − 1, . . . , 0. We distinguish the following three cases:
Case 1. is > is+1 + 1 and js = js+1 + 1. In this case ai,t2 = 0 for all is+1 < i < is and 
t2 < js.
Case 2. is = is+1 + 1 and js > js+1 + 1. In this case at1,j = 0 for all t1 < is, and 
js+1 < j < js.
Case 3. is > is+1 + 1 and js > js+1 + 1. In this case ai,t2 = 0 for all is+1 < i < is and 
t2 < js, and at1,j = 0 for all t1 < is and js+1 < j < js.
Hence in all three cases Condition 3 of Definition 2.5 holds. Therefore, γ is a lacunary 
sequence. �
Corollary 3.3. Let A ∈ Rn,m be such that Ã is a Cauchon matrix and let γ = ((ik, jk),
k = 0, 1, . . . , t) be a lacunary sequence. Then the following representation holds:

detA[i0, . . . , it|j0, . . . , jt] = ãi0,j0 ãi1,j1 · · · ãit,jt .

Proof. For each position in CÃ we fix a lacunary sequence (with respect to CÃ) starting 
at this position. By Proposition 2.6, we only have to show that for all (i0, j0)

0 = detA[i0, i1, . . . , it|j0, j1, . . . , jt] if and only if (i0, j0) ∈ CÃ.

Assume to the contrary and let (i, j) be the maximum position in CÃ with respect 
to the lexicographical order for which the assumption is not fulfilled, i.e., ãij �= 0
but detA[i0, . . . , it|j0, . . . , jt] = 0 with (i0, j0) = (i, j) and i0 < n and j0 < m

(the case ãij = 0 and detA[i0, . . . , it|j0, . . . , jt] �= 0 follows analogously). Then B :=
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A[i, . . . , n|j, . . . , m] + xE11 for some x �= 0 fulfills the hypothesis of Proposition 2.6 and 
we may conclude that

detB[i0, . . . , it|j0, . . . , jt] = (ãi0,j0 + x) · ãi1,j1 · · · ãit,jt . (5)

On the other hand, Laplacian expansion gives

detB[i0, . . . , it|j0, . . . , jt] = detA[i0, . . . , it|j0, . . . , jt] + x detA[i1, . . . , it|j1, . . . , jt].

By our hypothesis, the assumption of Proposition 2.6 is fulfilled for the lacunary sequence 
((i1, j1), . . . , (it, jt)) and we may conclude by (5) that

detA[i0, . . . , it|j0, . . . , jt] = ãi0,j0 · ãi1,j1 · · · ãit,jt .

Since by our assumption the left-hand side is zero, while the right-hand side is not equal 
zero we reach a contradiction. �
Theorem 3.4. Let A ∈ Rn,m be such that Ã is a Cauchon matrix. Then rankA = p + 1, 
where p is the length of the sequence which is obtained by application of Procedure 3.1
to Ã.

Proof. Let γ given by (4) be the sequence which is obtained by application of Proce-
dure 3.1 to Ã. By Lemma 3.2, γ is a lacunary sequence with respect to CÃ. We complete 
the proof by using induction on n. For n = 1 the result holds trivially. Suppose the result 
holds for all matrices in Rk,m with k ≤ n. We show that it holds for k = n +1. We begin 
by distinguishing the following two cases.
Case 1. ip = 1.
Application of the condensed form of the Cauchon algorithm to

A[2, 3, . . . , n + 1|1, 2, . . . ,m]

results in Ã[2, 3, . . . , n +1|1, 2, . . . , m]. By the induction hypothesis, A[2, 3, . . . , n +1|1, 2,
. . . , m] has rank p since ((ip−1, jp−1), . . . , (i0, j0)) is the lacunary sequence obtained from 
Procedure 3.1 applied to Ã[2, . . . , n + 1|1, . . . , m]. Thus p ≤ rankA ≤ p + 1. It follows 
from Corollary 3.3 that detA[ip, ip−1, . . . , i0|jp, jp−1, . . . , j0] �= 0 since γ is a lacunary 
sequence with respect to CÃ and ãip,jp �= 0, which implies rankA = p + 1 as desired.
Case 2. ip > 1. By the induction hypothesis A[2, 3, . . . , n + 1|1, 2, . . . , m] has rank p + 1. 
So p + 1 ≤ rankA ≤ p + 2. Let α := {ip, ip−1, . . . , i0}, β := {jp, jp−1, . . . , j0} and define 
B = (bij), i ∈ αc, j ∈ βc, with

bij := detA[α ∪ {i} |β ∪ {j}]
.
detA[α|β]
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Note that by Corollary 3.3 we have detA[α|β] �= 0 since ãij �= 0 for all (i, j) ∈ {(ip, jp),
(ip−1, jp−1), . . . , (i0, j0)} and by the induction hypothesis bij = 0 for all i ∈ αc \ {1}.
Claim. With B as defined as above we claim that b1j = 0 for all j ∈ βc.
Case 2.1. 1 ≤ j < jp.
In this case it is easy to see that the sequence ((1, j), (ip, jp), (ip−1, jp−1), . . . , (i0, j0)) is 
a lacunary sequence with respect to CÃ and by Corollary 3.3 b1j = 0.
Case 2.2. j ∈ βc and j > jp.
In this case there exists s ∈ {1, . . . , p} such that js < j < js−1 provided that p > 0
(if p = 0, then Ã[1, . . . , n + 1|j] = A[1, . . . , n + 1|j] = 0 since Ã is Cauchon matrix).
In the following we prove that the column j of A is linearly dependent on columns 
j0, j1, . . . , js−1. Since Ã is a Cauchon matrix and γ is the sequence that we obtained by 
Procedure 3.1 we have ãij′ = 0 for all i < is−1, j ≤ j′ < js−1. For this particular j, take 
μ := {is−1, . . . , i0}, ν := {js−1, . . . , j0}, and define the vector, G = (gi1), i ∈ μc, where

gi1 := detA[μ ∪ {i} |ν ∪ {j}]
detA[μ|ν] .

We have, by Corollary 3.3, gi1 = 0 for all i < is−1 since ((i, j), (is−1, js−1), . . . , (i0, j0))
is a lacunary sequence with respect to CÃ[1,...,n+1|j,j+1,...,m] and ãij = 0. Furthermore, 
we conclude that gi1 = 0 for all i > is−1 and i ∈ μc, since by the induction hypoth-
esis rankA[is−1, . . . , n + 1|j, . . . , m] = s. Hence we have shown G = 0. Application of 
Lemma 2.1 with γ′ := μc and δ′ := {j} yields rankA[1, . . . , n + 1|j, js−1, . . . , j0] = s

and since detA[is−1, . . . , i0|js−1, . . . , j0] �= 0 it follows that rankA[1, . . . , n + 1|js−1,

. . . , j0] = s. Hence column j depends linearly on columns js−1, . . . j0. We conclude that 
b1j = 0 for all j > jp and j ∈ βc which completes the proof of the claim. Hence we have 
proven that B = 0 and application of Lemma 2.1 with γ := α, γ′ := αc, δ := β, and 
δ′ := βc yields rankA = p + 1. �

If one has to check a set of row vectors of a given n-by-m matrix A that admits 
a Cauchon matrix upon application of the Cauchon algorithm for linear independence, 
then one can run Algorithm 2.4 on the submatrix of A formed by these vectors and apply 
Theorem 3.4. In the next theorem we consider the case that we have already computed 
Ã and want to check a set of consecutive row vectors of A for linear independence.

Theorem 3.5. Let A ∈ Rn,m be such that Ã is a Cauchon matrix. Then for i = 1, . . . , n
and 0 ≤ l ≤ n − i, the rows i, i + 1, . . . , i + l of A are linearly independent if and only if 
application of Procedure 3.1 to Ã[i, . . . , i + l|1, . . . , m] results in a sequence of length l.

Proof. Let γ := ((il, jl), (il−1, jl−1), . . . , (i0, j0)) be the sequence which is obtained by 
application of Procedure 3.1 to Ã[i, . . . , i + l|1, . . . , m]. Then we have i + f = il−f , for 
f = 0, 1, . . . , l, and distinguish the following two cases.
Case 1. j0 = m. Then γ is a lacunary sequence with respect to CÃ. Hence it 
follows by Corollary 3.3 that detA[il, . . . , i0|jl, . . . , j0] �= 0. Since the submatrix 
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A[il, . . . , i0|jl, . . . , j0] is contained in the rows indexed by i, . . . , i + l we conclude that 
these rows are linearly independent.
Case 2. j0 < m. Then it follows that ãi0,j = 0 for all j = j0 + 1, . . . , m. Since 
ãi0,j0 �= 0 and Ã is a Cauchon matrix we have that Ã[1, . . . , i0|j0 + 1, . . . , m] = 0
and hence A[1, . . . , i0|j0 + 1, . . . , m] = 0. By constructing a lacunary sequence start-
ing from (i0, j0) and appending this sequence to γ we obtain a lacunary sequence 
with respect to CÃ, say ((il, jl), . . . , (i0, j0), (i′1, j′1), . . . , (i′p, j′p)). By Corollary 3.3, 
detA[il, . . . , i0, i′1, . . . , i′p|jl, . . . , j0, j′1, . . . , j′p] �= 0 and the zero-nonzero pattern of A im-
plies

detA[il, . . . , i0, i′1, . . . , i′p|jl, . . . , j0, j′1, . . . , j′p] =

detA[il, . . . , i0|jl, . . . , j0] · detA[i′1, . . . , i′p|j′1, . . . , j′p],

whence detA[il, . . . , i0|jl, . . . , j0] �= 0. Therefore, the rows indexed by i, i + 1, . . . , i + l of 
A are linearly independent.

Conversely, suppose that the rows i, i + 1, . . . , i + l of A are linearly independent and 
the application of Procedure 3.1 to Ã[i, . . . , i + l|1, . . . , m] results in a sequence of length 
t less than l, say ((it, jt), . . . , (i0, j0)), provided that l > 0 (if l = 0 then Ã[i|1, . . . , m] is a 
zero row, whence A[i|1, . . . , m +1] is a zero row, too, a contradiction to our assumption). 
Without loss of generality, suppose that j0 = m; otherwise we proceed as in Case 2 
above.

Let κ := min {s : is > is+1 + 1}, α := {iκ, iκ−1, . . . , i0 }, β := {jκ, jκ−1, . . . , j0}, and 
let B = (b1j), j ∈ βc, where

b1j := detA[α ∪ {iκ − 1} |β ∪ {j}]
detA[α|β] .

By Corollary 3.3, b1j = 0 for all j < jκ since ãiκ−1,j = 0 and ((iκ − 1, j), (iκ, jκ), . . . ,
(i0, j0)) is a lacunary sequence with respect to CÃ[1,...,n|j,...,m].
Claim. b1j = 0 for all j > jκ and j ∈ βc.
Let 1 ≤ h ≤ κ be such that jh < j < jh−1. We want to show that the column A[1, . . . ,
i + l|j] depends linearly on the columns A[1, . . . , i + l|js], s = 0, . . . , h −1. For this fixed j, 
let G = (gq1), q = 1, 2, . . . , ih−1 − 1,

gq1 := detA[σ ∪ {q} |τ ∪ {j}]
detA[σ|τ ] ,

where σ := {ih−1, . . . , i0} and τ := {jh−1, . . . , j0}.
It is easy to see that ((q, j), (ih−1, jh−1), . . . , (i0, j0)) is a lacunary sequence with re-

spect to CÃ[1,...,n|j,j+1,...,m] and ãqj = 0 for all q = 1, . . . , ih−1 − 1. Hence it follows by 
Corollary 3.3 that G = 0. Using Lemma 2.1 we have rankA[1, . . . , i + l|τ ∪ {j}] = h. 
Since detA[σ|τ ] �= 0 we may conclude that the column A[1, . . . , i + l|j] depends linearly 
on A[1, . . . , i + l|js], s = 0, . . . , h − 1. Therefore, b1j = 0 for all j > jκ and j ∈ βc. 
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We have shown that B = 0, which implies by application of Lemma 2.1 with γ := α, 
γ′ = {iκ − 1}, δ := β, and δ′ := βc, that rankA[iκ − 1, iκ . . . , i0|1, . . . , m] = κ + 1. Thus 
row iκ − 1 depends linearly on rows iκ, . . . , i0 of A, which is a contradiction. �

The following example shows that the statement of Theorem 3.5 is not true if we allow 
the rows of A to be non-consecutive.

Example 3.6. Consider the matrix

A =
[2 2 2 1

2 2 2 1
1 1 1 1

]
.

Then we obtain by Algorithm 2.4

Ã =
[0 0 0 1

0 0 1 1
1 1 1 1

]
.

If Theorem 3.5 would be valid also in the case that the rows to be checked for linear 
independence are non-consecutive, e.g., the first and the third row of A, we could apply 
Procedure 3.1 to Ã[1, 3|1, 2, 3, 4] which would result in a sequence γ containing only 
the pair (3, 4). By Theorem 3.5 it would follow that both rows are linearly dependent, 
whereas the application of Procedure 3.1 to ˜A[1, 3|1, 2, 3, 4] which is identical with the 
last two rows of Ã gives the correct result.

Corollary 3.7. Let A ∈ Rn,m be such that Ã is a Cauchon matrix. Then columns 
j, j + 1, . . . , j + l of A are linearly independent if and only if application of Procedure 3.1
to Ã[1, 2, . . . , n|j, j + 1, . . . , j + l] results in a sequence of length l.

Corollary 3.8. Let A ∈ Rn,m be such that Ã is a Cauchon matrix and n ≤ m. Then 
rankA = n if and only if application of Procedure 3.1 to Ã results in a sequence of length 
n − 1.

The following corollary was already proven in [2, Proposition 2.8] in the special case 
that A is totally nonnegative.

Corollary 3.9. Let A ∈ Rn,n be such that Ã is a Cauchon matrix. Then A is nonsingular 
if and only if ãii �= 0 for all i = 1, 2, . . . , n.

Proof. Let A be nonsingular. Then the rows of A are linearly independent. By Theo-
rem 3.5 the application of Procedure 3.1 to Ã results in a sequence of length n −1 which 
forces the squares on the main diagonal of CÃ to be white, otherwise the length of the 
sequence will be less than n − 1.
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Conversely, suppose ãii �= 0, i = 1, . . . , n. Then applying Procedure 3.1 to Ã results 
in the sequence ((1, 1), (2, 2), . . . , (n, n)), which has length n − 1. Therefore, it follows by 
Theorem 3.4, that rankA = n, and thus A is nonsingular. �
4. Descending rank conditions

Investigating when a class of matrices (such as positive definite or totally posi-
tive matrices) admits a particular type of factorization is an important study. Often 
many intrinsic properties about a particular class of matrices can be deduced from cer-
tain factorization results. A factorization which is especially suited for, e.g., the class 
of the totally nonnegative matrices, is elementary bidiagonal factorization, see, e.g., 
[7, Chapter 2]. We are interested here in a particular order of the factors which corre-
sponds to elimination of entries in the following order

(n, 1), . . . , (2, 1), (n, 2), . . . , (3, 2), . . . , (n, n− 1),

(1, n), . . . , (1, 2), (2, n), . . . , (2, 3), . . . , (n− 1, n). (6)

In this section we connect the notions of Cauchon diagrams, bidiagonal factorizations, 
and a set of so-called rank conditions. The existence of a bidiagonal factorization for a 
given matrix has been linked to certain types of rank conditions associated with the 
ranks of sets of submatrices, and we make use of this connection here by incorporating 
them both with Cauchon matrices (or diagrams) and the condensed Cauchon algorithm. 
The definitions in this section can be found in [10].

Definition 4.1. Let A ∈ Rn,n. Then we say that A has a successively ordered elementary 
factorization (SEB) if A can be written as

A =

⎛
⎝n−1∏

k=1

k+1∏
j=n

Lj(ljk)

⎞
⎠D

⎛
⎝ 1∏

k=n−1

n∏
j=k+1

Uj(ukj)

⎞
⎠ , (7)

where Li(s) = I + sEi,i−1, Uj(t) = I + tEj−1,j , 2 ≤ i, j ≤ n, and D is a diagonal matrix.

For example, if a 4-by-4 matrix A has an SEB factorization, then it is of the form

A = L4(l41)L3(l31)L2(l21)L4(l42)L3(l32)L4(l43)D

×U4(u34)U3(u23)U4(u24)U2(u12)U3(u13)U4(u14).

In the event that not all possible EB factors are included in (7), the SEB factorization 
of a given matrix (when it exists) may not be unique. Thus we narrow the study of SEB

factorizations to achieve existence and uniqueness. We call an SEB factorization (7) an 
elimination SEB (ESEB) if it results from the reduction of an n-by-n matrix A to the 
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diagonal matrix D by eliminating nonzero entries via elementary bidiagonal row/column 
operations performed in the order (6). Note that the subscripts on ljk and ukj correspond 
to the entry being eliminated. If ljk or ujk is 0 in any factor, then that factor is not 
included in the ESEB factorization. It was shown in [10, Theorem 9] that if an ESEB

factorization exists, then it is unique.

Example 4.2. [10, Example 12] Let A be the 5-by-5 unit lower triangular matrix

A =

⎡
⎢⎢⎢⎣

1 0 0 0 0
2 1 0 0 0
1 1 1 0 0
1 1 2 1 0
1 1 4 4 1

⎤
⎥⎥⎥⎦ . (8)

Then A admits the ESEB factorization

A = L5(1)L4(1)L3(
1
2)L2(2)L3(

1
2)L5(2)L4(1)L5(1). (9)

Definition 4.3. Let A ∈ Rn,n. Then A satisfies the column descending rank condition
if for all l with 1 ≤ l ≤ n − 1, for all z with 0 ≤ z ≤ l − 1, and for all p satisfying 
l − z ≤ p ≤ n − z − 1,

rankA[p + 1, . . . , p + z + 1|1, . . . , l] ≤ rankA[p, . . . , p + z|1, . . . , l]. (10)

Similarly, A satisfies the row descending rank condition if with the indices as above

rankA[1, . . . , l|p + 1, . . . , p + z + 1] ≤ rankA[1, . . . , l|p, . . . , p + z].

A satisfies the descending rank conditions if A satisfies both the row and column de-
scending rank conditions.

Example 4.2 (continued). It is easy to see that the matrix A given in (8) satisfies the 
column descending rank condition. In fact, inequality (10) is fulfilled for all feasible values 
of l, z, and p with equality, with the exception of the cases l = 2, z = 1, p = 2 and l = 3, 
z = 2, p = 2 in which strict inequality holds.

Using the descending rank conditions in connection with the condensed form of the 
Cauchon algorithm, we have the following results related to Cauchon matrices.

Theorem 4.4. Let A ∈ Rn,n and B := A#. If A satisfies the descending rank conditions, 
then the following statements hold:

(i) If b̃ij = 0 for some i ≥ j, then b̃it = 0 for all t < j;
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(ii) if b̃ij = 0 for some i ≤ j, then b̃tj = 0 for all t < i;
(iii) B̃ is a Cauchon matrix.

Proof. Statement (iii) follows as a result of (i) and (ii). We only prove (i) since (ii) follows 
analogously.

The proof uses decreasing induction with respect to the lexicographical order. If 
i = n, then (i) holds trivially. Assume that (i) holds for all (i, j) with (i0, j0) ≤ (i, j)
and (i0, j0) �= (i, j) and b̃i0,j0 = 0, where i0 ≥ j0. Suppose on the contrary that 
there exists j′ < j0 such that b̃i0,j′ �= 0. Without loss of generality we assume that 
j′ = j0 − 1. If B̃[i0, . . . , n|j0] = 0, then B[i0, . . . , n|j0] = 0. Hence by the row de-
scending rank condition we have B[i0, . . . , n|1, . . . , j0] = 0, which in turn implies that 
B̃[i0, . . . , n|1, . . . , j0] = 0. However, this contradicts our hypothesis that b̃i0,j0−1 �= 0. 
Hence assume that B̃[i0, . . . , n|j0] �= 0. Set q0 := i0 and for h = 1, . . . , f define qh, 
sequentially, by

qg = min
{
t | t > qg−1, b̃t,j0+g−1 �= 0

}
.

It is clear that ((q0, j0 − 1), (q1, j0), . . . , (qf , j0 + f − 1)) and ((q1, j0 + 1), (q2, j0 + 2), . . . ,
(qf , j0 + f)) are sequences which can be obtained by application of Procedure 3.1 to 
the columns j0 − 1, j0, . . . , j0 + f − 1 and j0, j0 + 1, . . . , j0 + f of B̃[i0, . . . , n|1, . . . , n], 
respectively. By Corollary 3.7, the columns B[i0, . . . , n|e], e = j0 − 1, j0, . . . , j0 + f − 1
are linearly independent and hence rankB[i0, . . . , n|j0 − 1, . . . , j0 + f − 1] = f + 1, while 
the columns B[i0, . . . , n|e], e = j0, j0 + 1, . . . , j0 + f , are linearly dependent. Hence 
rankB[i0, . . . , n|j0, . . . , j0 + f ] ≤ f , which contradicts the assumed row descending rank 
condition. �
Example 4.2 (continued). For the matrix A given in (8) the matrix B = A# is

B =

⎡
⎢⎢⎢⎣

1 4 4 1 1
0 1 2 1 1
0 0 1 1 1
0 0 0 1 2
0 0 0 0 1

⎤
⎥⎥⎥⎦ . (11)

Obviously, the matrix

B̃ =

⎡
⎢⎢⎢⎣

1 1 2 0 0
0 1 1 0 1
0 0 1 1

2 1
0 0 0 1 2
0 0 0 0 1

⎤
⎥⎥⎥⎦ (12)

satisfies (i)–(iii) in Theorem 4.4.
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Remark 4.5. Let B ∈ Rn,n, B �= 0, such that (i) and (ii) in Theorem 4.4 hold. Then

rankB[i, i + 1, . . . , n|j, j + 1, . . . , j + w] = l + 1,

where 0 ≤ w ≤ n − j and l is the length of the sequence which is obtained by application 
of Procedure 3.1 to B̃[i, i + 1, . . . , n|j, j + 1, . . . , j + w]. An analogous statement holds 
for rankB[i, i + 1, . . . , i + w|j, j + 1, . . . , n], where 0 ≤ w ≤ n − i.

Theorem 4.6. Let A ∈ Rn,n and B := A#. If B satisfies (i) and (ii) in Theorem 4.4, 
then A satisfies the descending rank conditions.

Proof. We show only that A satisfies the row descending rank condition since the column 
descending rank condition will follow by applying a similar argument. Let 1 ≤ l ≤ n − 1, 
0 ≤ z ≤ l − 1, and l − z ≤ p ≤ n − z − 1. We show that

rankA[1, . . . , l|p + 1, . . . , p + z + 1] ≤ rankA[1, . . . , l|p, . . . , p + z],

which is equivalent to

rankB[n− l + 1, . . . , n|n− p− z, . . . , n− p] ≤ (13)

rankB[n− l + 1, . . . , n|n− p− z + 1, . . . , n− p + 1].

From condition (i) of Theorem 4.4 the length of the sequence obtained by application of 
Procedure 3.1 to B̃[n −l+1, . . . , n|n −p −z+1, . . . , n −p +1] is greater than or equal to the 
length of the one obtained by application of Procedure 3.1 to B̃[n − l+1, . . . , n|n −p −z,

. . . , n − p]. Therefore, (13) holds by employing Remark 4.5. �
Theorem 4.7. Let A ∈ Rn,n and B := A#. If G := BT satisfies (i) and (ii) in Theo-
rem 4.4, then A has an ESEB factorization (7) in which ljk and ukj , k = 1, . . . , n − 1, 
j = k + 1, . . . , n, and dii, i = 1, . . . , n are given by

(a) ln1 = g̃n1
g̃n2

, ln−1,1 = g̃n2
g̃n3

, . . ., l21 = g̃n,n−1
g̃nn

,
ln2 = g̃n−1,1

g̃n−1,2
, ln−1,2 = g̃n−1,2

g̃n−1,3
, . . ., l3,2 = g̃n−1,n−2

g̃n−1,n−1
, . . .,

ln,n = g̃21
g̃22

;
(b) dii = g̃n−i,n−i, i = 1, . . . , n;
(c) un−1,n = g̃12

g̃22
,

un−2,n−1 = g̃13
g̃23

, un−2,n = g̃23
g̃33

, . . .,
u12 = g̃1,n

g̃2,n
, u13 = g̃2,n

g̃3,n
, . . ., u1n = g̃n−1,n

g̃n,n
,

with the convention 0
0 := 0.
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Proof. Since G satisfies (i) and (ii) in Theorem 4.4, G̃ is a Cauchon matrix with all 
entries in the same row to the left (in the lower part, including the main diagonal) or all 
entries in the same column above (in the upper part, including the main diagonal) of a 
zero entry in G̃ vanish, too. We replace such zero entries from the right to the left and 
from the bottom to the top by increasing integral powers of a small positive number ε. 
Call the resulting matrix G̃ε. We apply the Restoration algorithm (see [9] or [1]), which 
is the inverse procedure to the Cauchon algorithm, to G̃ε and obtain the matrix Gε. 
Since G̃ε tends to G̃ as ε tends to 0, it is easy to see that Gε tends to G. Hence we can 
approximate the given matrix G by the matrix Gε as closely as desired such that

detGε[i, i + 1, . . . , i + w|j, j + 1, . . . , j + w] �= 0,

where w := min {n− i, n− j}. This implies for the matrix Aε := (GT
ε )# that

detAε[n− j − w + 1, . . . , n− j + 1|n− i− w + 1, . . . , n− i + 1] �= 0.

Hence Aε has a ESEB factorization which can be obtained from the elements of G̃ε as 
in the case that A is nonsingular and totally nonnegative (see [1, p.52], [3, Section 4], 
although the analysis still applies in this case as well). Hence as ε tends to zero, we obtain 
the representation of ljk and ukj , k = 1, . . . , n − 1, j = k + 1, . . . , n, dii, i = 1, . . . , n, of 
the ESEB factorization as given in the statement of the theorem. �

In the final theorem we put together the results of Theorems 4.4 and 4.6. The equiv-
alence between (b) and (c) can be found in [10, Theorem 9].

Theorem 4.8. Let A ∈ Rn,n and B := A#. Then the following statements are equivalent:

(a) B satisfies (i) and (ii) in Theorem 4.4.
(b) A satisfies the descending rank conditions.
(c) A has an ESEB factorization.

A very interesting by-product of this characterization (see Theorem 4.8) is the com-
plexity saving associated with determining if a matrix satisfies the row and/or column 
rank descending conditions. In particular, the complexity is reduced from calculating 
the ranks of n(n + 1)2 − n(n+1)(2n+1)

3 − n submatrices to at most (n − 1)2(n + 1) arith-
metic operations which are required by the condensed form of the Cauchon Algorithm 
[1, p.52]. In addition, our work in this section highlights the utility of the condensed 
form of the Cauchon algorithm and the study of Cauchon diagrams (or matrices), be-
yond, in particular, the class of totally nonnegative matrices [9] and totally nonpositive 
matrices [4].
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