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A matrix is called strictly sign-regular of order k (denoted by SSRk) if all its k× k
minors are non-zero and have the same sign. For example, totally positive matrices, 
i.e., matrices with all minors positive, are SSRk for all k. Another important 
subclass are those that are SSRk for all odd k. Such matrices have interesting 
sign variation diminishing properties, and it has been recently shown that they 
play an important role in the analysis of certain nonlinear cooperative dynamical 
systems. In this paper, the spectral properties of nonsingular matrices that are SSRk

for a specific value k are studied. One of the results is that the product of the 
first k eigenvalues is real and of the same sign as the k × k minors, and that linear 
combinations of certain eigenvectors have specific sign patterns. It is then shown 
how known spectral properties for matrices that are SSRk for several values of k
can be derived from these results. Using these theoretical results, the notion of a 
totally positive discrete-time system (TPDTS) is introduced. This may be regarded 
as the discrete-time analogue of the important notion of a totally positive differential 
system. It is shown that TPDTSs can be applied to prove that certain time-varying 
nonlinear dynamical systems entrain to periodic excitations.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

A matrix (not necessarily square) is called sign-regular of order k (denoted by SRk) if all its minors 
of order k are non-negative or all are non-positive. It is called strictly sign-regular of order k (denoted 
by SSRk) if it is sign-regular of order k, and all the minors of order k are non-zero. In other words, all 
minors of order k are non-zero and have the same sign. A matrix is called sign-regular (SR) if it is SRk for 
all k, and strictly sign-regular (SSR) if it is SSRk for all k.
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The most prominent examples of SR [SSR] matrices are totally nonnegative TN [totally positive TP] 
matrices, that is, matrices with all minors nonnegative [positive]. Such matrices have applications in a 
number of fields including approximation theory, economics, probability theory, computer aided geometric 
design and more [2,4,12].

A very important property of SSR matrices is that multiplying a vector by such a matrix can only 
decrease the number of sign variations. To explain this variation diminishing property (VDP), we introduce 
some notation. We use small letters to denote column vectors. If y ∈ R

n is such a vector then y′ denotes its 
transpose. For y ∈ R

n, we use s−(y) to denote the number of sign variations in y after deleting all its zero 
entries, and s+(y) to denote the maximal possible number of sign variations in y after each zero entry is 
replaced by either +1 or −1. For example, for y = [1 −1 0 −π ]′, s−(y) = 1 and s+(y) = 3. Obviously,

0 ≤ s−(y) ≤ s+(y) ≤ n− 1 for all y ∈ R
n.

The first important results on the VDP of matrices were obtained by Fekete [3] and Schoenberg [14]. 
Later on, Grantmacher and Krein [4, Chapter V] elaborated rather completely the various forms of VDPs 
and worked out the spectral properties of SR matrices. Two examples of such VDPs are: if A ∈ R

n×m

(m ≤ n) is SR and of rank m then

s−(Ax) ≤ s−(x) for all x ∈ R
m,

whereas if A is SSR then

s+(Ax) ≤ s−(x) for all x ∈ R
m \ {0}.

The more recent literature on SR matrices focuses on the recognition and factorization of matrices with 
special signs of their minors, see, e.g., [6] and the references therein.

There is a renewed interest in such VDPs in the context of dynamical systems. Indeed, Reference [10]
shows that powerful results on the asymptotic behavior of the solutions of continuous-time nonlinear co-
operative and tridiagonal dynamical systems can be derived using the fact that the transition matrix of 
a certain linear time-varying system (called the variational system) is TP for all time t. In other words, 
the linear system is a totally positive differential system (TPDS) [15]. These transition matrices are real, 
square, and nonsingular. In a recent paper [1], it is shown that the transition matrix satisfies a VDP with 
respect to the cyclic number of sign variations if and only if it is SSRk for all odd k and all t.

Some of the spectral properties of SR matrices can be extended to matrices which are SRk for all k up 
to a certain order [4, Chapter V]. In this paper, we study the spectral properties of nonsingular matrices 
which are SSRk for a specific value of k. Such matrices are only rarely considered in the literature, see, e.g., 
[11], where a test for an n × k matrix with k < n to be SSRk is presented. Let εk ∈ {−1, 1} denote the sign 
of the minors of order k, with convention ε0 := 1. We prove that the strict sign-regularity of order k implies 
that the product of the first k eigenvalues is real and has the sign εk, and that certain eigenvectors satisfy a 
special sign pattern. Note that these eigenvectors are in general complex, but their real and imaginary part 
satisfy a special sign pattern. Then we show how to extend these results to obtain the spectral properties 
of matrices that are SSRk for several values of k, for example, for all odd k.

The theoretical results are used to derive a new class of dynamical systems called totally positive discrete-
time systems (TPDTSs). This is the discrete-time analogue of the important notion of a TPDS. We analyze 
the asymptotic properties of TPDTSs and show how they can be used to show that certain nonlinear time-
varying dynamical systems entrain to periodic excitations. This result may be regarded as the analogue 
of an important result of Smith [17] on entrainment in a continuous-time periodic nonlinear cooperative 
systems with a special Jacobian.
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The remainder of this paper is organized as follows. The next section provides known definitions and 
reviews results that will be used later on. In Section 3, we present our main results and in Section 4 we 
apply these results to introduce and analyze TPDTSs. The final section concludes and outlines possible 
topics for further research.

2. Preliminaries

In this section, we collect several known definitions and results that will be used later on.
Given a square matrix A ∈ R

n×n and p ∈ {1, . . . , n}, consider the 
(
n
p

)2 minors of A of order p. Each 
minor is defined by a set of p row indexes

1 ≤ i1 < i2 < · · · < ip ≤ n (1)

and p column indexes

1 ≤ j1 < j2 < · · · < jp ≤ n. (2)

This minor is denoted by A(α|β), where α := {i1, . . . , ip} and β := {j1, . . . , jp} (with a mild abuse of 
notation, we will regard these sequences as sets). We suppress the curly brackets if we enumerate the 
indexes explicitly.

The next result, known as Jacobi’s identity, provides information on the relation between the minors of 
a nonsingular matrix A ∈ R

n×n and the minors of A−1. For a sequence α = {i1, . . . , ip}, let ᾱ denote the 
sequence {1, . . . , n} \ α which we consider as ordered increasingly.

Proposition 1. [12, Section 1.2] Let A ∈ R
n×n be a nonsingular matrix, and put B := A−1. Pick p ∈

{1, . . . , n −1}. Then for any two sequences α = {i1, i2, . . . , ip} and β = {j1, j2, . . . , jp} satisfying (1) and (2)
we have

B(α, β) = (−1)sA(β̄, ᾱ)
det(A) ,

with s := i1 + · · · + ip + j1 + · · · + jp.

Let D±1 ∈ R
n×n denote the diagonal matrix with diagonal entries (1, −1, 1, −1, . . . , (−1)n+1), and 

let adj(A) denote the adjugate of A. Then D±1 adj(A)D−1
±1 is called the unsigned adjugate of A. Proposition 1

yields the following result.

Corollary 1. Let A ∈ R
n×n be a nonsingular matrix. Suppose that for some k ∈ {1, . . . , n −1} all the minors 

of order k of A are non-zero and have the same sign. Then all minors of order n −k of the unsigned adjugate 
of A are non-zero and have the same sign.

The SSRk property is closely related to VDPs. The following well-known result demonstrates this.

Proposition 2. [4, Chapter V, Theorem 1] Consider a matrix U ∈ R
n×m with n > m. The following two 

conditions are equivalent:

(i) For any x ∈ R
m \ {0}, we have

s+(Ux) ≤ m− 1. (3)
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(ii) The matrix U is SSRm, that is, all minors of the form

U(i1 . . . im|1 . . . m), with 1 ≤ i1 < i2 < · · · < im ≤ n, (4)

are non-zero and have the same sign.

Note that the assumption that n > m cannot be weakened. For example, if we take n = m = 2 and a 
square matrix U ∈ R

2×2 then condition (i) obviously holds, yet condition (ii) only holds if U is nonsingular, 
so the conditions are not equivalent in this case.

It was recently shown that for square matrices the SSRk property is equivalent to a non-standard VDP.

Theorem 1. [1, Theorem 1] Let A ∈ R
n×n be a nonsingular matrix. Pick k ∈ {1, . . . , n}. Then the following 

two conditions are equivalent:

(i) For any vector x ∈ R
n \ {0} with s−(x) ≤ k − 1, we have

s+(Ax) ≤ k − 1.

(ii) A is SSRk.

We emphasize that condition (i) in Theorem 1 does not assert that s−(x) ≤ k− 1 implies that s+(Ax) ≤
s−(x), but only that s+(Ax) ≤ k − 1.

3. Main results

We consider from here on a nonsingular matrix A ∈ R
n×n. We order its eigenvalues such that

|λ1| ≥ |λ2| ≥ · · · ≥ |λn| > 0, (5)

with complex conjugate eigenvalues appearing in consecutive pairs (we say, with a mild abuse of notation, 
that z ∈ C

n is complex if z �= z̄, where z̄ denotes the complex conjugate of z). Let

v1, v2, . . . , vn ∈ C
n (6)

denote the eigenvectors corresponding to the λi’s. We always assume that every vi is not purely imaginary. 
Indeed, otherwise we can replace vi by Im(vi) that is a real eigenvector. Also, note the fact that A is real 
means that if vi is complex then its real and imaginary parts can be chosen as linearly independent.

Define a set of real vectors u1, u2, . . . , un ∈ R
n by going through the vi’s as follows. If v1 is real then we 

put u1 := v1 and proceed to examine v2. If v1 is complex (and whence v2 = v̄1) then we put u1 := Re(v1), 
u2 := Im(v1) and proceed to examine v3, and so on. Let U :=

[
u1 . . . un

]
∈ R

n×n.
Suppose that for some i, k the eigenvector vi is real and vk is complex. Then is not difficult to show that 

since A is real and nonsingular, the real vectors vi, Re(vk), Im(vk) are linearly independent.
Note that if vi, vi+1 ∈ C

n is a complex conjugate pair and c ∈ C \ {0} is complex then

cvi + c̄vi+1 = 2(Re(c) Re(vi) − Im(c) Im(vi)) ∈ R
n \ {0},

and by choosing an appropriate complex c ∈ C \ {0} we can get any nonzero real linear combination of the 
real vectors Re(vi) and Im(vi).
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We say that a set cp, . . . , ck ∈ C, p ≤ k, matches the set vp, . . . , vk of consecutive eigenvectors (6) if 
the ci’s are not all zero and for every i if the vector vi is real then ci is real, and if vi, vi+1 is a complex 
conjugate pair then ci+1 = c̄i. In particular, this implies that

∑k
i=p civ

i ∈ R
n.

In order to prove our main results, we need the following auxiliary result that is a generalization of 
Proposition 2 to the case of eigenvectors of a nonsingular real matrix. We use the notation j for the 
imaginary unit (j2 = −1).

Proposition 3. Consider the set of n vectors v1, . . . , vn ∈ C
n. Define V ∈ C

n×n by

V :=
[
v1 v2 . . . vn

]
.

The following two conditions are equivalent:

(i) For any c1, . . . , cm ∈ C that match v1, . . . , vm, with m ≤ n, we have

s+(
m∑
i=1

civ
i) ≤ m− 1. (7)

(ii) Let q ∈ C

(n
m

)
be the vector that contains all the minors of order m of V of the form V (i1 . . . im|1 . . .m), 

with 1 ≤ i1 < i2 < · · · < im ≤ n, arranged in the lexicographic order. Then there exists an integer k

such that the vector jkq is real and all its entries are positive.

Proof. Consider first the case m = 1. In this case, the definition of a matching set means that v1 is real. 
Condition (i) becomes

s+(v1) = 0 (8)

and condition (ii) becomes

v1 = jkq

for some integer k ≥ 0 and q a real vector with all entries positive. Since v1 is real, this means that all 
the entries of v1 are either all positive or all negative. Thus, in this case the two conditions are indeed 
equivalent.

Suppose now that m = 2. Then two cases are possible.
Case 1. Both v1 and v2 are real. Then by the definition of a matching set, (i) becomes: for any d1, d2 ∈ R, 
that are not both zero,

s+(d1v
1 + d2v2) ≤ 1.

On the other-hand, (ii) becomes: the vector q ∈ C

(n
2
)

that contains all the minors of order 2 of V of the 
form V (i1 i2|1 2), with 1 ≤ i1 < i2 ≤ n, arranged in the lexicographic order, is real and all its entries are 
non-zero and have the same sign. Now the equivalence of the two conditions follows from Proposition 2.
Case 2. Both v1 and v2 are complex. In this case, v2 = Re(v1) −j Im(v1), and (i) becomes: for any d1, d2 ∈ R, 
that are not both zero,

s+(d1 Re(v1) + d2 Im(v1)) ≤ 1.

On the other-hand, (ii) becomes: let q ∈ C

(n
2
)

be the vector that contains all the minors of order 2 of
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V =
[
Re(v1) + j Im(v1) Re(v1) − j Im(v1)

]
of the form V (i1 i2|1 2), with 1 ≤ i1 < i2 ≤ n, arranged in the lexicographic order. Then there exists an 
integer k such that the vector jkq is real, and all its entries are positive.

Let U :=
[
Re(v1) Im(v1)

]
. Then

V (i1 i2|1 2) = (−2j)U(i1 i2|1 2)

for all 1 ≤ i1 < i2 ≤ n. Since U is a real matrix, (ii) becomes: let q ∈ R

(n
2
)

be the vector that contains all 
the minors of order 2 of U of the form U(i1 i2|1 2), with 1 ≤ i1 < i2 ≤ n, arranged in the lexicographic 
order. Then q is real, and all its entries are non-zero and have the same sign. Now the equivalence of the 
two conditions follows from Proposition 2.

For any m > 2 it is easy to show that there exists an integer k such that

V (i1, . . . , im|1, . . . ,m) = (−2j)kU(i1, . . . , im|1, . . . ,m) (9)

by the following operations on U :

(i) multiply each column which represents Im(vi) for some i ∈ {1, . . . , m} by j, and then add it to the 
column which represents Re(vi);

(ii) multiply each column which represents j Im(vi) by −2, and then add to it the respective column 
obtained in (i).

Then by properties of the determinant, (9) holds and the equivalence of the two conditions follows from 
Proposition 2. �
3.1. Matrices that are SSRk for some value k

We now state our first main result that describes the spectral properties of a nonsingular matrix that 
is SSRk for some value k.

Theorem 2. Suppose that A ∈ R
n×n is nonsingular and SSRk for some value k, with k ∈ {1, . . . , n − 1}. 

Then the following properties hold:

(i) The product λ1λ2 . . . λk is real, and

εkλ1λ2 . . . λk > 0. (10)

(ii) The eigenvalues satisfy the inequality

|λk| > |λk+1|. (11)

(iii) Pick 1 ≤ p ≤ k, k + 1 ≤ q ≤ n, and cp, . . . , cq ∈ C such that cp, . . . , ck [ck+1, . . . , cq] match the 
eigenvectors vp, . . . , vk [vk+1, . . . , vq] of A. Then

s+(
k∑

i=p

civ
i) ≤ k − 1, (12)
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and

s−(
q∑

i=k+1

civ
i) ≥ k. (13)

(iv) Let u1, . . . , un be the set of real vectors constructed from v1, . . . , vn as described above. Then u1, . . . , uk

are linearly independent. In particular, if v1, . . . , vk are real then they are linearly independent.

Remark 1. Roughly speaking, equations (12) and (13) imply that the first k [last n − k] eigenvectors of A
have a sign pattern with a “small” [“large”] number of sign changes. In particular, for any i ≤ k we have 
that if vi ∈ R

n then s+(vi) ≤ k− 1, and if vi−1, vi is a complex conjugate pair then for any d1, d2 ∈ R, that 
are not both zero, we have s+(d1 Re(vi) + d2 Im(vi)) ≤ k − 1.

Similarly, for any j ≥ k + 1 we have that if vj ∈ R
n then s−(vj) ≥ k, and if vj , vj+1 is a complex 

conjugate pair then for any d1, d2 ∈ R, that are not both zero, we have s−(d1 Re(vj) + d2 Im(vj)) ≥ k.

Proof of Theorem 2. Let r :=
(
n
k

)
. Recall that the kth multiplicative compound matrix A(k) is the r × r

matrix that includes all the minors of order k of A ordered lexicographically. By Kronecker’s theorem, see, 
e.g., [12, p. 132], the eigenvalues ζi, i = 1, . . . , r, of A(k) are all the k products of k eigenvalues of A, that is,

ζ1 = λ1λ2 . . . λk−1λk,

ζ2 = λ1λ2 . . . λk−1λk+1,

... (14)

ζr = λn−k+1λn−k+2 . . . λn−1λn.

Combining this with (5) implies that

|ζ1| ≥ |ζ2| ≥ · · · ≥ |ζr| > 0. (15)

Since A is SSRk, all the entries in A(k) are non-zero and have the sign εk. Thus, all the entries of εkA(k) are 
positive. Perron’s theorem implies that εkζ1 is real and positive with a corresponding entry-wise positive 
eigenvector w (that is unique up to scaling), and that

εkζ1 > |ζ2| ≥ · · · ≥ |ζr| > 0.

Using (14), we conclude that εkλ1λ2 . . . λk is real and positive and that

|λk| > |λk+1|.

To prove the sign patterns of the eigenvectors, let V :=
[
v1 . . . vn

]
and D := diag(λ1, . . . , λn), so 

that AV = V D. Define q ∈ C
r by qα := V (α|1, 2, . . . , k), where α is running over all k-tuples 1 ≤ i1 < · · · <

ik ≤ n, i.e.,

q :=

⎡
⎣V (α1|1, . . . , k)

...
V (αr|1, . . . , k)

⎤
⎦ , (16)

and the components of q are ordered lexicographically. Using the fact that
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A(k) =

⎡
⎣A(α1|α1) . . . A(α1|αr)

...
...

...
A(αr|α1) . . . A(αr|αr)

⎤
⎦ , (17)

yields

(A(k)q)α =
∑
β

A(α, β)V (β|1, 2, . . . , k),

where the summation is over all k-tuples β. Let B := AV . Applying the Cauchy–Binet formula for the minors 
of the product of two matrices, e.g., [2, Theorem 1.1.1], yields (A(k)q)α = B(α|1, 2, . . . , k). Since B = V D, 
a further application of the Cauchy–Binet formula results in

(A(k)q)α =
∑
β

V (α, β)D(β|1, 2, . . . , k)

= V (α|1, 2, . . . , k)λ1λ2 . . . λk

= ζ1qα,

where the second equation follows from the fact that D is a diagonal matrix. Since this holds for any entry 
of the vector A(k)q, we conclude that q is an eigenvector of εkA

(k) corresponding to its Perron root εζ1. 
Thus, there exists η ∈ C \ {0} such that q = ηw, where w ∈ R

r is an entry-wise positive vector. Using the 
fact that the complex vectors in V appear in conjugate pairs, and using determinantal properties as in the 
proof of Proposition 3, we have that η = jk for some integer k. Now application of Proposition 3 yields that 
for any c1, . . . , ck ∈ C that match v1, . . . , vk we have

s+(
k∑

i=1
civ

i) ≤ k − 1

which proves (12).
To prove (13), note that Avi = λiv

i and the identity adj(A)A = det(A)I yield

(D±1 adj(A)D−1
±1)D±1λiv

i = det(A)D±1v
i.

In other words, the eigenvalues ηi of the unsigned adjugate of A, ordered such that |η1| ≥ |η2| ≥ · · · ≥
|ηn| > 0, are

η1 = det(A)
λn

, η2 = det(A)
λn−1

, . . . , ηn = det(A)
λ1

,

with corresponding eigenvectors

z1 := D±1v
n, z2 := D±1v

n−1, . . . , zn := D±1v
1.

Since A is nonsingular and SSRk, Corollary 1 implies that all minors of order n − k of the unsigned 
adjugate of A are non-zero and have the same sign, that is, D±1 adj(A)D−1

±1 is SSRn−k. By Equation (12)
(that has already been proved), this means that for any c1, . . . , cn−k ∈ C that match z1, . . . , zn−k, we 
have s+(

∑n−k
i=1 ciz

i) ≤ n − k − 1, i.e., s+(D±1
∑n

i=k+1 cn−i+1v
i) ≤ n − k − 1. Combining this with the 

identity
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s+(D±1x) + s−(x) = n− 1 for all x ∈ R
n,

see, e.g., [2, p. 88], yields (13).
To prove (iv) note that since k ≤ n −1, (12) yields s+(

∑k
i=1 civ

i) ≤ n −2. This means that
∑k

i=1 civ
i �= 0

for any matching c1, . . . , ck ∈ C, that is,
∑k

i=1 diu
i �= 0 for any d1, . . . , dk ∈ R that are not all zero. This 

completes the proof of Theorem 2. �
Example 1. Consider the matrix

A =

⎡
⎢⎣

1 2 0 0
0 1 1 0
0 0 2 1
1 0 0 2

⎤
⎥⎦ . (18)

It is straightforward to verify that this matrix is nonsingular, and that all minors of order 3 are positive, 
so A is SSR3 with ε3 = 1 (but not SSR1 nor SSR2). Its eigenvalues are (all numerical values in this paper 
are to four-digit accuracy)

λ1 = 2.7900, λ2 = 1.5000 + 1.0790j, λ3 = 1.5000 − 1.0790j, λ4 = 0.2100,

and thus λ1λ2λ3 is real and positive, and |λ3| > |λ4|. The matrix of corresponding eigenvectors is

V =
[
v1 v2 v3 v4 ]

=

⎡
⎢⎢⎣

0.79 −0.5 + 1.079j −0.5 − 1.079j −1.79
0.7071 −0.7071 −0.7071 0.7071
1.266 −0.3536 − 0.763j −0.3536 + 0.763j −0.5586

1 1 1 1

⎤
⎥⎥⎦ ,

and thus

U :=
[
v1 Re(v2) Im(v2) v4 ]

=

⎡
⎢⎢⎣

0.79 −0.5 1.079 −1.79
0.7071 −0.7071 0 0.7071
1.266 −0.3536 −0.763 −0.5586

1 1 0 1

⎤
⎥⎥⎦ .

Calculating the vector q that contains all minors in the form V (α|1, 2, 3) yields q = −jw = j3w, with

w := [1.7049 3.0518 5.4629 2.1580]′ .

A calculation of all the minors of the form U(α|1, 2, 3) gives the values [0.8524 1.5259 2.7315 1.0790]′. 
Since these are all positive, application of Proposition 2 to the submatrix containing the first three columns 
of U gives that for any d1, d2, d3 ∈ R, that are not all zero,

s+(d1v
1 + d2 Re(v2) + d3 Im(v2)) ≤ 2,

which agrees with (12). Furthermore, it holds that s−(v4) ≥ 3 which agrees with (13). �
So far, we have considered matrices that are SSRk for a single value of k. Our next goal is to demonstrate 

that Theorem 2 can be used as a basic building block in the analysis of matrices that are SSRk for several
values of k, by simply applying Theorem 2 for every such k.
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3.2. Matrices that are SSRk for two consecutive values of k

The next result analyzes matrices that are SSRk for two consecutive values of k.

Corollary 2. Suppose that A ∈ R
n×n is nonsingular, SSRi and SSRi+1 for some value i, with i ∈ {1, . . . , n −

2}. Then the following properties hold:

(i) The signed eigenvalue εiεi+1λi+1 is real and positive.
(ii) The eigenvalues satisfy the inequalities

|λi| > |λi+1| > |λi+2|. (19)

(iii) The eigenvector vi+1 can be chosen as a real vector and

s−(vi+1) = s+(vi+1) = i. (20)

Furthermore, for any p, q with 1 ≤ p ≤ i, i + 2 ≤ q ≤ n, and cp, . . . , ci [ci+2, . . . , cq] ∈ C that match 
the eigenvectors vp, . . . , vi [vi+2, . . . , vq] we have

s+(
i∑

�=p

c�v
�) ≤ i− 1, s+(

i+1∑
�=p

c�v
�) ≤ i, (21)

and

s−(
q∑

�=i+1

c�v
�) ≥ i, s−(

q∑
�=i+2

c�v
�) ≥ i + 1. (22)

(iv) The vectors u1, . . . , ui+1 are linearly independent.

Proof. By Theorem 2, εiλ1λ2 . . . λi and εi+1λ1λ2 . . . λi+1 are real and positive which yields (i). Thus, vi+1

can be chosen as a real vector. Using (11) with k = i and with k = i +1 gives (19). Inequalities (12) and (13)
imply (21) and (22), and this implies

i ≤ s−(vi+1) ≤ s+(vi+1) ≤ i.

The last statement of the corollary follows immediately from Theorem 2 and this completes the proof. �
3.3. Matrices that are SSR

Known results on the spectral structure of TP matrices, see, e.g., [2, Chapter 5], [12, Chapter 5], (and, 
more generally, of SSR matrices [4, Chapter V]), follow immediately from Corollary 2. Indeed, suppose 
that A ∈ R

n×n is SSR. Then it is SSRi and SSRi+1 for all i ∈ {1, . . . , n − 1} and thus Corollary 2 implies 
that the eigenvalues λi, i = 1, . . . , n − 1, are real and that

|λ1| > |λ2| > · · · > |λn| > 0. (23)

Since det(A) = λ1 . . . λn is real, this implies that λn is also real. Pick indexes p, q with 1 ≤ p ≤ q ≤ n, 
and cp, cp+1, . . . , cq ∈ R such that v :=

∑q
i=p civ

i �= 0. Then since (21) and (22) hold for any i, we conclude 
that
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p− 1 ≤ s−(v) ≤ s+(v) ≤ q − 1.

In particular, taking p = q yields

s−(vp) = s+(vp) = p− 1 for all p ∈ {1, . . . , n}.

3.4. Matrices that are SSRk for all odd k

We now analyze the spectral properties of matrices that are SSRk for all odd k. To explain why such 
matrices are interesting, we first review their VDPs. For a vector y ∈ R

n, let

s−c (y) := max
i∈{1,...,n}

s−([yi . . . yn y1 . . . yi ]′). (24)

The subscript c here stands for “cyclic”. Intuitively speaking, this corresponds to placing the entries of y
along a circular ring so that yn is followed by y1, then counting s− starting from any entry along the ring, 
and finding the maximal value.

For example, for y = [0 −1 0 2 0 3]′, s−c (y) = s−([−1 0 2 0 3 0 −1]′) = 2. Similarly, let

s+
c (y) := max

i∈{1,...,n}
s+([yi . . . yn y1 . . . yi ]′),

but here if yi = 0 then in the calculation of s+([yi . . . yn y1 . . . yi ]′) both yi’s are replaced by either 1
or −1. In our above example, we have s+

c (y) = 4. Clearly, s−c (y) ≤ s+
c (y) for all y ∈ R

n, and s−c (y), s+
c (y)

are invariant under cyclic shifts of the vector y.
There is a simple and useful relation between the cyclic and non-cyclic number of sign variations of a 

vector, namely, for any vector x,

s−c (x) =
{
s−(x), if s−(x) is even,
s−(x) + 1, if s−(x) is odd,

and, similarly,

s+
c (x) =

{
s+(x), if s+(x) is even,
s+(x) + 1, if s+(x) is odd,

see, e.g., [7, Chapter 5], where also other useful results of the cyclic variations of sign can be found. This 
implies in particular that for any vector x,

s−c (x), s+
c (x) ∈

{
{0, 2, 4, . . . , n}, if n is even,
{0, 2, 4, . . . , n− 1}, if n is odd.

(25)

It was shown in [1] that a nonsingular matrix A ∈ R
n×n satisfies the cyclic VDP, i.e.,

s+
c (Ax) ≤ s−c (x) for all x ∈ R

n \ {0}, (26)

if and only if A is SSRk for all odd k in the range {1, . . . , n}.
The proof of the next result uses Theorem 2 to analyze the spectral properties of such matrices.

Theorem 3. Suppose that A ∈ R
n×n is nonsingular and SSRk for all odd k in the range {1, . . . , n − 1}. 

Then
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(i) The eigenvalue λ1 of A is simple, real, with ε1λ1 > 0.
(ii) The algebraic multiplicity of any eigenvalue of A is not greater than 2, and the eigenvalues satisfy the 

inequalities |λ1| > |λ2| ≥ |λ3| > |λ4| ≥ |λ5| > . . . .
(iii) For every even k in the range {2, . . . , n − 1}, the inequality εk−1εk+1λkλk+1 > 0 holds.
(iv) If n is even then λn is real, and εn−1 det(A)λn > 0.
(v) For any i, the eigenvectors have the following properties: if v2i+1 is real then s+(v2i+1) ≤ 2i, and 

if v2i, v2i+1 is a complex conjugate pair then for any matching c1, c2 ∈ C

s+(c1v2i + c2v
2i+1) ≤ 2i.

Also, if v2i is real then s−(v2i) ≥ 2i − 1, and if v2i, v2i+1 is a complex conjugate pair then for any 
matching c1, c2 ∈ C

s−(c1v2i + c2v
2i+1) ≥ 2i− 1.

Furthermore, the vectors u1, . . . , up, with p the largest odd number satisfying p ≤ n, are linearly 
independent.

Proof. Statement (i) follows from the fact that A is SSR1 and by Perron’s theorem. By (11) it follows that

|λ1| > |λ2|, |λ3| > |λ4|, |λ5| > |λ6| . . .

which implies (ii). By Theorem 2, the products

ε1λ1, ε3λ1λ2λ3, ε5λ1λ2λ3λ4λ5, . . .

are all real and positive, which implies εk−1εk+1λkλk+1 > 0 and thus (iii). To prove (iv), note that if n is 
even then n − 1 is odd, so A is SSRn−1. This implies that β := εn−1λ1λ2 . . . λn−1 is real and positive, and 
from the fact that εn−1 det(A) = βλn the claim follows. The results on the sign pattern of the eigenvectors 
follow from (12) and (13), and the linear independence of u1, . . . , up follows from Theorem 2 (iv). �
Example 2. Consider a nonsingular matrix A ∈ R

3×3 with all entries positive. Then A is SSR1, with ε1 = 1, 
and SSR3. Theorem 3 implies that λ1 is positive, and s−(v1) = s+(v1) = 0, and also that only one of the 
following two cases is possible.
Case 1. The eigenvalues λ2, λ3 are both real, with

λ1 > |λ2| ≥ |λ3|

and s−(v2) ≥ 1. The eigenvectors v1, v2, v3 are linearly independent.
Case 2. The eigenvalues λ2, λ3 are complex with λ2 = λ̄3. Then

λ1 > |λ2| = |λ3|

and s−(d1 Re(v2) + d2 Im(v2)) ≥ 1 for all d1, d2 ∈ R that are not both zero. The vectors v1, Re(v2), Im(v2)
are linearly independent. �
3.5. Matrices that are SSRk for all even k

We start with a result on the spectral properties of matrices which are SSRk for all even k. Its proof is 
parallel to one of Theorem 3.
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Corollary 3. Let A ∈ R
n,n be nonsingular and SSRk for all even k in the range {2, . . . , n − 1}. Then

(i) The algebraic multiplicity of any eigenvalue of A is not greater than 2, and the eigenvalues satisfy the 
inequalities |λ1| ≥ |λ2| > |λ3| ≥ |λ4| > |λ5| > . . . .

(ii) For every odd k in the range {1, . . . , n − 1}, the inequality εk−1εk+1λkλk+1 > 0 holds.
(iii) If n is odd then λn is real, and εn−1 det(A)λn > 0.
(iv) For any i, the eigenvectors have the following properties: if v2i is real then s+(v2i) ≤ 2i − 1, and 

if v2i−1, v2i is a complex conjugate pair then for any matching c1, c2 ∈ C

s+(c1v2i−1 + c2v
2i) ≤ 2i− 1.

Also, if v2i−1 is real then s−(v2i−1) ≥ 2i −2, and if v2i, v2i+1 is a complex conjugate pair then for any 
matching c1, c2 ∈ C

s−(c1v2i−1 + c2v
2i) ≥ 2i− 2.

Furthermore, the vectors u1, . . . , up, with p the largest even number satisfying p ≤ n, are linearly 
independent.

We now apply Theorem 1 to show that the matrices which are SSRk for all even k also possess a certain 
VDP.

Definition 1. Let x ∈ R
n. Define

s+
o (x) :=

{
s+(x), if s+(x) is odd,
s+(x) + 1, if s+(x) is even.

Note that s+
o (x) is the smallest odd number greater than or equal to s+(x). We define analogously s−o (x)

by replacing the superscript + by −.

Definition 2. A matrix A ∈ R
m×n is said to have the odd VDP if

s+
o (Ax) ≤ s−o (x) for all x ∈ R

n \ {0}. (27)

Theorem 4. Let A ∈ R
n×n be a nonsingular matrix. The following two statements are equivalent:

(i) A has the odd VDP.
(ii) The matrix A is SSRk for all even k in the range {2, . . . , n − 1}.

Proof. Assume that condition (i) holds. Pick an odd number k ∈ {1, . . . , n − 1} and pick x ∈ R
n \ {0} such 

that s−o (x) ≤ k. Then s−(x) ≤ k. Condition (i) yields s+
o (Ax) ≤ k. Theorem 1 implies that A is SSRk+1. 

Since k is an arbitrary odd number in {1, . . . , n − 1}, we conclude that condition (ii) holds.
To prove the converse implication, suppose that condition (ii) holds. Pick x ∈ R

n\{0}. Let p be such 
that s−o (x) = 2p − 1 and thus s−(x) ≤ 2p − 1. If 2p − 1 = n then clearly (27) holds; so we may assume that 
2p − 1 ≤ n − 1. Condition (ii) implies in particular that A is SSR2p and application of Theorem 1 yields 
s+(Ax) ≤ 2p − 1, hence s+

o (Ax) ≤ 2p − 1 = s−o (x). �
The next section describes an application of the properties analyzed above to dynamical systems.
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4. Applications to discrete-time dynamical systems

4.1. Linear systems

Consider the linear time-varying system:

x(i + 1) = A(i)x(i), x(0) = x0, (28)

with A(i) ∈ R
n×n for all i ≥ 0, and x0 ∈ R

n.
Our goal is to develop for the discrete-time system (28) an analogue of the important notion of a TPDS, 

derived by Schwarz [15] for continuous-time systems. The main idea is to require every A(i) to satisfy a 
VDP.

Lemma 1. Suppose that there exists k ∈ {1, . . . , n −1} such that for every i ≥ 0 the matrix A(i) is nonsingular 
and SSRk. Pick x0 ∈ R

n \ {0} such that s−(x0) ≤ k − 1. Then the solution of (28) satisfies

s+(x(i)) ≤ k − 1 for all i ≥ 1.

Proof. Fix i ≥ 1. Then x(i) = A(i − 1) . . . A(1)A(0)x0. The matrix A(i − 1) . . . A(1)A(0) is nonsingular 
and SSRk, as it is the product of nonsingular and SSRk matrices. Theorem 1 implies that s+(x(i)) ≤
k − 1. �

Let V := {y ∈ R
n : s−(y) = s+(y)}. For example, for n = 3 the vector y = [1 0 −1]′ ∈ V, as s−(y) =

s+(y) = 2. It is not difficult to show that

V = {y ∈ R
n : y1 �= 0, yn �= 0, and if yi = 0 for some i ∈ {2, . . . , n− 1} then yi−1yi+1 < 0}.

Theorem 5. Suppose that for every i ≥ 0 the matrix A(i) is SSR. Then

(i) For any x0 ∈ R
n \ {0} the solution of (28) satisfies

s+(x(i + 1)) ≤ s−(x(i)) for all i ≥ 0, (29)

and x(i) ∈ V for all i ≥ 0 except perhaps for up to n − 1 values of i.
(ii) Pick two different initial conditions x0, ̄x0 ∈ R

n, and let x(q), ̄x(q) denote the corresponding solutions 
of (28) at time q. Then there exists m ≥ 0 such that

x1(q) �= x̄1(q) for all q ≥ m. (30)

Proof. Pick x0 ∈ R
n \{0}. If s−(x0) = n −1 then clearly (29) holds, so we may assume that s−(x0) < n −1. 

Let q ∈ {1, . . . , n − 1} be such that s−(x0) = q − 1. Since A(0) is nonsingular and SSRq, Lemma 1 implies 
that s−(x(1)) ≤ s+(x(1)) ≤ q − 1 = s−(x0). Let p ≤ q be such that s−(x(1)) = p − 1. Since A(1) is 
nonsingular and SSRp, Lemma 1 implies that s−(x(2)) ≤ s+(x(2)) ≤ p − 1 = s−(x(1)). Proceeding in this 
fashion proves (29).

The analysis above shows that the mappings i → s+(x(i)) and i → s−(x(i)) are nonincreasing, and 
if x(i) /∈ V, that is, s−(x(i)) < s+(x(i)) then s+(x(i +1)) < s+(x(i)). Since s+ takes values in {0, . . . , n −1}, 
this proves (i).

To prove (ii), let z(i) := x(i) − x̄(i). Then z(0) �= 0, z(i + 1) = A(i)z(i), and (i) implies that there 
exists m ≥ 0 such that z(p) ∈ V for all p ≥ m. In particular, z1(p) �= 0 for all p ≥ m, and this completes 
the proof. �
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Remark 2. Suppose that A(i) = I for all i ≥ 0. Pick x0 ∈ R
n \ {0} such that x0 /∈ V. Then the solution 

of (28) satisfies x(i) /∈ V for all i ≥ 0. Thus, Theorem 5 does not hold if we weaken the hypothesis of the 
theorem to: “A(i) is nonsingular and SR for all i ≥ 0”.

For the analysis of periodic discrete-time systems below, we need to strengthen the result in (30). To 
do this, we use a result from [4]. Recall that two vectors v, w ∈ R

n are said to oscillate in the same 
way if s−(v) = s−(w) and the first non-zero entry in v and in w has the same sign. For example, v =
[0 0 1 0 −2]′ and w = [5 0 −2 −3 −3]′ oscillate in the same way. Theorem 5 in [4, p. 254]
implies that A ∈ R

n×n is TN if and only if for any x ∈ R
n the vector y := Ax satisfies s−(y) ≤ s−(x) and 

if s−(y) = s−(x) then x and y oscillate in the same way.

Definition 3. We call (28) a totally positive discrete-time system (TPDTS) if A(i) is TP for all i ≥ 0.

This is the analogue of the notion of a TPDTS defined by Schwarz [15] for continuous-time systems. Note 
that if the system is TPDTS then, in particular, every entry of A(i) is positive for all i, so the system is 
cooperative [18].

Theorem 6. Suppose that (28) is TPDTS. Then

(i) For any x0 ∈ R
n \ {0} the solution of (28) satisfies

s+(x(i + 1)) ≤ s−(x(i)) for all i ≥ 0, (31)

and x(i) ∈ V for all i ≥ 0 except perhaps for up to n − 1 values of i.
(ii) Pick two different initial conditions x0, ̄x0 ∈ R

n, and let x(q), ̄x(q) denote the corresponding solutions 
of (28) at time q. Then there exists r ≥ 0 such that either

x1(q) > x̄1(q) for all q ≥ r

or

x1(q) < x̄1(q) for all q ≥ r.

Proof. Since a TP matrix is SSR, statement (i) follows immediately from Theorem 5. To prove (ii), recall 
that z(i) := x(i) − x̄(i) satisfies z(i) = A(i)z(i), and that there exists m ≥ 0 such that z1(p) �= 0 for 
all p ≥ m. By the analysis above, there exists 	 ≥ 0 such that

s−(z(i)) = s+(z(i)) = s−(z(i + 1)) = s+(z(i + 1)) for all i ≥ 	.

In particular, we obtain

s−(z(i)) = s−(A(i)z(i)) for all i ≥ 	. (32)

Let r := max(m, 	). Pick i ≥ r. Then the first non-zero entry in z(i) and in z(i + 1) = A(i)z(i) is the first 
entry. Since A(i) is TP (and thus TN), (32) implies that z1(i) and z1(i + 1) have the same sign. Since i ≥ r

is arbitrary, this proves (ii). �
Remark 3. Consider the special case, where (28) is time-invariant, that is, A(i) = A for all i ≥ 0, with A

a TP matrix. In this case, it is possible to give a simpler proof for the “eventual monotonicity” result in (ii). 



R. Alseidi et al. / J. Math. Anal. Appl. 474 (2019) 524–543 539
Indeed, let λ1 > · · · > λn > 0 be the eigenvalues of A with corresponding eigenvectors vi ∈ R
n, i = 1, . . . , n. 

Write z0 = x0 − x̄0 as z0 =
∑n

�=1 c�v
�. Since z0 �= 0, there exists a minimal index p such that cp �= 0, that 

is, z0 =
∑n

�=p c�v
� and thus

z(i) = Aiz0 =
n∑

�=p

c�(λ�)iv�. (33)

Recall that every eigenvector vi of an SSR (and in particular TP) matrix satisfies vi ∈ V, and thus the first 
entry of vp is not zero. Since λp > λp+1 > · · · > λn, it follows from (33) that for any i sufficiently large, the 
first entry of z(i) is not zero and has the same sign as the first entry of cpvp.

Our next goal is to use the notion of a TPDTS to analyze nonlinear systems.

4.2. Nonlinear systems

Consider the time-varying nonlinear discrete-time dynamical system

x(i + 1) = f(i, x(i)), (34)

with f continuously differentiable with respect to x. Let J(i, x) := ∂
∂xf(i, x) denote its Jacobian with respect 

to x. We assume throughout that the trajectories of (34) evolve on a convex and compact set Ω ⊂ R
n.

Pick two different initial conditions x0, ̄x0 ∈ Ω and let z(i) := x(i) − x̄(i). Then

z(i + 1) = f(i, x(i)) − f(i, x̄(i))

=
1∫

0

d

dr
f(i, rx(i) + (1 − r)x̄(i)) dr

=
1∫

0

∂

∂x
f(i, rx(i) + (1 − r)x̄(i)) ∂

∂r
(rx(i) + (1 − r)x̄(i)) dr

=

⎛
⎝ 1∫

0

J(i, rx(i) + (1 − r)x̄(i)) dr

⎞
⎠ z(i). (35)

This is a discrete-time variational system, as it describes how a variation in the initial condition propagates 
with time.

The next assumption guarantees that (35) is TPDTS.

Assumption 1. The matrix
∫ 1
0 J(i, ra + (1 − r)b) dr is TP for any a, b ∈ Ω and any i ≥ 0.

To illustrate an application of Theorem 6, we assume that there exists an integer T > 0 such that the 
nonlinear system (34) is T -periodic.

Assumption 2. The vector field in (34) satisfies f(i + T, a) = f(i, a) for all a ∈ Ω and all i ≥ 0.

We now state the main result in this section. We say that a solution x(i) of (34) is a T -periodic solution
if x(i + T ) = x(i) for all i ≥ 0.
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Theorem 7. If Assumptions 1 and 2 hold then any solution of (34) converges to a T -periodic solution as 
i → ∞.

If we view the T -periodic vector field in (34) as representing a periodic excitation then Theorem 7
implies that the system entrains to the excitation, as every solution converges to a periodic solution with 
the same period as the excitation. Entrainment is important in many natural and artificial systems. Proper 
functioning of various organisms requires internal processes to entrain to the 24h solar day. Synchronous 
generators must entrain to the frequency of the grid. For more details, see, e.g., [8,9,13].

Assumption 1 implies in particular that every minor of J(i, x) is positive for all i ≥ 0 and all x ∈ Ω. In 
particular, the first-order minors, i.e. the entries of J(i, x) are positive, so the nonlinear system is strongly 
cooperative [18]. Our conditions here require more than cooperativity and as a consequence yield more 
powerful results on the asymptotic behavior of the system (see, e.g. [19,5]).

Proof of Theorem 7. Pick a ∈ Ω. Let x(i, a) denote the solution of (34) at time i with x0 = a. If x(i, a)
is T -periodic then there is nothing to prove. Thus, we may assume that y(i) := x(i, a) and w(i) := x(i +T, a)
are not identical and the T -periodicity of the vector field implies that both y, w are solutions of the dynamical 
system.

Theorem 6 implies that there exists m ≥ 0 such that either w1(i) > y1(i) or w1(i) < y1(i) for all i ≥ m. 
Without loss of generality, we may assume that the first of these two inequalities holds and this yields

x1((k + 1)T, a) > x1(kT, a) for all k ≥ m. (36)

Define

ωT (a) := {v ∈ Ω : lim
k→∞

x(nkT, a) = v for some sequence n1 < n2 < . . . }.

Since the solutions remain in the compact set Ω, the set ωT (a) is not empty. If v ∈ ωT (a) then x(T, v) = v, 
so the solution emanating from v is T -periodic. Thus, to complete the proof we need to show that ωT (a) is 
a singleton. We assume on the contrary that there exist p, q ∈ Ω, with p �= q, such that p, q ∈ ωT (a). Then 
there exist sequences {nk}∞k=1 and {mk}∞k=1 such that

p = lim
k→∞

x(nkT, a) and q = lim
k→∞

x(mkT, a).

Passing to subsequences, we may assume that nk < mk < nk+1 for all k. Now (36) yields x1(nkT, a) <
x1(mkT, a) < x1(nk+1T, a) for all k sufficiently large and taking k → ∞ yields p1 = q1. We conclude that 
any two points in ωT (a) have the same first coordinate.

Consider the trajectories emanating from p and q, that is, x(i, p) and x(i, q). Since ωT (a) is an invariant 
set, x(kT, p), x(kT, q) ∈ ωT (a) for all k, so

x1(kT, p) = x1(kT, q) for all k.

However, since p �= q this contradicts the eventual monotonicity property described in Theorem 6. This 
contradiction proves that ωT (a) is a singleton which completes the proof. �
Example 3. Consider the nonlinear system

x1(i + 1) = c11(i)x1(i)
1 + x1(i)

+ c12(i)x2(i)
1 + x2(i)

,

x2(i + 1) = c21(i)x1(i)
1 + x1(i)

+ c22(i)x2(i)
1 + x2(i)

. (37)
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Fig. 1. Solution x1(i) (marked by asterisks) and x2(i) (marked by circles) as a function of i for the system in Example 3.

Its Jacobian is

J(i, x(i)) =
[
c11(i)(1 + x1(i))−2 c12(i)(1 + x2(i))−2

c21(i)(1 + x1(i))−2 c22(i)(1 + x2(i))−2

]
.

Calculation of the integral in Assumption 1 yields

1∫
0

J(i, ra + (1 − r)b) dr =
[
c11(i)(1 + a1 + b1 + a1b1)−1 c12(i)(1 + a2 + b2 + a2b2)−1

c21(i)(1 + a1 + b1 + a1b1)−1 c22(i)(1 + a2 + b2 + a2b2)−1

]
.

We assume that there exist α, β, γ > 0 such that

α < cpq(i) < β and c11(i)c22(i) − c12(i)c21(i) > γ

for all 1 ≤ p, q ≤ 2 and all i ≥ 0. Then it is clear that Ω := [0, v] × [0, v] is an invariant set of (37) for 
any v > 0 sufficiently large, and that Assumption 1 holds. We also assume that the cpq(i)’s are all periodic 
with a common period T . Then Theorem 7 implies that every solution converges to a T -periodic trajectory.

Fig. 1 depicts the solution of (37) for

c11(i) = 5 + sin( iπ2 + 0.2),

c12(i) = 2 + sin( iπ2 ),

c21(i) = 3/2,

c22(i) = 4.2432,

and the initial condition x0 = [5 6]′. Note that for these values the system is T -periodic for T = 4. It may 
be seen that the trajectory x(i) converges to a periodic pattern, with the same period T . �

Consider now the time-invariant nonlinear system

x(i + 1) = f(x(i)) (38)

whose trajectories evolve on a compact and convex set Ω ⊂ R
n. The associated variational system is
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z(i + 1) =

⎛
⎝ 1∫

0

J(rx(i) + (1 − r)x̄(i)) dr

⎞
⎠ z(i). (39)

The next assumption guarantees that (39) is TPDTS.

Assumption 3. The matrix
∫ 1
0 J(ra + (1 − r)b) dr is TP for any a, b ∈ Ω.

Pick an arbitrary integer k ≥ 0. The time-invariant vector field is T -periodic for T = k and thus 
entrainment implies that every solution converges to a k-periodic trajectory. Since k is arbitrary this yields 
the following result.

Corollary 4. If Assumption 3 holds then any solution of (39) converges to an equilibrium point.

This result may be regarded as the analogue of a result of Smillie [16] on convergence to an equilibrium 
in a continuous-time nonlinear cooperative systems with a special Jacobian.

5. Conclusion

SSR matrices appear in many fields. The most prominent example are TP matrices. Here we have studied 
firstly the spectral properties of matrices that are SSRk for a single value k. An important property of such 
matrices is that some eigenvalues can be complex (unlike in the SSR case, where all eigenvalues are real). 
We then showed that the investigation of matrices that are SSRk for a single value k can be used as a basic 
building block for studying matrices that are SSRk for several values of k. e.g., SSR matrices or matrices 
that are SSRk for all odd k. As an application, we derived an analogue of the notion of TPDS for the 
discrete-time case and analyzed its asymptotic behavior.

As explained in the recent paper [10], VDPs satisfied by the solutions of linear time-varying systems can 
be used to prove the stability of certain nonlinear dynamical systems. In this context, it may be of interest 
to study the following problem. Consider the system

ẋ(s) = A(s)x(s), (40)

where x(s) ∈ R
n and A(s) is a continuous matrix function of s. For any pair t0 ≤ t, the solution of (40)

satisfies x(t) = Φ(t, t0)x(t0), where Φ(t, t0) is the transition matrix from time t0 to time t, that is, the 
solution at time t of the matrix differential equation

Φ̇(s) = A(s)Φ(s), with Φ(t0) = I.

An interesting question is: given a value k ∈ {1, . . . , n}, when will Φ(t, t0) be SSRk for all pairs t0, t
with t > t0, and what will be the implications of this for the solution of (40)?

It is well-known that the sum of two TP matrices is not necessarily a TP matrix. This means that 
establishing that Assumption 1 indeed holds, that is, that the matrix

∫ 1
0 J(i, ra + (1 − r)b) dr is TP for 

any a, b ∈ Ω and any i ≥ 0 is not trivial. An interesting direction for further research is to find simple 
conditions guaranteeing that this indeed holds.
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