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Abstract

We consider the class of the totally nonnegative matrices, i.e., the matrices having all

their minors nonnegative, and intervals of matrices with respect to the chequerboard

partial ordering, which results from the usual entrywise partial ordering if we reverse

the inequality sign in all components having odd index sum. For these intervals in

1982 we stated in this journal the following conjecture: If the left and right endpoints

of an interval are nonsingular and totally nonnegative then all matrices taken from

the interval are nonsingular and totally nonnegative. In this paper we show that

this conjecture is true if we restrict ourselves to the subset of the almost totally

positive matrices.
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1 Introduction

A real matrix is called totally nonnegative (resp., totally positive) if all its

minors are nonnegative (resp., positive). These matrices appear in various

branches of mathematics and its applications, e.g., in mechanics [8], statistics

[15], combinatorics [7], and computer aided geometric design [4], to name only

a few. For a thorough presentation of the properties of these matrices up to

1984 see [1]. Some more recent results can be found in [11]. Some present

research focusses on completion problems, cf. [6].

A class of real matrices which is related to this class is the inverse nonnegative

matrices; these are nonsingular matrices whose inverses are entrywise nonneg-
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ative. It was shown in [17] that these matrices enjoy a certain interval property:

If A and A are inverse nonnegative and A � A in the usual entrywise partial

ordering, then any matrix lying between both matrices is also inverse non-

negative. We have shown in [9] that a related interval property holds true for

some classes of the totally nonnegative matrices, where the partial ordering is

now the chequerboard partial ordering which results from the usual entrywise

partial ordering if we reverse the inequality sign in each component having

odd index sum. The subclasses include, e.g., the totally positive matrices and

the tridiagonal nonsingular totally nonnegative matrices. We stated therein

also the conjecture that the interval property holds true for the entire class

of the nonsingular totally nonnegative matrices. In [10] we proved that the

conjecture is true if we consider 2

2n�1

vertex matrices, i.e., matrices having

the entries of A and A as entries (n being the order of the matrices). This

paper aims to contribute to settling the above conjecture. We show that the

conjecture holds true for the almost totally positive matrices. These matrices

are intermediate between the nonsingular totally nonnegative matrices and

the totally positive matrices and were introduced in [14].

Now we introduce the notation used in our paper. For k; n 2 N, 1 � k � n, we

denote by Q

k;n

the set of all strictly increasing sequences of k integers chosen

from f1; : : : ; ng. The set Q

0

k;n

consists of the sequences from Q

k;n

which are

formed from consecutive numbers. We use the imprecise but intuitive notation

� n�

i

and � n (�

i

; �

j

) to denote the sequences in Q

k�1;n

and Q

k�2;n

which are

obtained from � by discarding its entries �

i

and �

i

and �

j

, respectively. With

each � = (�

i

) 2 Q

k;n

we associate a number c(�) which will play the role of a

measure for the chequeredness of a submatrix:

c(�) =

k�1

X

i=1

(�

i+1

� �

i

); where (�) =

(

0

1

if � is

odd

even

;

with the convention c(�) = 0 for � 2 Q

1;n

. Let A be a real n � n matrix.

For � = (�

1

; �

2

; : : : ; �

k

); � = (�

1

; �

2

; : : : ; �

k

) 2 Q

k;n

we denote by A[� j�] the

k�k submatrix of A contained in the rows indexed by �

1

; : : : ; �

k

and columns

indexed by �

1

; : : : ; �

k

. We suppress the brackets when we enumerate the in-

dexes explicitly. When � = �, the principal submatrix A[� j�] is abbreviated

to A[�].

The matrix A is called totally nonnegative (resp., positive) if detA[� j�] � 0

(resp., detA[� j�] > 0) for all �; � 2 Q

k;n

, k = 1; : : : ; n. Similarly as in [14],

A is termed almost totally positive if A is nonsingular, totally nonnegative,

and possesses the following property: If a minor of A with consecutive rows

and columns is zero then one of its diagonal entries is zero. It was proved in

[14] that if A is almost totally positive, then this property holds true for any

�; � 2 Q

k;n

, i.e., for all k = 1; : : : ; n
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8�; � 2 Q

k;n

: detA[� j�] = 0 =) 9i

0

2 f1; : : : ; ng : a

�

i

0

;�

i

0

= 0: (1)

Consequently, for this type of matrix, we know exactly which minors are pos-

itive and which are zero. Examples are the Hurwitz matrix [2], [14], [16] and

the B{spline collocation matrix [14]. In [12] these matrices are characterised

by means of Neville elimination, in terms of the positivity of a reduced number

of their minors, and in terms of their factorisation as a product of bidiagonal

elementary matrices and of their LU{factorisation.

We will make use of the following properties of totally nonnegative matrices

(speci�ed here for our purposes):

Lemma (Cryer [5]) Let A be a p�(k+1) matrix with 2 � k � p. Assume that

the �rst k as well as the last k columns of A form totally nonnegative matrices.

Also assume that for some � 2 Q

k;p

and some m such that 2 � m � k,

detA[� j 1; : : : ; m̂; : : : ; k + 1] < 0

1

. Then columns 2; : : : ; m̂; : : : ; k of A have

rank k� 2, and column m of A depends linearly upon columns 2; : : : ; m̂; : : : ; k

of A. If k = 2, then the column m of A is zero.

Theorem (Cryer [5]) If A is a nonsingular n � n matrix, then A is totally

nonnegative i� for all k 2 f1; : : : ; ng

8� 2 Q

0

k;n

; � 2 Q

k;n

: detA[� j�] � 0: (2)

An alternative determinantal characterisation is presented in [13].

Shadow Lemma [3] Let A = (a

ij

) be a nonsingular totally nonnegative

matrix of order n and let a

i

0

;j

0

= 0. If i

0

< j

0

then the submatrix A[1; 2; : : : ; i

0

�

1; i

0

j j

0

; j

0

+1; : : : ; n] (called the right shadow) is zero, and if i

0

> j

0

then the

submatrix A[i

0

; i

0

+1; : : : ; n j 1; 2; : : : ; j

0

�1; j

0

] (called the left shadow) is zero.

2 Main Result

We consider the (real) n � n matrices endowed with the usual (entrywise)

partial ordering � and with the chequerboard partial ordering �

�

: For A;B 2

R

n�n

; A = (a

ij

); B = (b

ij

),

A � B () a

ij

� b

ij

;

A �

�

B () (�1)

i+j

a

ij

� (�1)

i+j

b

ij

;

9

>

=

>

;

i; j = 1; : : : ; n:

1

The notation m̂ means with the exception of m.
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For #A; "A 2 R

n�n

with #A �

�

"A, we denote by [#A; "A]

�

the matrix interval

w.r.t. �

�

, i.e.,

[#A; "A]

�

= fA 2 R

n�n

j #A �

�

A �

�

"Ag:

Such a matrix interval can also be regarded as an interval matrix, i.e., a matrix

with all entries taken from the set of the compact and nonempty real intervals

[a; a]; a; a 2 R with a � a. Then we can represent #A and "A in the following

way

2

:

(#A)

ij

=

(

a

ij

a

ij

if i+ j is

even

odd

("A)

ij

=

(

a

ij

a

ij

if i+ j is

even

odd

:

To prove the main result, we need two lemmata.

Lemma 1 Let #A; "A 2 R

n�n

be nonsingular and totally nonnegative and let

#A �

�

"A. Then for any A 2 [#A; "A]

�

we have

0 < detA[�] for all � 2 Q

k;n

with c(�) = 0; k = 1; : : : ; n:

Proof: From Kuttler's result [17] it follows that 0 < detA (cf. [9], [10]). By

[1, Cor. 3.8] any principal submatrix of #A and "A is nonsingular, so that the

above result applies to #A[�] and "A[�] for any � 2 Q

k;n

with c(�) = 0: �

Lemma 2 Let #A; "A be nonsingular and totally nonnegative with #A �

�

"A.

Let a

i

0

;j

0

= 0. Then for any A 2 [#A; "A]

�

it holds that a

ij

= 0

either for all

j

0

� j if i < i

0

and j

0

< j if i = i

0

; if i

0

< j

0

;

or for all

j � j

0

if i

0

< i and j < j

0

if i = i

0

; if i

0

> j

0

:

Proof: If a

i

0

;j

0

= 0 then by Lemma 1 we can conclude that i

0

6= j

0

. Assume

w.l.o.g. that 1 < i

0

< j

0

< n. By the Shadow Lemma, a

i

0

;j

0

throws a shadow

to the right (in #A or in "A). It follows that the vanishing entries a

i

0

�1;j

0

,

a

i

0

�1;j

0

, a

i

0

;j

0

+1

, a

i

0

;j

0

+1

throw a shadow to the right in #A as well as in "A,

from which the statement follows: �

2

Note that this notation di�ers from the one used in [9].
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Now we state and prove our main result.

Theorem 1 Let #A; "A 2 R

n�n

be almost totally positive with #A �

�

"A.

Then any A 2 [#A; "A]

�

is almost totally positive.

Proof: Let A = (a

ij

) 2 [#A; "A]

�

. To show that A is totally nonnegative it is

su�cient by Cryer's Theorem to show that (2) holds for all k = 1; : : : ; n. We

will prove (1), (2) by induction on k = 1; : : : ; n� 1 (the case k = n is obvious

by Lemma 1). The case k = 1 is trivial. Assume that k � 2 and that (1), (2)

hold true for all minors of order less than k. To show (1), (2) for all minors of

order k we proceed by induction on l = c(�). If l = 0 then

#A[� j�] �

�

A[� j�] �

�

"A[� j�]

or

"A[� j�] �

�

A[� j�] �

�

#A[� j�]

holds. If #A[� j�], "A[� j�] are nonsingular, (2) is true by Lemma 1. If #A[� j�]

or "A[� j�] is singular it follows from the hypothesis of the theorem that there

is an i

0

2 f1; : : : ; kg with a

�

i

0

;�

i

0

= 0. Assume w.l.o.g. that �

i

0

< �

i

0

. By

Lemma 2 the entries a

ij

vanish for all �

i

0

� j if i < �

i

0

and for all �

i

0

< j if

i = �

i

0

. Then we obtain (assuming w.l.o.g. that 1 < i

0

) that

detA[� j�]= detA[�

1

; : : : ; �

i

0

�1

j�

1

; : : : ; �

i

0

�1

] (3)

� detA[�

i

0

; : : : ; �

k

j�

i

0

; : : : ; �

k

]:

Now the induction hypothesis applies to (3). To prove (1) let detA[� j�] = 0

which implies by Lemma 1 that #A[� j�] or "A[� j�] is singular and we again

arrive at (3) and the induction hypothesis applies.

Assume now that (1), (2) are shown for all sequences � 2 Q

k;n

with c(�) � l.

Let � 2 Q

k;n

with c(�) = l + 1 and assume that

detA[� j�] < 0: (4)

We can choose �

0

2 Q

k+1;n

with �

0

1

= �

1

; �

0

k+1

= �

k

and c(�

0

) = l. Then we

have

c(�

0

1

; : : : ; �

0

k

) � l and c(�

0

2

; : : : ; �

0

k+1

) � l: (5)

By the induction hypothesis the submatrices A[� j�

0

1

; : : : ; �

0

k

] and A[� j

�

0

2

; : : : ; �

0

k+1

] are totally nonnegative. Now we apply Cryer's Lemma. We treat

the case k = 2 �rst. It follows that a

�

i

;�

0

2

= 0; i = 1; 2, and by Lemma 2,

a

�

1

;�

2

= 0 or a

�

2

;�

1

= 0. But then detA[� j�] � 0, a contradiction to (4).
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Now let k � 3. By Cryer's Lemma, there is a column of A[� j�

0

] indexed

by �

0

m

, 2 � m � k, which depends linearly upon columns �

0

2

; : : : ;

^

�

0

m

; : : : ; �

0

k

of A[� j�

0

], whence

detA[�

2

; : : : ; �

k

j�

0

2

; : : : ; �

0

k

] = 0: (6)

It follows from the induction hypothesis that there is an i

0

2 f2; : : : ; kg such

that a

�

i

0

;�

0

i

0

= 0. W.l.o.g. assume that �

i

0

< �

0

i

0

. Then by Lemma 2 (note

that �

0

i

� �

i

; i = 2; : : : ; k) we arrive at (3). Its right-hand side is nonnega-

tive by the induction hypothesis, in contradiction to (4). Finally, assume that

detA[� j�] = 0. We apply an identity given in [15, p.8] (cf. [1, formula (1.39)])

to the submatrix A[� j�

0

] which yields, with the notation �

(1)

= � n �

1

,

detA[�

(1)

j�

0

n (�

1

; �

k

)] detA[� j�]

= detA[�

(1)

j� n �

1

] detA[� j�

0

n �

k

] (7)

+ detA[�

(1)

j� n �

k

] detA[� j�

0

n �

1

]:

� Case (i): detA[� j�

0

n �

1

] detA[� j�

0

n �

k

] = 0

By (5) and the induction hypothesis, a diagonal entry of one of the two

submatrices must vanish. Then either we have found a vanishing diagonal

entry of the matrix A[� j�] or we can factorise detA[� j�] as in (3). But

then the induction hypothesis applies.

� Case (ii): detA[� j�

0

n �

i

] > 0; i = 1; k

By the induction hypothesis detA[�

(1)

j�n�

i

] � 0 for i = 1; k. Since the left-

hand side of (7) is zero, by our assumption, we have detA[�

(1)

j� n �

1

] = 0.

Since the diagonal entries of this submatrix are diagonal entries of A[� j�]

we are done by the induction hypothesis: �
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