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Ž .A real polynomial is asymptotically stable when all of its zeros lie in the open
Ž .left half of the complex plane. We show that the Hadamard coefficient-wise

product of two stable polynomials is again stable, improving upon some known
results. Via the associated Hurwitz matrices we find another example of a class of
totally nonnegative matrices which is closed under Hadamard multiplication.
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1. INTRODUCTION

The Hadamard product of two polynomials

p x s a x n q a x ny1 q ??? qa x q aŽ . n ny1 1 0

q x s b x m q b x my 1 q ??? qb x q bŽ . m my1 1 0
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w xin R x is defined to be

p) q x s a b x k q a b x ky1 q ??? qa b x q a b ,Ž . Ž . k k ky1 ky1 1 2 0 0

Ž .where k s min n, m .
The problem of determining the locus of zeros of p) q in terms of those

w xif p and q has a long history. In 1895, Malo 13 proved that if the zeros of´
p are all real and the zeros of q are all real and of the same sign then all

w xthe zeros of p) q are real as well. Weisner 19 generalized this result to
the case in which the zeros of p are all real and negative, while those of q
lie in a sector S with its vertex at the origin and with aperture a F p ;a

then all zeros of p) q lie in S as well. More generally, from a theorem ofa

w x w xde Bruijn 3 and using 16 it follows that if all the zeros of p are in a
sector S of aperture a centered on the negative real axis, and all thea

zeros of q are in a similar sector S of aperture b , where a , b F p , thenb

all zeros of p) q are in the sector S .aqb

Here we concentrate on classes of stable polynomials. A polynomial
w x Ž .p g R x is Hurwitz or asymptotically stable if every zero of p is in the

open left half of the complex plane, and p is quasi-stable if every zero of p
w xis in the closed left half of the complex plane. Also, p g R x is sinusoidal

if every zero of p is purely imaginary or 0, and p is almost sinusoidal if
exactly one zero of p is not purely imaginary or 0, and is negative. This

Ž .terminology is motivated by consideration of the long-term t ª ` quali-
tative behaviour of a general solution to the differential equation
Ž . Ž . w xp drdt V t s 0, see Section 3.1 of 2 .
Our main result is the following. The multiplicity of j as a zero of p is

Ž .denoted by mult j , p .

w xTHEOREM 1. Let F, P g R x be quasi-stable.

Ž .a Then F ) P is quasi-stable.

Ž .b If either F or P is sinusoidal then F ) P is sinusoidal. If both F and
Ž . Ž .P are sinusoidal and mult 0, F and mult 0, P ha¨e different parities then

F ) P s 0.

Ž . Ž . Ž .c If both F and P are almost sinusoidal and mult 0, F and mult 0, P
ha¨e the same parity, then F ) P is almost sinusoidal.

Ž . Ž . Ž .d If neither b nor c apply then F ) P has no purely imaginary zeros
except possibly at the origin.

Ž . Ž .e As a special case of d , if both F and P are stable then F ) P is also
stable.
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As a simple consequence we have the following corollary.

w xCOROLLARY 2. For any P g R x of degree n, if P is quasi-stable then
Ž .n Ž .nx q 1 ) P is quasi-stable. If P is sinusoidal then x q 1 ) P is sinusoidal,

Ž .nand otherwise x q 1 ) P has no purely imaginary zeros except possibly at
the origin.

Ž w x.The key to the proof is the Hermite]Biehler Theorem p. 228 of 4
whereby the problem is recast as one involving polynomials with only real
zeros. After proving Theorem 1 we apply it to a related problem regarding
Hadamard products of totally nonnegative matrices.

It is interesting to note that a similar Hadamard product result does not
w xhold for Schur stability. A polynomial p g R x is Schur stable if every

Ž .Žzero of p is in the open unit disc with center at 0. Clearly p s x q 0.9 x
. 2 2q 0.8 s x q 1.7x q 0.72 is Schur stable but p) p s x q 2.89 x q 0.5184

Žhas one zero less than y2.89r2 in fact the zeros of p) p are y2.697 . . .
.and y0.1921 . . . .

A polynomial is aperiodic if all its zeros are simple and negative. In
Ž .passing, we note that from Theorem 4 a , it follows that the Hadamard

product of two aperiodic polynomials is aperiodic.

2. PROOFS

w xSuppose that p, q g R x both have only real zeros, that those of p are
j F ??? F j , and that those of q are u F ??? F u . We say that p1 n 1 m
interlaces q if deg q s 1 q deg p and the zeros of p and q satisfy

u F j F u F ??? F j F u .1 1 2 n nq1

We also say that p alternates left of q if deg p s deg q and the zeros of p
and q satisfy

j F u F j F ??? F j F u .1 1 2 n n

We use the notations p†q for ‘‘p interlaces q,’’ p < q for ‘‘p alternates
left of q,’’ and p $ q for ‘‘either p†q or p < q.’’ Of course, any polyno-
mial which stands in one of these relations a fortiori has only real zeros. By
convention, we say that for any polynomial p with only real zeros, all of

w xp†0, 0†p, p < 0, and 0 < p hold. A nonzero p g R x is standard when
its leading coefficient is positive. For brevity, we say that a polynomial has
only nonpositï e zeros to indicate that all of its zeros are real and nonposi-
tive.
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Ž . Ž . Ž 2 . Ž 2 . w xTHEOREM 3 Hermite-Biehler . Let F x s f x q xg x g R x be
standard. Then:

Ž .a F is quasi-stable if and only if both f and g are standard, ha¨e only
nonpositï e zeros, and g $ f.

Ž . Ž . Ž .b F is stable if and only if F is quasi-stable, f 0 / 0, and gcd f , g
s 1.

Ž .c F is sinusoidal if and only if F is quasi-stable and either f s 0 or
g s 0.

Ž .d F is almost sinusoidal if and only if F is quasi-stable, f / 0 and
Ž .g / 0, and either f s cg or f s cxg for some c ) 0. In this case, mult 0, F is

e¨en or odd according to whether f s cg or f s cxg.

w xThe proof of the Hermite]Biehler Theorem in 4 covers only the case
of stable polynomials, but the statement given here can be deduced from it
easily by a limiting argument. Using Theorem 3 we reduce Theorem 1 to
the following.

w xTHEOREM 4. Let f , g, p, q g R x be standard with only nonpositï e
zeros.

Ž .a If f ) p / 0 then f ) p has only nonpositï e zeros which are simple
except possibly at the origin.

Ž .b If g $ f and q $ p then g ) q $ f ) p.
Ž .c If g $ f and q $ p, and f , g, p, q are all nonzero, and neither

f s c g and p s c q nor f s c xg and p s c xq for any c ) 0 and c ) 0,1 2 1 2 1 2
Ž . r � Ž . Ž .4then gcd g ) q, f ) p s x , where r [ max mult 0, g , mult 0, q .

Proof of Theorem 1. We may assume that F and P are standard. Since
Ž . Ž 2 . Ž 2 . Ž .F and P are quasi-stable, we have F x s f x q xg x and P x s

Ž 2 . Ž 2 .p x q xq x , where f , g, p, q are standard, have only nonpositive zeros,
Ž .Ž . Ž .Ž 2 .and g $ f and q $ p, by Theorem 3. Now F ) P x s f ) p x q

Ž .Ž 2 .x g ) q x and by Theorem 4, f ) p and g ) q are standard with only
Ž . Ž .nonpositive zeros, and g ) q $ f ) p. This proves a . For b , if either F or

P is sinusoidal, then one of f , g, p, q is zero, so that one of f ) p or g ) q
is zero, so that F ) P is sinusoidal. If both F and P are sinusoidal with
multiplicities at 0 of opposite parity then either f s 0 s q or g s 0 s p. In

Ž .either case, f ) p s 0 s g ) q, so that F ) P s 0. For c , if F and P are
Ž . Ž .almost sinusoidal with mult 0, F and mult 0, P of the same parity, then

f , g, p, q are all nonzero, and either f s c g and p s c q or f s c xg and1 2 1
p s c xg, for some c ) 0 and c ) 0. Thus, f ) p and g ) q are nonzero2 1 2

Ž . Ž .and either f ) p s c c g ) q or f ) p s c c x g ) q , so that F ) P is1 2 1 2
Ž . Ž .almost sinusoidal. For part d , case c of Theorem 4 applies, and since

Ž . rgcd g ) q, f ) p s x , the only point of the imaginary axis which can be a
Ž . Ž .zero of F ) P is the origin. Part e follows from d .
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We now summarize the lemmas required for our proof of Theorem 4;
w xproofs of Lemmas 5 and 6 are given in Section 3 of 18 .

w xLEMMA 5. Let p, q g R x be standard with only real zeros.

Ž .a If q < p then q < p q q and p q q < p.
Ž .b If q†p then q†p q q and p q q < p.
Ž .c If q†p then q†p y q and p < p y q.
Ž .d Assume that q < p, and let the leading coefficients of q and p be

C and C , respectï ely.q p
Then

p y q < q and p y q < p if C ) C ,q p

p y q†q and p y q†p if C s C ,q p

q < p y q and p < p y q if C - C .q p

w xLEMMA 6. Let f , g , g g R x be standard with only real zeros.1 2

Ž .a If g $ f and g $ f then g q g $ f.1 2 1 2

Ž .b If f $ g and f $ g then f $ g q g .1 2 1 2

Ž . Ž . Ž . Ž .c Under either condition a or b , gcd g q g , f dï ides both1 2
Ž . Ž .gcd g , f and gcd g , f .1 2

Lemma 7 is a useful characterization of the relation g $ f , due essen-
w x w xtially to Krein. Proposition 1.6 of 17 and results of Section 3 of 18

provide a proof.

w xLEMMA 7. Let f g R x be standard with only real zeros. Let the distinct
ˆ Ž . Ž .zeros of f be j , j , . . . , j let f [ fr x y j , and let m s mult j , f for1 2 d i i i i

1 F i F d.

Ž . w x Ž . Ž .a E¨ery g g R x such that deg g F deg f and m y 1 Fi
Ž .mult j , g for each 1 F i F d may be written uniquely in the formi

d
ˆg s c f q c f ,Ý0 i i

is1

where c g R for each 0 F i F d.i

Ž . w xb The polynomial g g R x is standard, has only real zeros, and is
Ž .such that g $ f if and only if g may be expanded as in a with c G 0 for eachi

0 F i F d.
Ž . Ž . Ž . d Ž .m iyd ic If g is expanded as in a , then gcd g, f s Ł x y j ,is1 i

where d [ 1 if c / 0 and d [ 0 if c s 0, for each 1 F i F d.i i i i
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We also need the following form of ‘‘Newton’s Inequalities’’; see Lemma
w x3 in Section 8.2 of 12 , for example.

w x Ž . n iLEMMA 8. Let f g R x be standard, say f x s Ý a x .is0 i

Ž . 2 Ž .a If f has only real zeros, then a y a a ) 0 for all mult 0, fi iy1 iq1
Ž .q 1 F i F deg f .

Ž . Ž .b If f has only nonpositï e zeros, then a ) 0 for all mult 0, f F i Fi
Ž .deg f .

w xLEMMA 9. Let f , g g R x be standard, with only nonpositï e zeros, and
Ž . n i Ž . n i Žsuch that g $ f. Say f x s Ý a x and g x s Ý b x where b s 0 isis0 i is0 i n

.possible . If there exists an index j such that a s b / 0 and a s b / 0j j jy1 jy1
then f s g.

Ž .Proof. From Lemma 5 it follows that f y 1 y « g has only real zeros,
for all « g R. Thus, by Lemma 8, we have

2
a y 1 y « b y a y 1 y « b a y 1 y « b ) 0Ž . Ž . Ž .Ž . Ž . Ž .i i iy1 iy1 iq1 iq1

1Ž .

Ž .for all indices i such that a y 1 y « b / 0. Now suppose that f / g buti i
that there exists an index j as in the hypothesis. Then there exists such an
index j such that either a / b or a / b ; we assume the formerjq1 jq1 jy2 jy2

Ž .case as the argument for the latter case is analogous. Substituting into 1
and rearranging, we obtain

« 2 b2 y b b y « b a y b ) 0, 2Ž .Ž .Ž .j jy1 jq1 jy1 jq1 jq1

which is valid for all 0 / « g R. By Lemma 8 we have b2 y b b ) 0.j jy1 jq1
Ž .Now take « of the same sign as b a y b , and withjy1 jq1 jq1

b a y bŽ .jy1 jq1 jq1
< <0 - « - .2b y b bj jy1 jq1

Ž .This contradicts 2 , completing the proof.

To prove Theorem 4 we calculate with several additional products and
w x j jlinear transformations on R x . Let f s Ý a x and g s Ý b x be polyno-j j j j
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mials, and define

f (g s j!a b x jÝ j j
j

Lf s a x jrj!Ý j
j

Jf s a x jq1r j q 1Ž .Ý j
j

Df s ja x jy1.Ý j
j

d ˆNotice that with the notation of Lemma 7 we have Df s Ý m f . Weis1 i i
also have the following useful computation rules; the proofs are simple
calculations which are omitted.

w xLEMMA 10. For any f , g g R x :

Ž .a The operations ) and ( are commutatï e, associatï e, and R-
bilinear.

Ž .b L, J, and D are R-linear.
Ž .c DJf s f.
Ž . Ž . Ž .d JDf s f x y f 0 .
Ž .e Lxf s JLf.
Ž . Ž . ŽŽ . .f f ( xg s x Df (g .
Ž . Ž . Ž . Ž .g D f (g s Df ( Dg .
Ž . Ž . Ž . Ž .h J f (g s Jf ( Jg .
Ž . Ž . Ž . Ž .i L f (g s Lf (g s f ( Lg s f ) g.

Ž . w xTheorem 11 a sharpens a result of Laguerre; see 12, p. 341 .

w xTHEOREM 11. Let f , g g R x be standard with only real zeros.

Ž . ka For each k g N, J Lf has only real zeros.
Ž . kb If f has only nonpositï e zeros then for each k g N, J Lf has only

nonpositï e zeros, which are simple except possibly for the origin.
Ž . k kc If g $ f then J Lg $ J Lf for each k g N.
Ž .d If f has only nonpositï e zeros and g $ f and g / cf for all c g R

Ž k k . kqm Ž .then gcd J Lg, J Lf s x for each k g N, where m [ mult 0, g .

Ž . Ž . Ž . Ž .Proof. For a and b we use induction on deg f , the basis deg f F 1
being clear. For the induction step we assume the results for f and prove
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Ž .them for x y u f , where u g R. By Lemma 10 we have

J kL x y u f s J k J y u Lf s 1 y u D J kq1Lf .Ž . Ž . Ž .

By the induction hypothesis J kq1Lf has only real zeros, so that by Rolle’s
kq1 kq1 k Ž .Theorem, DJ Lf†J Lf. From Lemma 5 we deduce that J L x y u f

has only real zeros, and that

J kLf†J kL x y u f . 3Ž . Ž .

Ž .This proves a . Furthermore, if f has only nonpositive zeros then we may
assume that u F 0, and by induction that J kq1Lf has only nonpositive
zeros which are simple except possibly at the origin. By Lemma 7 we see

Ž . kq1 kq1 ŽŽ . kq1 kq1 .that 1 y u D J Lf $ J Lf and that gcd 1 y u D J Lf , J Lf s
r k Ž . Ž . kq1x for some r g N. Thus J L x y u f s 1 y u D J Lf also has only

nonpositive zeros which are simple except possibly at the origin. This
Ž .proves b .
Ž . Ž .For c and d we may write

d
ˆg s c f q c fÝ0 i i

is1

with each c G 0, by Lemma 7, with the notation explained there. Thusi

d
k k k ˆJ Lg s c J Lf q c J Lf .Ý0 i i

is1

k ˆ k k kŽ .By formula 3 we have J Lf †J Lf for each 1 F i F d, so that J Lg $ J Lfi
Ž .by Lemmas 5 and 6, which proves c .

Ž .For d , first notice that the largest power of x which divides
Ž k k . kqm Ž k k .gcd J Lg, J Lf is x . Thus, it suffices to show that gcd J Lg, J Lf is

w xa power of x. Consider any q g R x with only nonpositive zeros. By part
Ž . k kq1 Ž k kq1 . kq rb , and since J Lq s DJ Lq, we have gcd J Lq, J Lq s x , where

Ž . Ž k k Ž . .r [ mult 0, q . Thus, for any u F 0 we have gcd J Lq, J L x y u q s
Ž k Ž . kq1 . Ž k kq1 . kq rgcd J Lq, 1 y u D J Lq s gcd J Lq, J Lq s x . Thus, for each

k ˆ k kqr i ˆŽ . Ž .1 F i F d we have gcd J Lf , J Lf s x , where r [ mult 0, f . Sincei i i
g / cf for all c g R, there is an index 1 F i F d with c / 0. By Lemma 6,i

k k k kˆŽ . Ž .gcd J Lg, J Lf divides gcd J Lf , J Lf , and hence is a power of x.i
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Ž . w xTheorem 12 a is implied by a result of Schur 15 .

w xTHEOREM 12. Let f , g, p g R x be standard with only nonpositï e zeros.

Ž .a If f ( p / 0 then f ( p has only nonpositï e zeros.
Ž .b If g $ f then g( p $ f ( p.
Ž . rc If g $ f and g( p s f ( p / 0 then either f s g or f ( p s cx for

some c g R and r g N.

Ž . Ž . Ž .Proof. We prove a and b together by induction of d [ deg f q
Ž . Ž .deg p , the basis d F 1 being clear. For a we assume the result for f and

Ž .p and prove it for f and x y u p, where u F 0. By Lemma 10 we have

f ( x y u p s x Df ( p y u f ( p .Ž . Ž . Ž .Ž .

Ž .Since Df†f , the induction hypothesis implies that Df ( p $ f ( p, and
ŽŽ . .since f ( p has only nonpositive zeros, it follows that f ( p $ x Df ( p .

Ž .Now by Lemma 5 it follows that f ( x y u p has only nonpositive zeros,
Ž .proving part a , and that

f ( p $ f ( x y u p.Ž .

By symmetry, for each j F 0 we also have

f ( p $ x y j f ( p. 4Ž . Ž .

Ž . w xTo prove the induction step for b , we show that if f , h, p g R x have
only nonpositive zeros and f $ h then f ( p $ h( p. By Lemma 7 we may
write

k
ˆf s c h q c h ,Ý0 i i

is1

Ž .where each c G 0, with the notation explained there. By 4 we havei
ĥ ( p $ h( p for each 1 F i F k. By Lemma 6 we conclude that f ( p $i
h( p, as required.

Ž .For c , since f ( p has only nonpositive zeros, Lemma 8 applies. Thus,
either f ( p is a power of x, or it has two consecutive nonzero coefficients.
In the latter case, since g( p s f ( p, it follows that f and g have a pair of
consecutive equal nonzero coefficients. By Lemma 9, since g $ f this
implies that f s g.

Ž .Proof of Theorem 4. Part a follows immediately from Theorems 11
Ž .and 12, since f ) p s L f ( p .

Ž .For part b , from Theorems 11 and 12 we see that if g $ f then
Ž .g ) p $ f ) p, and equivalently that if q $ p then f ) q $ f ) p. We now
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Ž . Ž .show that for j F 0 and u F 0, g ) q $ x y j g ) x y u q. Notice that

x y j g ) x y u q s x y j g(L x y u qŽ . Ž . Ž . Ž .
s x y j g( 1 y u D JLqŽ . Ž .Ž .
s x g( 1 y u D Lq y j g( 1 y u D JLq .Ž . Ž .Ž . Ž .

By Theorem 11, JLq has only nonpositive zeros. For the first term on the
Ž .right side we have 1 y u D Lq < Lq by Rolle’s Theorem and Lemma 5.

Ž .Thus, by Theorem 11, g( 1 y u D Lq $ g(Lq, and since these polyno-
Ž Žmials have only nonpositive zeros, it follows that g(Lq $ x g( 1 y

. . Ž .u D Lq . For the second term on the right side we have Lq† 1 y u D JLq
by Rolle’s Theorem and Lemma 5. It follows from Theorem 10 that

Ž . Žg(Lq $ g( 1 y u D JLq. From Lemma 6 we conclude that g ) q $ x y
. Ž .j g ) x y u q.

Ž .To complete the proof of b , we have by Lemma 7 that

d
ˆg s c f q c fÝ0 i i

is1

and
e

q s s p q s p ,ˆÝ0 j j
js1

where each c G 0 and s G 0, with the notation explained there. Hencei j

d e
ˆg ) q s c s f ) p , 5Ž .ˆÝ Ý ž /i j i j

is0 js0

ˆ ˆwhere f [ f and p [ p. By the previous paragraph, we have f ) p $ˆ ˆ0 0 i j
f ) p for each 0 F i F d and 0 F j F e. By Lemma 6 it follows that
g ) q $ f ) p, as was to be shown.

Ž . rFor c , notice that x is the largest power of x which divides
Ž . Ž .gcd g ) q, f ) p . Thus, it suffices to show that gcd g ) q, f ) p is a power

of x. We may assume that f , g, p, q are all monic. If q s p then g / f ,
and by Theorem 11 we see that g( p $ f ( p and if g( p s f ( p then f(p

Ž .is a power of x. It then follows from Theorem 10 that gcd g ) p, f ) p is a
power of x. Similarly, we are also done if g s f. In the remaining case

Ž .g / f and q / p, so that in the expansion 5 there is a term with c ) 0i
Ž .and s ) 0, with 1 F i F d and 1 F j F e. By Lemma 6, gcd g ) q, f ) pj

ˆ ˆŽ . Ž . Ž .divides gcd f ) p , f ) p , where f [ fr x y j and p [ pr x y u .ˆ ˆi j i i j j
Ž .Since by hypothesis we do not have both f s xg and p s xq, we may

assume that either j / 0 or u / 0. Thus it suffices to show for j F 0 andi j



HADAMARD PRODUCTS 807

Ž Ž . Ž . .u F 0 with either j / 0 or u / 0 that gcd g ) q, x y j g ) x y u q is a
power of x. By symmetry, we may assume that j / 0. By the above

Ž .argument for b ,

x y j g ) x y u q s x g( 1 y u D Lq y j g ) x y u q ,Ž . Ž . Ž . Ž .Ž . Ž .

Ž Ž . . Ž .and g ) q $ x g( 1 y u D Lq and g ) q $ g ) x y u q. Thus, Lemma 6
Ž Ž . Ž . . Ž Žimplies that gcd g ) q, x y j g ) x y u q divides gcd g ) q, g ) x y

. . Ž . Žu q . By Theorem 12 we see that g(q $ g( x y u q and if g(q s g( x
. Ž .y u q then g( x y u q is a power of x. Now Theorem 11 implies that
Ž Ž . .gcd g ) q, g ) x y u q is a power of x. This completes the proof.

3. RELATED MATRIX RESULTS

We now turn to some matrix results related to stability and Hadamard
Ž . n ny1products of polynomials. With a real polynomial p x s a x q a xn ny1

Ž . Ž Ž ..q ??? qa x q a we associate the n-by-n Hurwitz matrix H p s h p ,1 0 i j
Ž .defined by h p s a for each 1 F i, j F n, where by conventioni j 2 jyi

a s 0 if k - 0 or k ) n. That is,k

a a a ??? 01 3 5

a a a ??? 00 2 4

0 a a ??? 01 3

0 a a ??? 0H p s .Ž . 0 2
. . .. . .. . .
0 ??? a a 0ny3 ny1

0 0 ??? a any2 n

A real matrix M is totally nonnegatï e if every minor of M is nonnega-
tive; in particular, each entry of M is nonnegative. This class of matrices

w xhas an interesting and applicable theory, as developed in 5, 10 . The
Ž .relevant theorem for us is that the Hurwitz matrix H p is nonsingular

w xand totally nonnegative if and only if p is stable and a ) 0, see 1, 11 .n
Ž .Also, if p is quasi-stable then H p is totally nonnegative, but the

w xconverse does not hold 1, pp. 408, 411 .
Ž . Ž .Given two n-by-n matrices A s a and B s b the Hadamardi j i j

Ž .product of A and B is the n-by-n matrix A) B defined by A) B s a b .i j i j
wComprehensive surveys of the Hadamard matrix product are found in 7,

x w x8 . As shown in 9, 14 , the Hadamard product of two totally nonnegative
matrices need not be totally nonnegative. However, some subclasses of
totally nonnegative matrices are known to be closed under Hadamard
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multiplication. These include:

Ž . Ž a j.i Generalized Vandermonde matrices x with 1 F i, j F n, wherei
either the bases 0 - x - x - ??? - x or the exponents a - ??? - a1 2 n 1 n

Ž w x.are fixed see p. 99 of 4 .
Ž . w xii Tridiagonal totally nonnegative matrices 14 .
Ž .iii Triangular totally nonnegative infinite Toeplitz matrices such

w xthat the value on the kth diagonal is a polynomial function of k 18 .
Ž . Ž .iv Green’s matrices g which are totally nonnegative, wherei j

Žg s a b and a , b , . . . , a , b are positive real numbers thisi j minŽ i, j. max Ž i, j. 1 1 n n
w x w x.fact follows from p. 91 of 5 and p. 111 of 10 . More precisely, the

following is true: for any fixed number r, the set of totally nonnegative
Green’s matrices of rank at least r is closed under the Hadamard product,

w xcf. p. 91 of 5 .
Ž . w xv Finite moment matrices 6 of probability measures which are

Žeither symmetric around 0 or possess nonnegative support Heiligers,
.private communication .

As a consequence of Theorem 1 and the above remarks, we may include
another class of matrices in this list.

THEOREM 13. If M and N are n-by-n nonsingular totally nonnegatï e
Hurwitz matrices then M) N is a nonsingular totally nonnegatï e Hurwitz
matrix.

The condition of nonsingularity can be weakened slightly by using
w xTheorem 2 of 1 .
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