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A STUDY OF THE VALIDITY OF OPPENHEIM’S INEQUALITY FOR HURWITZ

MATRICES ASSOCIATED WITH HURWITZ POLYNOMIALS∗
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Abstract. In this paper, Hurwitz polynomials, i.e., real polynomials whose roots are located in the open left half of

the complex plane, and their associated Hurwitz matrices are considered. New formulae for the principal minors of Hurwitz

matrices are presented which lead to (i) a new criteria for deciding whether a polynomial is Hurwitz, (ii) an inequality of a

type of Oppenheim’s inequality for the Hurwitz matrices up to order 6, and (iii) a necessary and sufficient condition for the

Hadamard square root of Hurwitz polynomials of degree five to be Hurwitz.
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1. Introduction. A real symmetric n× n matrix A is said to be positive semidefinite if xTAx ≥ 0 for

all x ∈ Rn; A is positive definite if xTAx > 0 for all x ∈ Rn, x 6= 0. Let A = [aij ] and B = [bij ] be real n×n
matrices. Their Hadamard product (also called Schur product) A ◦B is defined as the entrywise product of

A and B, A ◦ B = [aijbij ]. Let A and B are symmetric. The Loewner partial order A � B denotes that

A−B is positive semidefinite, and A � B that A−B is positive definite.

We consider polynomials with positive coefficients, i.e., polynomials of the form

(1.1) p(x) =

n∑
k=0

akx
k,

where ai , i = 0, . . . , n, are positive numbers. The polynomial p is said to be Hurwitz or stable if all the

roots of p lie in the open left half of the complex plane. By P n we denote the family of all polynomials of

degree n with positive coefficients and by Hn the family of all Hurwitz polynomials in P n.

Let p, q are two polynomials of equal degree n,

p(x) =

n∑
k=0

akx
k , q(x) =

n∑
k=0

bkx
k.

Then, the Hadamard product p ◦ q of the two polynomials is defined by

(p ◦ q)(x) :=

n∑
k=0

akbkx
k.

If p ∈ P n and t ∈ R, t > 0, the t-th Hadamard power of p is the polynomial p◦t(x) :=
∑n

k=0 a
t
kx

k. In 1996,

Garloff and Wagner proved in [7] that p ◦ q ∈Hn, if p, q ∈Hn. In particular, f ∈Hn implies f◦t ∈Hn for
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all t ∈ {1, 2, 3, . . . }. In general, if p ∈ Hn then p◦t needs not be a Hurwitz polynomial for every t > 1. Let

p ∈Hn and t > 1. Then, p◦t is Hurwitz for n ≤ 5, while p◦t needs not be Hurwitz for n ≥ 6, see [3].

2. Background and key lemmata. We collect here some key facts needed for our main results. The

following lemmata are well-known.

Lemma 2.1. (Schur Product Theorem): Suppose A,B � (�) 0 are of the same order. Then A◦B � (�)0.

Lemma 2.2. ([15, Theorem 7.7]): Suppose A,B � 0 have the same order (> 1). Then

det(A+B) ≥ detA+ detB

with equality if and only if A+B is singular or A = 0 or B = 0.

For a polynomial p given by (1.1), the Hurwitz matrix H(p) associated with p is given by

H(p) =



an−1 an−3 an−5 . . . 0

an an−2 an−4 . . . 0

0 an−1 an−3 . . . 0

0 an an−2 . . . 0
...

...
...

. . .
...

0 0 0 . . . a0


.(2.1)

If we consider a Hurwitz matrix without reference to a certain polynomial, we suppress the reference to

a polynomial and write only H. The leading principal minors of the matrix (2.1) are given by the following

determinants, called Hurwitz determinants,

∆1 := an−1, ∆2 :=

∣∣∣∣an−1 an−3
an an−2

∣∣∣∣ , ∆3 :=

∣∣∣∣∣∣
an−1 an−3 an−5
an an−2 an−4
0 an−1 an−3

∣∣∣∣∣∣ , . . . ,∆n := det(H(p)).

Lemma 2.3. (Routh-Hurwitz Criterion): The polynomial p in (1.1) is a Hurwitz polynomial if and only

if all leading principal minors ∆1,∆2, . . . ,∆n of H(p) are positive.

For the polynomial p in (1.1), and the leading principal minors of the matrix (2.1), define the sequences

Q1, Q2 as

Q1 := (∆1,∆3,∆5, . . . ),

Q2 := (∆2,∆4,∆6, . . . ).

Lemma 2.4. ([11, Liénard-Chipart Criterion]): The polynomial p in (1.1) is a Hurwitz polynomial if and

only if one of the sequences Q1, Q2 has all its members positive.

Lemma 2.5. ([2, Lemma 1.4]; [9, Lemma 1]) For p ∈ P n given by (1.1), define the polynomial

q(x) := an−1x
n−1 + (an−2 − µan−3)xn−2 + an−3x

n−3 + (an−4 − µan−5)xn−4 + . . . ,

where µ = an

an−1
. Then, p ∈Hn if and only if q ∈Hn−1.
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Theorem 2.6. (Oppenheim’s Inequality [14]): Suppose A = [aij ], B = [bij ] are positive semidefinite

matrices of order n. Then,

det(A ◦B) ≥ detA · detB.(2.2)

Over the years, various generalizations for Oppenheim’s inequality (2.2) have been obtained in the

literature, e.g., generalizations of Oppenheim’s inequality for positive definite block matrices [12], H-matrices

[10], and M -matrices [13].

An interesting question is for which totally nonnegative matrices (2.2) is valid. A real matrix is called

totally nonnegative (abbreviated TN) if all its minors are nonnegative. Such matrices arise in a great variety

in mathematics and its applications, see, e.g., [6]. If A and B are TN , then A ◦ B needs not be TN such

that det(A ◦ B) may be negative. So there is no hope that Oppenheim’s inequality holds for arbitrary

TN matrices. However, it turns out that (2.2) is valid for a very restricted class of TN matrices, see

Subsection 3.2.

The Hurwitz matrix (2.1) associated with a Hurwitz polynomial p is known to be TN [1, 9]. This means

that all minors of H(p) are nonnegative. But much more can be said: Not only each leading principal minor

of H(p) is positive, cf. Lemma 2.3, but also the determinant of each submatrix which does not contain a

zero entry on its main diagonal [8, 9].

In this paper, we study the problem whether Oppenheim’s inequality holds for Hurwitz matrices. To

exploit the validity of (2.2) for positive definite matrices, we associate in Subsection 3.1 with H(p) a positive

definite matrix of roughly the half order. In the proofs, we will make use of the positivity of the minors

with nonvanishing diagonal entries without any further reference. In Subsection 3.2, we report on a different

approach, viz. the use of the so-called Hadamard core. As an application, we give in Subsection 3.3 a result

for the Hadamard square root of a Hurwitz polynomial of degree 5.

3. Main results.

3.1. Reduction to a positive definite matrix.

Theorem 3.1. Let A = H(p) be the Hurwitz matrix associated with the Hurwitz polynomial p given by

(1.1). Then if n is even, detA = detCe(A), where the n/2 × n/2 symmetric matrix Ce(A) is

defined by

(3.1)

Ce(A) :=



∣∣∣∣an−1 an−3an an−2

∣∣∣∣ ∣∣∣∣an−1 an−5an an−4

∣∣∣∣ ∣∣∣∣an−1 an−7an an−6

∣∣∣∣ . . .∣∣∣∣an−1 an−5an an−4

∣∣∣∣ ∣∣∣∣an−1 an−7an an−6

∣∣∣∣+

∣∣∣∣an−3 an−5an−2 an−4

∣∣∣∣ ∣∣∣∣an−1 an−9an an−8

∣∣∣∣+

∣∣∣∣an−3 an−7an−2 an−6

∣∣∣∣ . . .∣∣∣∣an−1 an−7an an−6

∣∣∣∣ ∣∣∣∣an−1 an−9an an−8

∣∣∣∣+

∣∣∣∣an−3 an−7an−2 an−6

∣∣∣∣ ∣∣∣∣an−1 an−11an an−10

∣∣∣∣+

∣∣∣∣an−3 an−9an−2 an−8

∣∣∣∣+

∣∣∣∣an−5 an−7an−4 an−6

∣∣∣∣ . . .
...

...
...

. . .


,
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and if n is odd, detA = detCo(A), where the (n+ 1)/2× (n+ 1)/2 matrix Co(A) is defined by

(3.2) Co(A) :=



an−1 an−3 an−5 . . .

anan−3 anan−5 +

∣∣∣∣an−2 an−4
an−1 an−3

∣∣∣∣ anan−7 +

∣∣∣∣an−2 an−6
an−1 an−5

∣∣∣∣ . . .

anan−5 anan−7 +

∣∣∣∣an−2 an−6
an−1 an−5

∣∣∣∣ anan−9 +

∣∣∣∣an−2 an−8
an−1 an−7

∣∣∣∣+

∣∣∣∣an−4 an−6
an−3 an−5

∣∣∣∣ . . .
...

...
...

. . .


,

with the convention that an−i = 0, for all i > n.

Proof. Case 1: n is even (for an illustration of n = 8, see Example 3.2):

First, define the n × n matrix EA and the n/2 × n/2 matrices E
(1)
A , E

(2)
A , all having entries from A, as

follows:

EA :=



1 0 0 0 . . . 0
0 0 1 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0
0 0 0 0 . . . an−1
...

...
...

...
. . .

...
0 0 −an an−1 . . . a3−an an−1−an−2 an−3 . . . a1


,

E
(1)
A :=


an−1 an−3 an−5 . . . a1

0 an−1 an−3 . . . a3
0 0 an−1 . . . a5
...

...
...

. . .
...

0 0 0 . . . an−1

 , E(2)
A :=


0 0 . . . 0 0
a1 0 . . . 0 0
a3 a1 . . . 0 0
...

...
. . .

...
...

an−3 an−5 . . . a1 0

 .

Then, detEA = a
n/2
n−1 and EAA =

(
E

(1)
A E

(2)
A

0 Ce(A)

)
.

Thus, det(EAA) = a
n/2
n−1detCe(A), and so (3.1) is shown.

Case 2: n is odd:

First, define the n× n matrix OA and the (n− 1)/2× (n− 1)/2, (n− 1)/2× (n+ 1)/2 matrices O
(1)
A , O

(2)
A ,

respectively, as follows:

OA :=



1 0 0 0 . . . 0
0 0 1 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1
0 0 0 0 . . . an−2
...

...
...

...
. . .

...
0 0 an −an−1 . . . a3
an−an−1 an−2−an−3 . . . a1


,

O
(1)
A :=


an−1 an−3 an−5 . . . a0

0 an−1 an−3 . . . a2
0 0 an−1 . . . a4
...

...
...

. . .
...

0 0 0 . . . an−1

 , O(2)
A :=


0 0 . . . 0 0
a0 0 . . . 0 0
a2 a0 . . . 0 0
...

...
. . .

...
...

an−3 an−5 . . . a0 0

 .
Thus, det(OAA) = a

(n−1)/2
n−1 detCo(A), and so (3.2) is shown.
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Example 3.2. Let n = 8. We get:

EA =


1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 −a8 a7
0 0 0 0 −a8 a7 −a6 a5
0 0 −a8 a7 −a6 a5 −a4 a3−a8 a7 −a6 a5 −a4 a3 −a2 a1

 ,
and so,

EAA =

(
E

(1)
A E

(2)
A

0 Ce(A)

)
,

where

E
(1)
A =

a7 a5 a3 a10 a7 a5 a3
0 0 a7 a5
0 0 0 a7

 , E(2)
A =

 0 0 0 0
a1 0 0 0
a1 a2 0 0
a1 a2 a3 0

 ,

Ce(A) =



∣∣∣∣a7 a5a8 a6

∣∣∣∣ ∣∣∣∣a7 a3a8 a4

∣∣∣∣ ∣∣∣∣a7 a1a8 a2

∣∣∣∣ a7a0∣∣∣∣a7 a3a8 a4

∣∣∣∣ ∣∣∣∣a7 a1a8 a2

∣∣∣∣+

∣∣∣∣a5 a3a6 a4

∣∣∣∣ a7a0 +

∣∣∣∣a5 a1a6 a2

∣∣∣∣ a5a0∣∣∣∣a7 a1a8 a2

∣∣∣∣ a7a0 +

∣∣∣∣a5 a1a6 a2

∣∣∣∣ a5a0 +

∣∣∣∣a3 a1a4 a2

∣∣∣∣ a3a0
a7a0 a5a0 a3a0 a1a0


.

Corollary 3.3. Let p ∈ P n given by (1.1) and A be the Hurwitz matrix associated with p . Then

if n = 3,

detA =
∣∣∣ a2 a0
a0a3 a1a0

∣∣∣ ,
if n = 4,

detA =

∣∣∣∣
∣∣∣a3 a1a4 a2

∣∣∣ a3a0
a3a0 a1a0

∣∣∣∣ ,
if n = 5,

detA =

∣∣∣∣∣∣∣∣
a4 a2 a0

a5a2 a5a0 +

∣∣∣∣a3 a1a4 a2

∣∣∣∣ a3a0
a5a0 a3a0 a1a0

∣∣∣∣∣∣∣∣ ,
if n = 6,

detA =

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣a5 a3a6 a4

∣∣∣∣ ∣∣∣∣a5 a1a6 a2

∣∣∣∣ a5a0∣∣∣∣a5 a1a6 a2

∣∣∣∣ a5a0 +

∣∣∣∣a3 a1a4 a2

∣∣∣∣ a3a0
a5a0 a3a0 a1a0

∣∣∣∣∣∣∣∣∣∣∣
.
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We denote by A[κ|µ] the submatrix of A lying in the rows indexed by the sequence κ and columns

indexed by the sequence µ. When κ = µ, the principal submatrix A[κ|κ] is abbreviated to A[κ]. The set

theoretic symbol ∪ denotes the union of sequences, where we always assume that the resulting sequences are

ordered increasingly.

Theorem 3.4. Let p ∈ P n given by (1.1) and A be the Hurwitz matrix associated with p. Then, the

following relations hold for the Hurwitz determinants.

(i) If n is even, then for i = 1, . . . , n2 ,

∆2i = detA[1, . . . , 2i] = detCe(A)[1, . . . , i].

(ii) If n is odd, then for i = 1, . . . , n+1
2 ,

∆2i−1 = detA[1, . . . , 2i− 1] = detCo(A)[1, . . . , i].

Proof. Let ∆1,∆2, . . . ,∆n be the Hurwitz determinants of A and n be even. Define the following three

index sets

α =
(
α1, α2, . . . , αn

2

)
:=
(n

2
+ 1,

n

2
+ 2, . . . , n

)
,

β =
(
β1, β2, . . . , βn

2

)
:=
(n

2
,
n

2
− 1, . . . , 1

)
,

ζ = (ζ1, ζ2, . . . , ζn) := (n, n− 1, . . . , 1) .

For i = 1, . . . , n2 , we have

det (EA [(α1, α2, . . . , αi) ∪ (β1, β2, . . . , βi) | ζ1, ζ2, . . . , ζ2i]) = ain−1,

and

det (EA [(α1, α2, . . . , αi) ∪ (β1, β2, . . . , βi) | ζ1, ζ2, . . . , ζ2i]A[1, . . . , 2i])

= det

(
E

(1)
A [β1, . . . , βi] ?

0 Ce(A)[1, . . . , i]

)

= detE
(1)
A [β1, . . . , βi]detCe(A)[1, . . . , i] = ain−1detCe(A)[1, . . . , i].

Thus,

∆2i = detA[1, . . . , 2i] = detCe(A)[1, . . . , i].

The proof of the odd case is similar.

Example 3.5. Let n = 8. Then, the fourth Hurwitz determinant is

∆4 = detA[1, . . . , 4] = det


a7 a5 a3 a1
a8 a6 a4 a2
0 a7 a5 a3
0 a8 a6 a4

 .
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We have
1 0 0 0

0 0 1 0

0 0 −a8 a7
−a8 a7 −a6 a5



a7 a5 a3 a1
a8 a6 a4 a2
0 a7 a5 a3
0 a8 a6 a4

 =


a7 a5 a3 a1
0 a7 a5 a3
0 0 a7a6 − a8a5 a7a4 − a8a3
0 0 a7a4 − a8a3 a7a2 − a8a1 + a5a4 − a6a3

 .

Thus,

det




1 0 0 0

0 0 1 0

0 0 −a8 a7
−a8 a7 −a6 a5



a7 a5 a3 a1
a8 a6 a4 a2
0 a7 a5 a3
0 a8 a6 a4


 = a27 detCe(A)[1, 2],

and therefore,

∆4 = det Ce(A)[1, 2].

By application of Lemma 2.4, we obtain a new necessary and sufficient condition for a polynomial to be

Hurwitz.

Theorem 3.6. Let p ∈ P n given by (1.1), with an = 1 if n is odd1 , and A be the Hurwitz matrix

associated with p. Then, p ∈Hn if and only if Ce(A) � 0 (Co(A) � 0).

Remark 3.7. If one checks a symmetric matrix for positive definiteness by the positivity of its leading

principal minors, then Theorem 3.6 requires about the same number of minors to be checked as Lemma

2.4. However, the order of minors in Theorem 3.6 is roughly half the order of the respective minors in the

Liénard-Chipart Criterion.

The next theorem presents inequalities of type (2.2) for Hurwitz matrices of order n ≤ 6. Taking

into account that for positive definite matrices, the equality case in inequality (2.2) can occur only in very

restricted cases, see, e.g., [16], it is not surprising that the following inequalities are strict.

Theorem 3.8. Let f(x) =
∑n

k=0 akx
k, g(x) =

∑n
k=0 bkx

k be Hurwitz polynomials and let A and B be

the Hurwitz matrices associated with f and g, respectively. Then the following statements hold.

(i) If n = 3, 4, 5, then det(A ◦B) > detA · detB.

(ii) If n = 6, then det(A ◦B) + (a3a2b5b0 + a5a0b3b2) det(Ce(A ◦B)[1, 3]) > detA · detB.

Proof. In each part, we use the determinant forms in Corollary 3.3.

(i) If n = 3, then the result is trivial.

If n = 4, then

1 In this case, the matrix Co(A) in (3.2) is symmetric.
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det(A ◦B) =

∣∣∣∣∣∣
∣∣∣∣a3b3 a1b1
a4b4 a2b2

∣∣∣∣ a3a0b3b0
a3a0b3b0 a1a0b1b0

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∣∣∣∣a3 a1
a4 a2

∣∣∣∣ ∣∣∣∣b3 b1
b4 b2

∣∣∣∣+ a4a1

∣∣∣∣b3 b1
b4 b2

∣∣∣∣+ b4b1

∣∣∣∣a3 a1
a4 a2

∣∣∣∣ a3a0b3b0

a3a0b3b0 a1a0b1b0

∣∣∣∣∣∣ .
We make use of Theorem 3.6 and Lemma 2.1 to conclude

det(A ◦B) = det


∣∣∣∣a3 a1
a4 a2

∣∣∣∣ a3a0
a3a0 a1a0

 ◦

∣∣∣∣b3 b1
b4 b2

∣∣∣∣ b3b0
b3b0 b1b0

+ diag

(
a1a4

∣∣∣∣b3 b1
b4 b2

∣∣∣∣+ b1b4

∣∣∣∣a3 a1
a4 a2

∣∣∣∣, 0)


> detCe(A) · detCe(B) (by Lemma 2.2 with the exclusion of the equality case

and Theorem 2.6)

= detA · detB.

Let n = 5. Without loss of generality, we may assume that a5 = b5 = 1. Then, the matrices A and

B are symmetric and

det(A ◦B) =

∣∣∣∣∣∣∣∣
a4b4 a2b2 a0b0

a2b2 a0b0 +

∣∣∣∣a3b3 a1b1
a4b4 a2b2

∣∣∣∣ a3a0b3b0
a0b0 a3a0b3b0 a1a0b1b0

∣∣∣∣∣∣∣∣ .
Since

a0b0 +

∣∣∣∣a3b3 a1b1
a4b4 a2b2

∣∣∣∣ =

(
a0 +

∣∣∣∣a3 a1
a4 a2

∣∣∣∣)(b0 +

∣∣∣∣b3 b1
b4 b2

∣∣∣∣)
+

∣∣∣∣a1 a0
1 a4

∣∣∣∣ ∣∣∣∣b3 b1
b4 b2

∣∣∣∣+

∣∣∣∣b1 b0
1 b4

∣∣∣∣ ∣∣∣∣a3 a1
a4 a2

∣∣∣∣ ,
we obtain similarly as for n = 4

det(A ◦B) ≥ detCo(A) · detCo(B)

= detA · detB.

(ii) If n = 6, then

Ce(A ◦B) =



∣∣∣∣a5 a6a3 a4

∣∣∣∣ ∣∣∣∣a5 a1a6 a2

∣∣∣∣ a5a0∣∣∣∣a5 a1a6 a2

∣∣∣∣ a5a0 +

∣∣∣∣a3 a1a4 a2

∣∣∣∣ a3a0
a5a0 a3a0 a1a0

 ◦


∣∣∣∣b5 b6b3 b4

∣∣∣∣ ∣∣∣∣b5 b1b6 b2

∣∣∣∣ b5b0∣∣∣∣b5 b1b6 b2

∣∣∣∣ b5b0 +

∣∣∣∣b3 b1b4 b2

∣∣∣∣ b3b0
b5b0 b3b0 b1b0



+


b6b3

∣∣∣∣a5 a3a6 a4

∣∣∣∣ b6b1

∣∣∣∣a5 a1a6 a2

∣∣∣∣ 0

b6b1

∣∣∣∣a5 a1a6 a2

∣∣∣∣ b4b1(a5a0 +

∣∣∣∣a3 a1a4 a2

∣∣∣∣) 0

0 0 0

+


a6a3

∣∣∣∣b5 b3b6 b4

∣∣∣∣ a6a1

∣∣∣∣b5 b1b6 b2

∣∣∣∣ 0

a6a1

∣∣∣∣b5 b1b6 b2

∣∣∣∣ a4a1(b5b0 +

∣∣∣∣b3 b1b4 b2

∣∣∣∣) 0

0 0 0


− diag(0, c, 0), where c := a3a2b5b0 + a5a0b3b2.
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The Hadamard product on the right-hand side is positive definite because it is the Hadamard product

of the two positive definite matrices Ce(A) and Ce(B). Also, the matrix

X :=


b3b6

∣∣∣∣a5 a3a6 a4

∣∣∣∣ b6b1

∣∣∣∣a5 a1a6 a2

∣∣∣∣ 0

b6b1

∣∣∣∣a5 a1a6 a2

∣∣∣∣ b4b1(a5a0 +

∣∣∣∣a3 a1a4 a2

∣∣∣∣) 0

0 0 0

 =

b6b3 b6b1 0

b6b1 b4b1 0

0 0 0

 ◦


∣∣∣∣a5 a3a6 a4

∣∣∣∣ ∣∣∣∣a5 a1a6 a2

∣∣∣∣ 0∣∣∣∣a5 a1a6 a2

∣∣∣∣ a5a0 +

∣∣∣∣a3 a1a4 a2

∣∣∣∣ 0

0 0 0

 ,

is the Hadamard product of two positive semidefinite matrices by

det
[
b6b3 b6b1
b6b1 b4b1

]
= b6b1(b4b3 − b6b1) > 0,

and so it is positive semidefinite with a similar conclusion for the matrix

Y :=

a6a3
∣∣∣b5 b3b6 b4

∣∣∣ a6a1

∣∣∣b5 b1b6 b2

∣∣∣ 0

a6a1

∣∣∣b5 b1b6 b2

∣∣∣ a4a1 (b5b0 +
∣∣∣b3 b1b4 b2

∣∣∣) 0

0 0 0

 .
After rearranging terms, we obtain

det(Ce(A ◦B) + diag(0, c, 0)) = det(Ce(A ◦B)) + c det(Ce(A ◦B)[1, 3])

= det(A ◦B) + c detCe(A ◦B)[1, 3].

On the other side, application of Lemma 2.2 with exclusion of the equality case and Theorem 2.6

yields

det(Ce(A ◦B) + diag(0, c, 0)) ≥ det(Ce(A) ◦ Ce(B) +X + Y )

> det(Ce(A) ◦ Ce(B))

≥ detA · detB,

from which the statement follows.

3.2. Use of the Hadamard core. Another approach is to use the concept of the Hadamard core of

TN matrices [4], see also Section 8.2 in [6]. The Hadamard core (for TN matrices) of order n is defined as

{A ∈ Rn,n | B ∈ Rn,n is TN → A ◦B is TN} .

By choosing B as the matrix which contains only 1’s as entries, we see that all members of the Hadamard

core are TN . By [4, Corollary 5.2], [6, Corollary 8.3.2], if A is in the Hadamard core, then (2.2) is fulfilled

for any TN matrix B. Since a tridiagonal TN matrix of any order is in the Hadamard core [4, Theorem

2.6], [6, Theorem 8.2.5], inequality (2.2) is valid for Hurwitz matrices of order 3 (which are tridiagonal).

Obviously, for any polynomial p ∈ P n with coefficients ai, it holds that detH(p) = a0detH(p)[1, . . . , n− 1].

Therefore, Oppenheim’s inequality holds for Hurwitz matrices of order n, if it is valid for their leading

principal submatrices of order n − 1. Since for a Hurwitz matrix H of order 4, the submatrix H[1, 2, 3] is

tridiagonal, it follows that (2.2) is valid for all Hurwitz matrices of order 4. Conditions for a matrix of order

4 to be in the Hadamard core are presented in [5]. Unfortunately, the results therein are not applicable,
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because they would require that for a Hurwitz matrix H of order 5, the submatrix H[1, 2, 3, 4] contains a

zero entry within its tridiagonal part which is formed by the main diagonal, the superdiagonal, and the

subdiagonal. However, we have not yet found an example in which H[1, 2, 3, 4] is not in the Hadamard core.

3.3. Application to the Hadamard square root of a Hurwitz polynomial. As an application,

we consider now the Hadamard square root of a Hurwitz polynomial of degree 5. In general, if a polynomial

f of degree 5 is Hurwitz, then f◦
1
2 does not need to be Hurwitz.

Example 3.9. The polynomial

f(x) = 0.1x5 + 1.5x4 + x3 + 3x2 + x+ 1,

is Hurwitz, but f◦
1
2 (x) /∈H5.

We give a necessary and sufficient condition for the Hadamard square root of a Hurwitz polynomial of

degree 5 to be Hurwitz.

Theorem 3.10. Let f(x) =
∑5

k=0 akx
k ∈ H5, ω :=

√
a4a3−

√
a5a2√

a4a1−
√
a5a0

. Then f◦
1
2 (x) =

∑5
k=0

√
akx

k is

Hurwitz if and only if

ω2 >
a4
a2

, and
√
a0 ω

2 −
√
a2 ω +

√
a4 < 0.

Proof. By Lemma 2.5, it is enough to show that k is Hurwitz, where

k(x) := a4x
4 + (

√
a4a3 −

√
a5a2)x3 +

√
a4a2x

2 + (
√
a4a1 −

√
a5a0)x+

√
a4a0.

Let K be the Hurwitz matrix associated with the polynomial k. Theorem 3.6 implies that k is Hurwitz if

and only if

Ce(K) =
√
a0a4


∣∣∣∣∣
√
a4a3 −

√
a5a2

√
a4a1 −

√
a5a0

a4
√
a4a2

∣∣∣∣∣ √a0a4 (√a4a3 −√a5a2)
√
a4a3 −

√
a5a2

√
a4a1 −

√
a5a0

 � 0.

The two conditions imply that the two leading principal minors in Ce(K) are positive.

Conclusions. In this paper, we have presented a new necessary and sufficient condition for a polynomial

to be Hurwitz. Based on this, we have shown that the Hurwitz matrices associated with a Hurwitz polynomial

up to degree six satisfy an inequality of Oppenheim’s type. We have tested a huge number of polynomials

of degree six but did not find one for which the inequality in Theorem 3.8 (ii) is not valid without the extra

term on the left-hand side. Also, we did not find a Hurwitz polynomial of degree greater than six which does

not satisfy the inequality (2.2), even more, in all cases we have tried the left-hand side was much greater

than the right-hand side.

One may ask whether Theorem 3.8 holds for quasi-Hurwitz polynomials, i.e., polynomials having all their

roots inside the closed left half of the complex plane. By [1], the Hurwitz matrix associated with a quasi-

Hurwitz polynomial is TN, and by [7], the Hadamard product of two quasi-Hurwitz polynomials is again

quasi-Hurwitz. By the continuous dependency of the coefficients of a polynomial from its roots, Theorem 3.8

remains in force for quasi-Hurwitz polynomials, however, with the non-strict inequality. Equality is possible
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as it can be seen from the following scenario: If one of both polynomials (of arbitrary degree) has only purely

imaginary roots, it is a polynomial in x2, and therefore, its associated Hurwitz matrix has a null row as its

first row. As a consequence, both sides of (2.2) are zero.
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