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Abstrat. In this paper the problem of �nding an aÆne lower bound

funtion for a multivariate polynomial is onsidered. For this task, a num-

ber of methods are presented, all based on the expansion of the given

polynomial into Bernstein polynomials. Error bounds and numerial re-

sults for a series of randomly-generated polynomials are given.
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1 Introdution

Finding a onvex lower bound funtion for a given funtion is of paramount

importane in global optimization when a branh and bound approah is used.

Of speial interest are onvex envelopes, i.e., uniformly best underestimating

onvex funtions, f. [5℄, [15℄, [21℄.

Beause of their simpliity and ease of omputation, onstant and aÆne lower

bound funtions are espeially useful. Constant bound funtions are thoroughly

used when interval omputation tehniques are applied to global optimization, f.

[10℄, [13℄, [20℄. However, when using onstant bound funtions, all information

about the shape of the given funtion is lost. A ompromise between onvex

envelopes, whih require in the general ase muh omputational e�ort, and

onstant lower bound funtions are aÆne lower bound funtions.

Here we onentrate on suh bound funtions for multivariate polynomials.

These bound funtions are onstruted from the oeÆients of the expansion of

the given polynomial into Bernstein polynomials. Properties of Bernstein poly-

nomials are introdued in Setion 2; the reader is also referred to [4℄, [6℄, [18℄, [22℄.

In Setion 3 we present a number of variant methods, together with a suitable

transformation that may be applied to improve the results. Numerial results

for a series of randomly-generated polynomials are given in Setion 4, with a

omparison of the error bounds.
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2 Bernstein polynomials and notation

We de�ne multiindies i = (i

1

; : : : ; i

n

)

T

as vetors, where the n omponents are

nonnegative integers. The vetor 0 denotes the multiindex with all omponents

equal to 0, whih should not ause ambiguity. Comparisons are used entrywise.

Also the arithmeti operators on multiindies are de�ned omponentwise suh

that i � l := (i

1

� l

1

; : : : ; i

n

� l

n

)

T

, for � = +;�;�; and = (with l > 0). For

instane, i=l, 0 � i � l, de�nes the Greville absissae. For x 2 R

n

its multipowers

are

x

i

:=

n

Y

�=1

x

i

�

�

: (1)

Multipowers of multiindies are not required here; instead we shall write i

0

; : : : ; i

n

for a sequene of n+ 1 multiindies. For the sum we use the notation

l

X

i=0

:=

l

1

X

i

1

=0

: : :

l

n

X

i

n

=0

: (2)

A multivariate polynomial p of degree l = (l

1

; : : : ; l

n

)

T

an be represented as

p(x) =

l

X

i=0

a

i

x

i

with a

i

2 R; 0 � i � l; and a

l

6= 0: (3)

The ith Bernstein polynomial of degree l is

B

i

(x) :=

�

l

i

�

x

i

(1� x)

l�i

; (4)

where the generalized binomial oeÆient is de�ned by

�

l

i

�

:=

n

Q

�=1

�

l

�

i

�

�

, and x

is ontained in the unit box

1

I = [0; 1℄

n

. It is well-known that the Bernstein

polynomials form a basis in the spae of multivariate polynomials, and eah

polynomial in the form (3) an be represented in its Bernstein form over I

p(x) =

l

X

i=0

b

i

B

i

(x); (5)

where the Bernstein oeÆients b

i

are given by

b

i

=

i

X

j=0

�

i

j

�

�

l

j

�
a

j

for 0 � i � l: (6)

1

Without loss of generality we onsider in the sequel the unit box sine any nonempty

box in R

n

an be mapped aÆnely thereupon. For the respetive formulae for general

boxes in the univariate ase see [19℄ and their extensions to the multivariate ase,

e.g., Setion 7.3.2 in [2℄.



A fundamental property for our approah is the onvex hull property

��

x

p(x)

�

: x 2 I

�

� onv

��

i=l

b

i

�

: 0 � i � l

�

; (7)

where the onvex hull is denoted by onv. The points

�

i=l

b

i

�

are alled ontrol

points of p. The enlosure (7) yields the inequalities

minfb

i

: 0 � i � lg � p(x) � maxfb

i

: 0 � i � lg (8)

for all x 2 I . For ease of presentation we shall sometimes simply use b

i

to denote

the ontrol point assoiated with the Bernstein oeÆient b

i

, where the ontext

should make this unambiguous. Exponentiation on ontrol points, Bernstein o-

eÆients, or vetors is also not required here; therefore b

0

; : : : ; b

n

is a sequene

of n + 1 ontrol points or Bernstein oeÆients (with b

j

= b

i

j
), and u

1

; : : : ; u

n

is a sequene of n vetors.

3 AÆne lower bound funtions

In this setion we explore a number of di�erent methods for the omputation of

aÆne lower bound funtions for polynomials. In eah ase it is assumed that we

have a multivariate polynomial p given by (3) and that its Bernstein oeÆients

b

i

, 0 � i � l, have been omputed.

Theorems 1 and 2 below are independent of any partiular method. They

haraterize an aÆne lower bound funtion as the solution of a linear program-

ming problem. There is a degree of freedom in that the statements ontain an

index set

^

J whih orresponds to a faet of the onvex hull of the ontrol points

of p. Aording to the hoie of

^

J and the way in whih the linear programming

problem is posed (either all inequalities in (12) are onsidered or only a few),

numerous related methods an be designed. We disuss a few in the sequel.

3.1 Method 1

Constant bound funtions an be omputed easily and heaply from the Bern-

stein oeÆients: The left-hand side of (8) implies that the onstant funtion

provided by the minimum Bernstein oeÆient



0

(x) = b

i

0

= minfb

i

: 0 � i � lg (9)

is an aÆne lower bound funtion for the polynomial p given by (3) over the unit

box I . However, due to the lak of shape information, these bound funtions

usually perform relatively poorly.



3.2 Method 2

This method was presented in [7℄ and relies on the following onstrution: Choose

a ontrol point b

i

0

with minimum Bernstein oeÆient, f. (9). Let

^

J be a set of

at least n multiindies suh that the slopes between b

i

0

and the ontrol points

with Greville absissae assoiated with

^

J are smaller than or equal to the slopes

between b

i

0

and the remaining ontrol points. Then the desired aÆne lower

bound funtion is provided as the solution of the linear programming problem to

maximize the aÆne funtion at the Greville absissae assoiated with

^

J under

the onstraints that this aÆne funtion remains below all ontrol points and

passes through b

i

0

. More preisely, the following theorem holds true.

Theorem 1. Let fb

i

g

l

i=0

denote the Bernstein oeÆients of the polynomial p

given by (3). Choose i

0

as in (9) and let

^

J � f

^

j : 0 �

^

j � l;

^

j 6= i

0

g be a set of

at least n multiindies suh that

b

^

j

� b

i

0

k

^

j=l� i

0

=lk

6

b

i

� b

i

0

ki=l� i

0

=lk

for eah

^

j 2

^

J; 0 � i � l; i 6= i

0

; i 62

^

J: (10)

Here, k � k denotes some vetor norm. Then the linear programming problem

min (

P

^

j2

^

J

(

^

j=l� i

0

=l))

T

�s subjet to (11)

(i=l� i

0

=l)

T

�s � b

i

0

� b

i

for 0 � i � l; i 6= i

0

(12)

has the following properties:

1. It has an optimal solution ŝ.

2. The aÆne funtion

(x) := �ŝ

T

� x+ (ŝ

T

� (i

0

=l) + b

i

0

) (13)

is a lower bound funtion for p on I.

In the univariate ase, by de�nition (10),

^

J an be hosen suh that it onsists

of exatly one element

^

j whih may not be uniquely de�ned. The slope of the

aÆne lower bound funtion  is equal to the smallest possible slope between

the ontrol points. Moreover, the optimal solution of the linear programming

problem (11) and (12) an be given expliitly in the univariate ase.

Theorem 2. Suppose that all assumptions of Theorem 1 are satis�ed, where

n = 1 and where k � k denotes the absolute value. Choose

^

J = f

^

jg, where

^

j

satis�es

b

^

j

� b

i

0

j

^

j=l� i

0

=lj

= min

�

b

i

� b

i

0

ji=l� i

0

=lj

: 0 � i � l; i 6= i

0

�

:

There then exists an optimal solution ŝ of the linear programming problem (11),(12)

whih satis�es

ŝ = �

b

^

j

� b

i

0

^

j=l � i

0

=l

: (14)
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Fig. 1. The urve of a polynomial of �fth degree (bold), the onvex hull (shaded) of

its ontrol points (marked by squares), and an aÆne lower bound funtion onstruted

as in Theorem 2.

Figure 1 illustrates the onstrution of suh an aÆne lower bound funtion.

In the univariate ase the omputational work for onstruting suh bound

funtions is negligible, but in the multivariate ase a linear programming prob-

lem has to be solved. In the branh and bound framework it may happen that

one has to solve subproblems on numerous subboxes of the starting region, so

that for higher dimensions solving the linear programming problems beomes a

omputational burden.

3.3 Method 3

Overview This method was introdued in [9℄. It only requires the solution

of a system of linear equations together with a sequene of bak substitutions.

The following onstrution aims to �nd hyperplanes passing through the ontrol

point b

0

(assoiated with the minimum Bernstein oeÆient b

i

0

, f. (9)) whih

approximate from below the lower part of the onvex hull of the ontrol points

inreasingly well. In addition to b

0

, we designate n additional ontrol points

b

1

; : : : ; b

n

. Starting with 

0

, f. (9), we onstrut from these ontrol points a

sequene of aÆne lower bound funtions 

1

; : : : ; 

n

. We end up with 

n

, a hy-

perplane whih passes through a lower faet of the onvex hull spanned by the

ontrol points b

0

; : : : ; b

n

. In the ourse of this onstrution, we generate a set of



linearly independent vetors fu

1

; : : : ; u

n

g and we ompute slopes from b

0

to b

j

in diretion u

j

. Also, w

j

denotes the vetor onneting b

0

and b

j

.

Algorithm - First Iteration:

Let u

1

=

0

B

B

B

�

1

0

.

.

.

0

1

C

C

C

A

:

Compute slopes g

1

i

from the ontrol point b

i

to b

0

in diretion u

1

:

g

1

i

=

b

i

� b

0

i

1

l

1

�

i

0

1

l

1

for all i with i

1

6= i

0

1

:

Let i

1

be a multiindex with smallest absolute value of assoiated slope g

1

i

. Des-

ignate the ontrol point b

1

=

�

i

1

l

; b

i

1

�

T

, the slope �

1

= g

1

i

1

, and the vetor

w

1

=

i

1

�i

0

l

. De�ne the lower bound funtion



1

(x) = b

0

+ �

1

u

1

�

�

x�

i

0

l

�

:

Algorithm - jth Iteration, j = 2; : : : ; n:

Let ~u

j

=

0

B

B

B

B

B

B

B

B

B

B

�

�

j

1

.

.

.

�

j

j�1

1

0

.

.

.

0

1

C

C

C

C

C

C

C

C

C

C

A

suh that ~u

j

� w

k

= 0; k = 1; : : : ; j � 1: (15)

Normalize this vetor thusly:

u

j

=

~u

j

k~u

j

k

: (16)

Compute slopes g

j

i

from the ontrol point b

i

to b

0

in diretion u

j

:

g

j

i

=

b

i

� 

j�1

(

i

l

)

i�i

0

l

� u

j

for all i; exept where

i� i

0

l

� u

j

= 0: (17)



Let i

j

be a multiindex with smallest absolute value of assoiated slope g

j

i

. Des-

ignate the ontrol point b

j

=

�

i

j

l

; b

i

j

�

T

, the slope �

j

= g

j

i

j

, and the vetor

w

j

=

i

j

�i

0

l

. De�ne the lower bound funtion



j

(x) = 

j�1

(x) + �

j

u

j

�

�

x�

i

0

l

�

: (18)

Remark: Solving (15) for the oeÆients �

j

1

; : : : ; �

j

j�1

requires the solution of a

system of j�1 linear equations in j�1 unknowns. This system has a unique so-

lution due to the linear independene amongst the vetors w

1

; : : : ; w

n

, as proven

in [9℄.

For the n iterations of the above algorithm, the solution of suh a sequene

of systems of linear equations would normally require

1

6

n

4

+ O(n

3

) arithmeti

operations. However we an take advantage of the fat that, in the jth iteration,

the vetors w

1

; : : : ; w

j�1

are unhanged from the previous iteration. The solu-

tion of these systems an then be formulated as Gaussian elimination applied

rowwise to the single (n � 1) � (n � 1) matrix whose rows onsist of the ve-

tors w

n�1;1

; : : : ; w

n�1;n�1

and right-hand side �(w

1

n

; : : : ; w

n�1

n

)

T

. In addition, a

sequene of bak-substitution steps has to be performed. Then altogether only

n

3

+O(n

2

) arithmeti operations are required.

Let

L =

n

v

u

u

t

n

Y

i=1

(l

i

+ 1):

There are then L

n

Bernstein oeÆients, so that the omputation of the slopes

g

j

i

(17) in all iterations requires at most n

2

L

n

+ L

n

O(n) arithmeti operations.

This new approah therefore requires less omputational e�ort in general than

Method 2, whih is based on the solution of a linear programming problem with

upto L

n

� 1 onstraints.

2

The following results were given in [9℄:

Theorem 3. With the notation of the above algorithm, it holds for all j =

0; : : : ; n that



j

�

i

k

l

�

= b

k

; for k = 0; : : : ; j:

In partiular, we have that



n

�

i

k

l

�

= b

k

; k = 0; : : : ; n; (19)

whih means that 

n

passes through all n+ 1 ontrol points b

0

; : : : ; b

n

. Sine 

n

is by onstrution a lower bound funtion, b

0

; : : : ; b

n

must therefore span a lower

faet of the onvex hull of all ontrol points.

2

In our omputations, we have hosen exatly L

n

� 1 onstraints.



We obtain a pointwise error bound for the underestimating funtion 

n

whih

also holds true for 

n

replaed by the aÆne lower bound funtion  onstruted

by Method 2, f. [7℄.

Theorem 4. Let fb

i

g

l

i=0

denote the Bernstein oeÆients of the polynomial p

given by (3). Then the aÆne lower bound funtion 

n

satis�es the a posteriori

error bound

0 � p(x)� 

n

(x) � max

�

b

i

� 

n

�

i

l

�

: 0 � i � l

�

; x 2 I: (20)

In the univariate ase, this error bound spei�es to the following bound whih

exhibits quadrati onvergene with respet to the width of the intervals, see [7℄.

Theorem 5. Suppose n = 1 and that the assumptions of Theorem 4 hold, then

the aÆne lower bound funtion 

n

satis�es the error bound (x 2 I)

0 � p(x)� 

n

(x) � max

( 

b

i

� b

0

i

l

�

i

0

l

�

b

1

� b

0

i

1

l

�

i

0

l

!

�

i

l

�

i

0

l

�

: 0 � i � l; i 6= i

0

)

:

Theorem 5 also holds true for 

n

replaed by the aÆne lower bound funtion

 of Method 2 and i

1

replaed by

^

j, f. Theorem 2.

It was shown in [7℄ and [9℄ that aÆne polynomials oinide with their aÆne

lower bound funtions onstruted therein. This suggests that almost aÆne poly-

nomials should be approximated rather well by their aÆne lower bound fun-

tions. This is on�rmed by our numerial experienes.

In [8℄ we introdued a lower bound funtion for univariate polynomials whih

is omposed of two aÆne lower bound funtions. The extension to the multivari-

ate ase is as follows: In eah step, ompute slopes as before, but selet �

�

j

as

the greatest negative g

j

i

value, and �

+

j

as the smallest positive g

j

i

value. From

eah previous lower bound funtion 

j�1

, generate two new lower bound fun-

tions, using �

�

j

and �

+

j

. Instead of a sequene of funtions, we now obtain after

n iterations upto 2

n

lower bound funtions due to the binary tree struture.

It is worth noting that in the urrent version of our algorithm the hoie of the

diretion vetors u

j

(16) is rather arbitrary. However our numerial experiene

suggests that this may inuene the resultant bound funtion (i.e. whih lower

faet of the onvex hull of the ontrol points is emulated). A future modi�ation

to the algorithm may therefore use a simple heuristi funtion to hoose these

vetors in an alternative diretion suh that a more suitable faet of the lower

onvex hull is designated. With the orthogonality requirement (15), there are

n� j degrees of freedom in this seletion.

3.4 Methods 4 and 5

We also propose two simpler methods for the onstrution of aÆne lower bound

funtions based on the Bernstein expansion, with the omputation of slopes and

di�erenes only, with still lower omplexity. Method 4 is based on a hoie of



ontrol points orresponding to n+1 smallest Bernstein oeÆients and Method

5 is based on a hoie of a ontrol point orresponding to the minimum Bernstein

oeÆient and n others whih onnet to it with minimum absolute value of gra-

dient. In both ases, a lower bound funtion interpolating the designated ontrol

points is omputed, requiring the solution of a single system of linear equations.

A degenerate ase may arise when this system has no unique solution | with

the terminology of Method 3, the set of vetors fw

j

g is linearly dependent. Suh

ases are tested for and exluded from onsideration during the designation of

the ontrol points.

Additionally, both methods (unmodi�ed) are not guaranteed to deliver a valid

lower bound funtion | exeptionally there may still our ontrol points below

it. Therefore an error term (20) is omputed. If this is negative, it is neessary to

adjust the bound funtion by a downward shift: the absolute value of this error

is subtrated from its onstant term.

As will beome evident from the numerial results in the following setion,

both of these methods may perform unexpetedly poorly under ertain on�g-

urations of ontrol points. Two suh examples are illustrated in the following

�gures, where the small irles are the ontrol points of a bivariate polynomial.

Those ontrol points �lled in blak are those whih are designated, leading to the

onstrution of a lower bound funtion (the shaded plane), in the �rst ase after

a neessary downward shift. Although both methods usually deliver a bound

funtion with orret shape information (i.e. an improvement over Method 1),

this is seen not always to be the ase. For this reason, there are no worthwhile

error bounds that an be presented for these two methods.

Fig. 2. Method 4 - Example of poor lower bound funtion



Fig. 3. Method 5 - Example of poor lower bound funtion

3.5 An equilibriation transformation

A limitation of all the above methods is that the resultant lower bound funtion

must pass through the minimum ontrol point b

i

0

(exept in ases where a down-

ward shift is neessary for Methods 4 and 5). Whilst this is often a good hoie, it

is not always so. Figure 4 gives a simple example where the optimal lower bound

funtion does not in fat pass through the minimum ontrol point. In this ase it

would seem sensible to utilise the shape information provided by a broad spread

of the ontrol points (global shape information over the box) in addition to that

already given by a small number of speially designated ontrol points (whih

may be lustered) as per the above algorithms (loal shape information near the

minimum ontrol point). We an lift the restrition that the lower bound fun-

tion must pass through b

i

0

. Indeed, if there are many Bernstein oeÆients (i.e.

for polynomials of high degree) the global shape information may be at least as

important, if not more so, as the loal information. This is espeially evident in

the ases where Methods 4 and 5 perform poorly (see Figures 2 and 3).

To this end, we an envisage the determination of the lower bound funtion

as a three-stage proess. Firstly, we apply an aÆne transformation to the ontrol

points, whih we all the equilibriation transformation, derived from the ontrol

points on the edges of the box, and approximating the global shape information.

Seondly, we ompute an aÆne lower bound funtion 

�

for the transformed

polynomial p

�

(and its ontrol points b

�

i

), by using one of Methods 1-5 above.

Lastly, we apply the transformation in reverse to obtain an aÆne lower bound

funtion  for the original polynomial.

We de�ne the equilibriation transformation on the ontrol points as follows:

b

i

7! b

�

i

:= b

i

�

n

X

j=1

i

j

l

j

�

b

(

b

l

1

2

;:::;l

j

;:::;b

l

n

2



)

� b

(

b

l

1

2

;:::;0;:::;b

l

n

2



)

�

; 0 � i � l:



After applying this transformation, the global shape (i.e. the shape over the

whole box) of the polynomial has been approximately attened, i.e.

b

�

(

0;b

l

2

2

;:::;b

l

n

2



)

= b

�

(

l

1

;b
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The e�et of this transformation is illustrated in Figure 4 with a univariate

polynomial of degree 6, yielding an optimal bound funtion whih does not pass

through the minimum ontrol point.
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Fig. 4. Result of applying the equilibriation transformation; the improved/transformed

bound funtion is given in bold dashed.



3.6 Veri�ation

Due to rounding errors, inauraies may be introdued into the alulation

of the Bernstein oeÆients and the lower bound funtions. Espeially it may

happen that the omputed lower bound funtion value is greater than the or-

responding original funtion value. This may lead to erroneous results in appli-

ations. Suggestions for the way in whih one an obtain funtions whih are

guaranteed to be lower bound funtions also in the presene of rounding errors

are given in [7℄. One suh approah is to ompute an error term (20) followed by

a downward shift, if neessary, as in Methods 4 and 5. For a di�erent approah

see [3℄, [11℄, [14℄.

4 Examples

The above methods for omputing lower bound funtions, both with and without

the equilibriation transformation, were tested with a number of multivariate

polynomials (3) in n variables with degree l = (D; : : : ;D)

T

and k non-zero

terms. The non-zero oeÆients were randomly generated with a

i

2 [�1; 1℄.

Table 1 lists the results for di�erent values of n, D, and k; (D + 1)

n

is the

number of Bernstein oeÆients. In eah ase 100 random polynomials were

generated and the mean omputation time and error are given. The results were

produed with C++ on a 2.4 GHz PC. Method 2 utilizes the linear programming

solver LP_SOLVE [1℄.

The time required for the omputation of the Bernstein oeÆients is in-

luded; this is equal to the time for Method 1 (onstant bound funtions). An

upper bound on the disrepany between the polynomial and its lower bound

funtion over I is omputed aording to Theorem 4 as

Æ = max

i

�

b

i

� 

n

�

i

l

��

:

The error bounds for the bound funtions resulting from appliation of the equi-

libriation transformation are labelled Æ

E

and are omputed identially. Note that

after appliation of the equilibriation transformation, Method 1 delivers an aÆne

funtion instead of a onstant.

The mean Æ values for Methods 2 and 3 are very similar, with Method 3

exhibiting a slight improvement in all but the �rst ase. The poor mean Æ values

for Methods 4 and 5 are greatly skewed by a small minority of ases where the

shape information is inorret. These methods are unreliable. However for any

given individual polynomial, any one method may deliver a signi�antly superior

bound funtion to the other, with the results only frequently idential in the

n = 2 ase. The equilibriation transformation is e�etive in reduing the mean

error bound in almost all ases, i.e. typially Æ > Æ

E

. For n � 4 the omputation

time for Methods 3-5 is of the same order of magnitude as for Method 1 (onstant

bound funtion), and is faster by orders of magnitude than Method 2. Under

that method, one an typially ompute bound funtions in less than a seond

only for n � 4; for Methods 3-5 this an be done for n � 8.



Table 1. Results for random polynomials

Method 1 (Constant/AÆne)

n D k (D + 1)

n

time (s) Æ Æ

E

time (s) Æ Æ

E

2 2 5 9 0.000040 1.414 0.777

2 6 10 49 0.00013 1.989 1.570

2 10 20 121 0.00039 2.867 2.505

4 2 20 81 0.00037 3.459 2.841

4 4 50 625 0.0024 5.678 5.145

6 2 20 729 0.0011 4.043 3.333

8 2 50 6561 0.0093 6.941 6.505

10 2 50 59049 0.091 7.143 6.583

2 (LP problems) 3 (Linear eqs)

2 2 5 9 0.00020 0.976 0.840 0.000069 0.981 0.866

2 6 10 49 0.0025 1.695 1.536 0.00031 1.677 1.533

2 10 20 121 0.023 2.543 2.383 0.00074 2.511 2.410

4 2 20 81 0.0082 2.847 2.690 0.0012 2.797 2.659

4 4 50 625 2.82 5.056 4.963 0.0093 5.045 4.880

6 2 20 729 4.48 3.403 3.292 0.016 3.353 3.201

8 2 50 6561 greater than 0.24 6.291 6.129

10 2 50 59049 1 minute 3.43 6.503 6.371

4 (min BCs) 5 (min gradients)

2 2 5 9 0.000085 1.147 0.905 0.00011 0.961 0.885

2 6 10 49 0.00031 4.914 3.165 0.00044 1.910 1.514

2 10 20 121 0.00090 11.49 8.175 0.0012 3.014 2.514

4 2 20 81 0.0012 4.797 4.609 0.0015 3.199 2.766

4 4 50 625 0.0088 14.05 14.91 0.011 5.940 5.843

6 2 20 729 0.015 5.921 5.921 0.017 3.687 3.453

8 2 50 6561 0.21 14.33 15.41 0.24 7.360 7.313

10 2 50 59049 2.69 17.11 19.84 3.11 7.680 7.966

5 Conlusions

We have presented several methods for the omputation of aÆne lower bound

funtions for multivariate polynomials based on Bernstein expansion. A simple

onstant bound funtion based on the minimum Bernstein oeÆient (Method 1)

an be omputed heaply, but performs poorly. It is possible to improve this by

exploiting the valuable shape information inherent in the Bernstein oeÆients.

With Methods 4 and 5, we have demonstrated that a naive attempt to derive

suh shape information based on simple di�erenes and gradients is unreliable.

Methods 2 and 3 do this reliably and in general deliver a better quality bound

funtion. The prinipal di�erene between these two lies in the omputational

omplexity; the general onstrution of Method 2 requires the solution of a linear

programming problem, whereas aÆne bound funtions aording to Method 3

an be omputed muh more heaply, and may therefore be of greater pratial

use. Indeed one may ompute up to 2

n

of these bound funtions for a single given

polynomial whih jointly bound the onvex hull of the ontrol points muh more



losely than a single bound funtion from Method 2, in less time. Method 3 is

therefore our urrent method of hoie.

Methods 1-5 are limited by foussing on the shape information provided by

a small number of designated ontrol points, espeially the minimum. Their

performane an therefore be improved by inorporating the wider shape infor-

mation provided by a broad spread of the ontrol points. Our urrently best

overall results are thus obtained by ombining Method 3 with the equilibriation

transformation given in Setion 3.5.

A fundamental limitation of our approah remains the exponential growth

of the number of underlying Bernstein oeÆients with respet to the number

of variables. This means that many-variate (12 variables or more) polynomials

annot urrently be handled in reasonable time. Future work will seek to address

this limitation.

We have implemented the use of aÆne lower bound funtions in a branh

and bound framework for solving onstrained global optimization problems in-

volving a polynomial objetive funtion and polynomial onstraint funtions.

Relaxations based on these bound funtions lead to linear programs. In prati-

al problems, quite often only a few variables appear in the objetive funtion

and in eah onstraint. In this ase, Method 3 may be highly suitable. If vali-

dated results are required, the solution of the linear program must be veri�ed.

This an be aomplished by using the results of [12℄, [16℄, [17℄.
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