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1 Introdu
tion

Finding a 
onvex lower bound fun
tion for a given fun
tion is of paramount

importan
e in global optimization when a bran
h and bound approa
h is used.

Of spe
ial interest are 
onvex envelopes, i.e., uniformly best underestimating


onvex fun
tions, 
f. [5℄, [15℄, [21℄.

Be
ause of their simpli
ity and ease of 
omputation, 
onstant and aÆne lower

bound fun
tions are espe
ially useful. Constant bound fun
tions are thoroughly

used when interval 
omputation te
hniques are applied to global optimization, 
f.

[10℄, [13℄, [20℄. However, when using 
onstant bound fun
tions, all information

about the shape of the given fun
tion is lost. A 
ompromise between 
onvex

envelopes, whi
h require in the general 
ase mu
h 
omputational e�ort, and


onstant lower bound fun
tions are aÆne lower bound fun
tions.

Here we 
on
entrate on su
h bound fun
tions for multivariate polynomials.

These bound fun
tions are 
onstru
ted from the 
oeÆ
ients of the expansion of

the given polynomial into Bernstein polynomials. Properties of Bernstein poly-

nomials are introdu
ed in Se
tion 2; the reader is also referred to [4℄, [6℄, [18℄, [22℄.

In Se
tion 3 we present a number of variant methods, together with a suitable

transformation that may be applied to improve the results. Numeri
al results

for a series of randomly-generated polynomials are given in Se
tion 4, with a


omparison of the error bounds.
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2 Bernstein polynomials and notation

We de�ne multiindi
es i = (i

1

; : : : ; i

n

)

T

as ve
tors, where the n 
omponents are

nonnegative integers. The ve
tor 0 denotes the multiindex with all 
omponents

equal to 0, whi
h should not 
ause ambiguity. Comparisons are used entrywise.

Also the arithmeti
 operators on multiindi
es are de�ned 
omponentwise su
h

that i � l := (i

1

� l

1

; : : : ; i

n

� l

n

)

T

, for � = +;�;�; and = (with l > 0). For

instan
e, i=l, 0 � i � l, de�nes the Greville abs
issae. For x 2 R

n

its multipowers

are

x

i

:=

n

Y

�=1

x

i

�

�

: (1)

Multipowers of multiindi
es are not required here; instead we shall write i

0

; : : : ; i

n

for a sequen
e of n+ 1 multiindi
es. For the sum we use the notation

l

X

i=0

:=

l

1

X

i

1

=0

: : :

l

n

X

i

n

=0

: (2)

A multivariate polynomial p of degree l = (l

1

; : : : ; l

n

)

T


an be represented as

p(x) =

l

X

i=0

a

i

x

i

with a

i

2 R; 0 � i � l; and a

l

6= 0: (3)

The ith Bernstein polynomial of degree l is

B

i

(x) :=

�

l

i

�

x

i

(1� x)

l�i

; (4)

where the generalized binomial 
oeÆ
ient is de�ned by

�

l

i

�

:=

n

Q

�=1

�

l

�

i

�

�

, and x

is 
ontained in the unit box

1

I = [0; 1℄

n

. It is well-known that the Bernstein

polynomials form a basis in the spa
e of multivariate polynomials, and ea
h

polynomial in the form (3) 
an be represented in its Bernstein form over I

p(x) =

l

X

i=0

b

i

B

i

(x); (5)

where the Bernstein 
oeÆ
ients b

i

are given by

b

i

=

i

X

j=0

�

i

j

�

�

l

j

�
a

j

for 0 � i � l: (6)

1

Without loss of generality we 
onsider in the sequel the unit box sin
e any nonempty

box in R

n


an be mapped aÆnely thereupon. For the respe
tive formulae for general

boxes in the univariate 
ase see [19℄ and their extensions to the multivariate 
ase,

e.g., Se
tion 7.3.2 in [2℄.



A fundamental property for our approa
h is the 
onvex hull property

��

x

p(x)

�

: x 2 I

�

� 
onv

��

i=l

b

i

�

: 0 � i � l

�

; (7)

where the 
onvex hull is denoted by 
onv. The points

�

i=l

b

i

�

are 
alled 
ontrol

points of p. The en
losure (7) yields the inequalities

minfb

i

: 0 � i � lg � p(x) � maxfb

i

: 0 � i � lg (8)

for all x 2 I . For ease of presentation we shall sometimes simply use b

i

to denote

the 
ontrol point asso
iated with the Bernstein 
oeÆ
ient b

i

, where the 
ontext

should make this unambiguous. Exponentiation on 
ontrol points, Bernstein 
o-

eÆ
ients, or ve
tors is also not required here; therefore b

0

; : : : ; b

n

is a sequen
e

of n + 1 
ontrol points or Bernstein 
oeÆ
ients (with b

j

= b

i

j
), and u

1

; : : : ; u

n

is a sequen
e of n ve
tors.

3 AÆne lower bound fun
tions

In this se
tion we explore a number of di�erent methods for the 
omputation of

aÆne lower bound fun
tions for polynomials. In ea
h 
ase it is assumed that we

have a multivariate polynomial p given by (3) and that its Bernstein 
oeÆ
ients

b

i

, 0 � i � l, have been 
omputed.

Theorems 1 and 2 below are independent of any parti
ular method. They


hara
terize an aÆne lower bound fun
tion as the solution of a linear program-

ming problem. There is a degree of freedom in that the statements 
ontain an

index set

^

J whi
h 
orresponds to a fa
et of the 
onvex hull of the 
ontrol points

of p. A

ording to the 
hoi
e of

^

J and the way in whi
h the linear programming

problem is posed (either all inequalities in (12) are 
onsidered or only a few),

numerous related methods 
an be designed. We dis
uss a few in the sequel.

3.1 Method 1

Constant bound fun
tions 
an be 
omputed easily and 
heaply from the Bern-

stein 
oeÆ
ients: The left-hand side of (8) implies that the 
onstant fun
tion

provided by the minimum Bernstein 
oeÆ
ient




0

(x) = b

i

0

= minfb

i

: 0 � i � lg (9)

is an aÆne lower bound fun
tion for the polynomial p given by (3) over the unit

box I . However, due to the la
k of shape information, these bound fun
tions

usually perform relatively poorly.



3.2 Method 2

This method was presented in [7℄ and relies on the following 
onstru
tion: Choose

a 
ontrol point b

i

0

with minimum Bernstein 
oeÆ
ient, 
f. (9). Let

^

J be a set of

at least n multiindi
es su
h that the slopes between b

i

0

and the 
ontrol points

with Greville abs
issae asso
iated with

^

J are smaller than or equal to the slopes

between b

i

0

and the remaining 
ontrol points. Then the desired aÆne lower

bound fun
tion is provided as the solution of the linear programming problem to

maximize the aÆne fun
tion at the Greville abs
issae asso
iated with

^

J under

the 
onstraints that this aÆne fun
tion remains below all 
ontrol points and

passes through b

i

0

. More pre
isely, the following theorem holds true.

Theorem 1. Let fb

i

g

l

i=0

denote the Bernstein 
oeÆ
ients of the polynomial p

given by (3). Choose i

0

as in (9) and let

^

J � f

^

j : 0 �

^

j � l;

^

j 6= i

0

g be a set of

at least n multiindi
es su
h that

b

^

j

� b

i

0

k

^

j=l� i

0

=lk

6

b

i

� b

i

0

ki=l� i

0

=lk

for ea
h

^

j 2

^

J; 0 � i � l; i 6= i

0

; i 62

^

J: (10)

Here, k � k denotes some ve
tor norm. Then the linear programming problem

min (

P

^

j2

^

J

(

^

j=l� i

0

=l))

T

�s subje
t to (11)

(i=l� i

0

=l)

T

�s � b

i

0

� b

i

for 0 � i � l; i 6= i

0

(12)

has the following properties:

1. It has an optimal solution ŝ.

2. The aÆne fun
tion


(x) := �ŝ

T

� x+ (ŝ

T

� (i

0

=l) + b

i

0

) (13)

is a lower bound fun
tion for p on I.

In the univariate 
ase, by de�nition (10),

^

J 
an be 
hosen su
h that it 
onsists

of exa
tly one element

^

j whi
h may not be uniquely de�ned. The slope of the

aÆne lower bound fun
tion 
 is equal to the smallest possible slope between

the 
ontrol points. Moreover, the optimal solution of the linear programming

problem (11) and (12) 
an be given expli
itly in the univariate 
ase.

Theorem 2. Suppose that all assumptions of Theorem 1 are satis�ed, where

n = 1 and where k � k denotes the absolute value. Choose

^

J = f

^

jg, where

^

j

satis�es

b

^

j

� b

i

0

j

^

j=l� i

0

=lj

= min

�

b

i

� b

i

0

ji=l� i

0

=lj

: 0 � i � l; i 6= i

0

�

:

There then exists an optimal solution ŝ of the linear programming problem (11),(12)

whi
h satis�es

ŝ = �

b

^

j

� b

i

0

^

j=l � i

0

=l

: (14)
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Fig. 1. The 
urve of a polynomial of �fth degree (bold), the 
onvex hull (shaded) of

its 
ontrol points (marked by squares), and an aÆne lower bound fun
tion 
onstru
ted

as in Theorem 2.

Figure 1 illustrates the 
onstru
tion of su
h an aÆne lower bound fun
tion.

In the univariate 
ase the 
omputational work for 
onstru
ting su
h bound

fun
tions is negligible, but in the multivariate 
ase a linear programming prob-

lem has to be solved. In the bran
h and bound framework it may happen that

one has to solve subproblems on numerous subboxes of the starting region, so

that for higher dimensions solving the linear programming problems be
omes a


omputational burden.

3.3 Method 3

Overview This method was introdu
ed in [9℄. It only requires the solution

of a system of linear equations together with a sequen
e of ba
k substitutions.

The following 
onstru
tion aims to �nd hyperplanes passing through the 
ontrol

point b

0

(asso
iated with the minimum Bernstein 
oeÆ
ient b

i

0

, 
f. (9)) whi
h

approximate from below the lower part of the 
onvex hull of the 
ontrol points

in
reasingly well. In addition to b

0

, we designate n additional 
ontrol points

b

1

; : : : ; b

n

. Starting with 


0

, 
f. (9), we 
onstru
t from these 
ontrol points a

sequen
e of aÆne lower bound fun
tions 


1

; : : : ; 


n

. We end up with 


n

, a hy-

perplane whi
h passes through a lower fa
et of the 
onvex hull spanned by the


ontrol points b

0

; : : : ; b

n

. In the 
ourse of this 
onstru
tion, we generate a set of



linearly independent ve
tors fu

1

; : : : ; u

n

g and we 
ompute slopes from b

0

to b

j

in dire
tion u

j

. Also, w

j

denotes the ve
tor 
onne
ting b

0

and b

j

.

Algorithm - First Iteration:

Let u

1

=

0

B

B

B

�

1

0

.

.

.

0

1

C

C

C

A

:

Compute slopes g

1

i

from the 
ontrol point b

i

to b

0

in dire
tion u

1

:

g

1

i

=

b

i

� b

0

i

1

l

1

�

i

0

1

l

1

for all i with i

1

6= i

0

1

:

Let i

1

be a multiindex with smallest absolute value of asso
iated slope g

1

i

. Des-

ignate the 
ontrol point b

1

=

�

i

1

l

; b

i

1

�

T

, the slope �

1

= g

1

i

1

, and the ve
tor

w

1

=

i

1

�i

0

l

. De�ne the lower bound fun
tion




1

(x) = b

0

+ �

1

u

1

�

�

x�

i

0

l

�

:

Algorithm - jth Iteration, j = 2; : : : ; n:

Let ~u

j

=

0

B

B

B

B

B

B

B

B

B

B

�

�

j

1

.

.

.

�

j

j�1

1

0

.

.

.

0

1

C

C

C

C

C

C

C

C

C

C

A

su
h that ~u

j

� w

k

= 0; k = 1; : : : ; j � 1: (15)

Normalize this ve
tor thusly:

u

j

=

~u

j

k~u

j

k

: (16)

Compute slopes g

j

i

from the 
ontrol point b

i

to b

0

in dire
tion u

j

:

g

j

i

=

b

i

� 


j�1

(

i

l

)

i�i

0

l

� u

j

for all i; ex
ept where

i� i

0

l

� u

j

= 0: (17)



Let i

j

be a multiindex with smallest absolute value of asso
iated slope g

j

i

. Des-

ignate the 
ontrol point b

j

=

�

i

j

l

; b

i

j

�

T

, the slope �

j

= g

j

i

j

, and the ve
tor

w

j

=

i

j

�i

0

l

. De�ne the lower bound fun
tion




j

(x) = 


j�1

(x) + �

j

u

j

�

�

x�

i

0

l

�

: (18)

Remark: Solving (15) for the 
oeÆ
ients �

j

1

; : : : ; �

j

j�1

requires the solution of a

system of j�1 linear equations in j�1 unknowns. This system has a unique so-

lution due to the linear independen
e amongst the ve
tors w

1

; : : : ; w

n

, as proven

in [9℄.

For the n iterations of the above algorithm, the solution of su
h a sequen
e

of systems of linear equations would normally require

1

6

n

4

+ O(n

3

) arithmeti


operations. However we 
an take advantage of the fa
t that, in the jth iteration,

the ve
tors w

1

; : : : ; w

j�1

are un
hanged from the previous iteration. The solu-

tion of these systems 
an then be formulated as Gaussian elimination applied

rowwise to the single (n � 1) � (n � 1) matrix whose rows 
onsist of the ve
-

tors w

n�1;1

; : : : ; w

n�1;n�1

and right-hand side �(w

1

n

; : : : ; w

n�1

n

)

T

. In addition, a

sequen
e of ba
k-substitution steps has to be performed. Then altogether only

n

3

+O(n

2

) arithmeti
 operations are required.

Let

L =

n

v

u

u

t

n

Y

i=1

(l

i

+ 1):

There are then L

n

Bernstein 
oeÆ
ients, so that the 
omputation of the slopes

g

j

i

(17) in all iterations requires at most n

2

L

n

+ L

n

O(n) arithmeti
 operations.

This new approa
h therefore requires less 
omputational e�ort in general than

Method 2, whi
h is based on the solution of a linear programming problem with

upto L

n

� 1 
onstraints.

2

The following results were given in [9℄:

Theorem 3. With the notation of the above algorithm, it holds for all j =

0; : : : ; n that




j

�

i

k

l

�

= b

k

; for k = 0; : : : ; j:

In parti
ular, we have that




n

�

i

k

l

�

= b

k

; k = 0; : : : ; n; (19)

whi
h means that 


n

passes through all n+ 1 
ontrol points b

0

; : : : ; b

n

. Sin
e 


n

is by 
onstru
tion a lower bound fun
tion, b

0

; : : : ; b

n

must therefore span a lower

fa
et of the 
onvex hull of all 
ontrol points.

2

In our 
omputations, we have 
hosen exa
tly L

n

� 1 
onstraints.



We obtain a pointwise error bound for the underestimating fun
tion 


n

whi
h

also holds true for 


n

repla
ed by the aÆne lower bound fun
tion 
 
onstru
ted

by Method 2, 
f. [7℄.

Theorem 4. Let fb

i

g

l

i=0

denote the Bernstein 
oeÆ
ients of the polynomial p

given by (3). Then the aÆne lower bound fun
tion 


n

satis�es the a posteriori

error bound

0 � p(x)� 


n

(x) � max

�

b

i

� 


n

�

i

l

�

: 0 � i � l

�

; x 2 I: (20)

In the univariate 
ase, this error bound spe
i�es to the following bound whi
h

exhibits quadrati
 
onvergen
e with respe
t to the width of the intervals, see [7℄.

Theorem 5. Suppose n = 1 and that the assumptions of Theorem 4 hold, then

the aÆne lower bound fun
tion 


n

satis�es the error bound (x 2 I)

0 � p(x)� 


n

(x) � max

( 

b

i

� b

0

i

l

�

i

0

l

�

b

1

� b

0

i

1

l

�

i

0

l

!

�

i

l

�

i

0

l

�

: 0 � i � l; i 6= i

0

)

:

Theorem 5 also holds true for 


n

repla
ed by the aÆne lower bound fun
tion


 of Method 2 and i

1

repla
ed by

^

j, 
f. Theorem 2.

It was shown in [7℄ and [9℄ that aÆne polynomials 
oin
ide with their aÆne

lower bound fun
tions 
onstru
ted therein. This suggests that almost aÆne poly-

nomials should be approximated rather well by their aÆne lower bound fun
-

tions. This is 
on�rmed by our numeri
al experien
es.

In [8℄ we introdu
ed a lower bound fun
tion for univariate polynomials whi
h

is 
omposed of two aÆne lower bound fun
tions. The extension to the multivari-

ate 
ase is as follows: In ea
h step, 
ompute slopes as before, but sele
t �

�

j

as

the greatest negative g

j

i

value, and �

+

j

as the smallest positive g

j

i

value. From

ea
h previous lower bound fun
tion 


j�1

, generate two new lower bound fun
-

tions, using �

�

j

and �

+

j

. Instead of a sequen
e of fun
tions, we now obtain after

n iterations upto 2

n

lower bound fun
tions due to the binary tree stru
ture.

It is worth noting that in the 
urrent version of our algorithm the 
hoi
e of the

dire
tion ve
tors u

j

(16) is rather arbitrary. However our numeri
al experien
e

suggests that this may in
uen
e the resultant bound fun
tion (i.e. whi
h lower

fa
et of the 
onvex hull of the 
ontrol points is emulated). A future modi�
ation

to the algorithm may therefore use a simple heuristi
 fun
tion to 
hoose these

ve
tors in an alternative dire
tion su
h that a more suitable fa
et of the lower


onvex hull is designated. With the orthogonality requirement (15), there are

n� j degrees of freedom in this sele
tion.

3.4 Methods 4 and 5

We also propose two simpler methods for the 
onstru
tion of aÆne lower bound

fun
tions based on the Bernstein expansion, with the 
omputation of slopes and

di�eren
es only, with still lower 
omplexity. Method 4 is based on a 
hoi
e of




ontrol points 
orresponding to n+1 smallest Bernstein 
oeÆ
ients and Method

5 is based on a 
hoi
e of a 
ontrol point 
orresponding to the minimum Bernstein


oeÆ
ient and n others whi
h 
onne
t to it with minimum absolute value of gra-

dient. In both 
ases, a lower bound fun
tion interpolating the designated 
ontrol

points is 
omputed, requiring the solution of a single system of linear equations.

A degenerate 
ase may arise when this system has no unique solution | with

the terminology of Method 3, the set of ve
tors fw

j

g is linearly dependent. Su
h


ases are tested for and ex
luded from 
onsideration during the designation of

the 
ontrol points.

Additionally, both methods (unmodi�ed) are not guaranteed to deliver a valid

lower bound fun
tion | ex
eptionally there may still o

ur 
ontrol points below

it. Therefore an error term (20) is 
omputed. If this is negative, it is ne
essary to

adjust the bound fun
tion by a downward shift: the absolute value of this error

is subtra
ted from its 
onstant term.

As will be
ome evident from the numeri
al results in the following se
tion,

both of these methods may perform unexpe
tedly poorly under 
ertain 
on�g-

urations of 
ontrol points. Two su
h examples are illustrated in the following

�gures, where the small 
ir
les are the 
ontrol points of a bivariate polynomial.

Those 
ontrol points �lled in bla
k are those whi
h are designated, leading to the


onstru
tion of a lower bound fun
tion (the shaded plane), in the �rst 
ase after

a ne
essary downward shift. Although both methods usually deliver a bound

fun
tion with 
orre
t shape information (i.e. an improvement over Method 1),

this is seen not always to be the 
ase. For this reason, there are no worthwhile

error bounds that 
an be presented for these two methods.

Fig. 2. Method 4 - Example of poor lower bound fun
tion



Fig. 3. Method 5 - Example of poor lower bound fun
tion

3.5 An equilibriation transformation

A limitation of all the above methods is that the resultant lower bound fun
tion

must pass through the minimum 
ontrol point b

i

0

(ex
ept in 
ases where a down-

ward shift is ne
essary for Methods 4 and 5). Whilst this is often a good 
hoi
e, it

is not always so. Figure 4 gives a simple example where the optimal lower bound

fun
tion does not in fa
t pass through the minimum 
ontrol point. In this 
ase it

would seem sensible to utilise the shape information provided by a broad spread

of the 
ontrol points (global shape information over the box) in addition to that

already given by a small number of spe
ially designated 
ontrol points (whi
h

may be 
lustered) as per the above algorithms (lo
al shape information near the

minimum 
ontrol point). We 
an lift the restri
tion that the lower bound fun
-

tion must pass through b

i

0

. Indeed, if there are many Bernstein 
oeÆ
ients (i.e.

for polynomials of high degree) the global shape information may be at least as

important, if not more so, as the lo
al information. This is espe
ially evident in

the 
ases where Methods 4 and 5 perform poorly (see Figures 2 and 3).

To this end, we 
an envisage the determination of the lower bound fun
tion

as a three-stage pro
ess. Firstly, we apply an aÆne transformation to the 
ontrol

points, whi
h we 
all the equilibriation transformation, derived from the 
ontrol

points on the edges of the box, and approximating the global shape information.

Se
ondly, we 
ompute an aÆne lower bound fun
tion 


�

for the transformed

polynomial p

�

(and its 
ontrol points b

�

i

), by using one of Methods 1-5 above.

Lastly, we apply the transformation in reverse to obtain an aÆne lower bound

fun
tion 
 for the original polynomial.

We de�ne the equilibriation transformation on the 
ontrol points as follows:
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After applying this transformation, the global shape (i.e. the shape over the

whole box) of the polynomial has been approximately 
attened, i.e.
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The e�e
t of this transformation is illustrated in Figure 4 with a univariate

polynomial of degree 6, yielding an optimal bound fun
tion whi
h does not pass

through the minimum 
ontrol point.

*

*
*

*

*
* *

*

b
I

 0  1
6

i

b
I

 0  1
6

i

b
1

b
0

b
2

b
3 b

4 b
5

b
6

b
0

b
1

b
2

b
3

b
4

b
5

b
6

Fig. 4. Result of applying the equilibriation transformation; the improved/transformed

bound fun
tion is given in bold dashed.



3.6 Veri�
ation

Due to rounding errors, ina

ura
ies may be introdu
ed into the 
al
ulation

of the Bernstein 
oeÆ
ients and the lower bound fun
tions. Espe
ially it may

happen that the 
omputed lower bound fun
tion value is greater than the 
or-

responding original fun
tion value. This may lead to erroneous results in appli-


ations. Suggestions for the way in whi
h one 
an obtain fun
tions whi
h are

guaranteed to be lower bound fun
tions also in the presen
e of rounding errors

are given in [7℄. One su
h approa
h is to 
ompute an error term (20) followed by

a downward shift, if ne
essary, as in Methods 4 and 5. For a di�erent approa
h

see [3℄, [11℄, [14℄.

4 Examples

The above methods for 
omputing lower bound fun
tions, both with and without

the equilibriation transformation, were tested with a number of multivariate

polynomials (3) in n variables with degree l = (D; : : : ;D)

T

and k non-zero

terms. The non-zero 
oeÆ
ients were randomly generated with a

i

2 [�1; 1℄.

Table 1 lists the results for di�erent values of n, D, and k; (D + 1)

n

is the

number of Bernstein 
oeÆ
ients. In ea
h 
ase 100 random polynomials were

generated and the mean 
omputation time and error are given. The results were

produ
ed with C++ on a 2.4 GHz PC. Method 2 utilizes the linear programming

solver LP_SOLVE [1℄.

The time required for the 
omputation of the Bernstein 
oeÆ
ients is in-


luded; this is equal to the time for Method 1 (
onstant bound fun
tions). An

upper bound on the dis
repan
y between the polynomial and its lower bound

fun
tion over I is 
omputed a

ording to Theorem 4 as

Æ = max

i

�

b

i

� 


n

�

i

l

��

:

The error bounds for the bound fun
tions resulting from appli
ation of the equi-

libriation transformation are labelled Æ

E

and are 
omputed identi
ally. Note that

after appli
ation of the equilibriation transformation, Method 1 delivers an aÆne

fun
tion instead of a 
onstant.

The mean Æ values for Methods 2 and 3 are very similar, with Method 3

exhibiting a slight improvement in all but the �rst 
ase. The poor mean Æ values

for Methods 4 and 5 are greatly skewed by a small minority of 
ases where the

shape information is in
orre
t. These methods are unreliable. However for any

given individual polynomial, any one method may deliver a signi�
antly superior

bound fun
tion to the other, with the results only frequently identi
al in the

n = 2 
ase. The equilibriation transformation is e�e
tive in redu
ing the mean

error bound in almost all 
ases, i.e. typi
ally Æ > Æ

E

. For n � 4 the 
omputation

time for Methods 3-5 is of the same order of magnitude as for Method 1 (
onstant

bound fun
tion), and is faster by orders of magnitude than Method 2. Under

that method, one 
an typi
ally 
ompute bound fun
tions in less than a se
ond

only for n � 4; for Methods 3-5 this 
an be done for n � 8.



Table 1. Results for random polynomials

Method 1 (Constant/AÆne)

n D k (D + 1)

n

time (s) Æ Æ

E

time (s) Æ Æ

E

2 2 5 9 0.000040 1.414 0.777

2 6 10 49 0.00013 1.989 1.570

2 10 20 121 0.00039 2.867 2.505

4 2 20 81 0.00037 3.459 2.841

4 4 50 625 0.0024 5.678 5.145

6 2 20 729 0.0011 4.043 3.333

8 2 50 6561 0.0093 6.941 6.505

10 2 50 59049 0.091 7.143 6.583

2 (LP problems) 3 (Linear eqs)

2 2 5 9 0.00020 0.976 0.840 0.000069 0.981 0.866

2 6 10 49 0.0025 1.695 1.536 0.00031 1.677 1.533

2 10 20 121 0.023 2.543 2.383 0.00074 2.511 2.410

4 2 20 81 0.0082 2.847 2.690 0.0012 2.797 2.659

4 4 50 625 2.82 5.056 4.963 0.0093 5.045 4.880

6 2 20 729 4.48 3.403 3.292 0.016 3.353 3.201

8 2 50 6561 greater than 0.24 6.291 6.129

10 2 50 59049 1 minute 3.43 6.503 6.371

4 (min BCs) 5 (min gradients)

2 2 5 9 0.000085 1.147 0.905 0.00011 0.961 0.885

2 6 10 49 0.00031 4.914 3.165 0.00044 1.910 1.514

2 10 20 121 0.00090 11.49 8.175 0.0012 3.014 2.514

4 2 20 81 0.0012 4.797 4.609 0.0015 3.199 2.766

4 4 50 625 0.0088 14.05 14.91 0.011 5.940 5.843

6 2 20 729 0.015 5.921 5.921 0.017 3.687 3.453

8 2 50 6561 0.21 14.33 15.41 0.24 7.360 7.313

10 2 50 59049 2.69 17.11 19.84 3.11 7.680 7.966

5 Con
lusions

We have presented several methods for the 
omputation of aÆne lower bound

fun
tions for multivariate polynomials based on Bernstein expansion. A simple


onstant bound fun
tion based on the minimum Bernstein 
oeÆ
ient (Method 1)


an be 
omputed 
heaply, but performs poorly. It is possible to improve this by

exploiting the valuable shape information inherent in the Bernstein 
oeÆ
ients.

With Methods 4 and 5, we have demonstrated that a naive attempt to derive

su
h shape information based on simple di�eren
es and gradients is unreliable.

Methods 2 and 3 do this reliably and in general deliver a better quality bound

fun
tion. The prin
ipal di�eren
e between these two lies in the 
omputational


omplexity; the general 
onstru
tion of Method 2 requires the solution of a linear

programming problem, whereas aÆne bound fun
tions a

ording to Method 3


an be 
omputed mu
h more 
heaply, and may therefore be of greater pra
ti
al

use. Indeed one may 
ompute up to 2

n

of these bound fun
tions for a single given

polynomial whi
h jointly bound the 
onvex hull of the 
ontrol points mu
h more




losely than a single bound fun
tion from Method 2, in less time. Method 3 is

therefore our 
urrent method of 
hoi
e.

Methods 1-5 are limited by fo
ussing on the shape information provided by

a small number of designated 
ontrol points, espe
ially the minimum. Their

performan
e 
an therefore be improved by in
orporating the wider shape infor-

mation provided by a broad spread of the 
ontrol points. Our 
urrently best

overall results are thus obtained by 
ombining Method 3 with the equilibriation

transformation given in Se
tion 3.5.

A fundamental limitation of our approa
h remains the exponential growth

of the number of underlying Bernstein 
oeÆ
ients with respe
t to the number

of variables. This means that many-variate (12 variables or more) polynomials


annot 
urrently be handled in reasonable time. Future work will seek to address

this limitation.

We have implemented the use of aÆne lower bound fun
tions in a bran
h

and bound framework for solving 
onstrained global optimization problems in-

volving a polynomial obje
tive fun
tion and polynomial 
onstraint fun
tions.

Relaxations based on these bound fun
tions lead to linear programs. In pra
ti-


al problems, quite often only a few variables appear in the obje
tive fun
tion

and in ea
h 
onstraint. In this 
ase, Method 3 may be highly suitable. If vali-

dated results are required, the solution of the linear program must be veri�ed.

This 
an be a

omplished by using the results of [12℄, [16℄, [17℄.
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