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Abstract. In this paper the problem of finding an affine lower bound
function for a multivariate polynomial is considered. For this task, a num-
ber of methods are presented, all based on the expansion of the given
polynomial into Bernstein polynomials. Error bounds and numerical re-
sults for a series of randomly-generated polynomials are given.
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1 Introduction

Finding a convex lower bound function for a given function is of paramount
importance in global optimization when a branch and bound approach is used.
Of special interest are convex envelopes, i.e., uniformly best underestimating
convex functions, cf. [5], [15], [21].

Because of their simplicity and ease of computation, constant and affine lower
bound functions are especially useful. Constant bound functions are thoroughly
used when interval computation techniques are applied to global optimization, cf.
[10], [13], [20]. However, when using constant bound functions, all information
about the shape of the given function is lost. A compromise between convex
envelopes, which require in the general case much computational effort, and
constant lower bound functions are affine lower bound functions.

Here we concentrate on such bound functions for multivariate polynomials.
These bound functions are constructed from the coefficients of the expansion of
the given polynomial into Bernstein polynomials. Properties of Bernstein poly-
nomials are introduced in Section 2; the reader is also referred to [4], [6], [18], [22].
In Section 3 we present a number of variant methods, together with a suitable
transformation that may be applied to improve the results. Numerical results
for a series of randomly-generated polynomials are given in Section 4, with a
comparison of the error bounds.

* This work has been supported by the German Research Council (DFG).



2 Bernstein polynomials and notation

We define multiindices i = (i1, ...,i,)7 as vectors, where the n components are
nonnegative integers. The vector 0 denotes the multiindex with all components
equal to 0, which should not cause ambiguity. Comparisons are used entrywise.
Also the arithmetic operators on multiindices are defined componentwise such
that i ® 1 := (iy ® ly,...,in ®1,)T, for ® = +,—, x, and / (with [ > 0). For
instance, i/1, 0 < i <, defines the Greville abscissae. For z € R™ its multipowers

are .
xt = H T (1)

pn=1
Multipowers of multiindices are not required here; instead we shall write %, ..., "

for a sequence of n + 1 multiindices. For the sum we use the notation

l 1 ln
=) (2)
i=0 i1=0 =0
A multivariate polynomial p of degree [ = (I1,...,1,)’ can be represented as
l .
p(x) = Zaiw’ with a; € R,0<i <, and a; # 0. (3)
=0

The ith Bernstein polynomial of degree [ is

7

Bi(z) := <l> (1 —z) ¢, (4)

tp

n
where the generalized binomial coefficient is defined by (i) =TI (l."), and
p=1

is contained in the unit box! I = [0,1]". It is well-known that the Bernstein
polynomials form a basis in the space of multivariate polynomials, and each
polynomial in the form (3) can be represented in its Bernstein form over I

p(r) = Z biBi(x), (5)

where the Bernstein coefficients b; are given by

bi:zl:%aj for OSZSZ (6)

J=0\j

! Without loss of generality we consider in the sequel the unit box since any nonempty
box in R"™ can be mapped affinely thereupon. For the respective formulae for general
boxes in the univariate case see [19] and their extensions to the multivariate case,
e.g., Section 7.3.2 in [2].



A fundamental property for our approach is the convex hull property

{<p<ic>>””“}90”“{@1>:0Si§l}a (7)

where the convex hull is denoted by conv. The points ('b/l) are called control
points of p. The enclosure (7) yields the inequalities

min{b; : 0 <4 <1} <p(z) <max{b;: 0<i<I} (8)

for all z € I. For ease of presentation we shall sometimes simply use b; to denote
the control point associated with the Bernstein coefficient b;, where the context
should make this unambiguous. Exponentiation on control points, Bernstein co-
efficients, or vectors is also not required here; therefore 8°,...,b" is a sequence
of n + 1 control points or Bernstein coefficients (with b7 = b;;), and u!,...,u"
is a sequence of n vectors.

3 Affine lower bound functions

In this section we explore a number of different methods for the computation of
affine lower bound functions for polynomials. In each case it is assumed that we
have a multivariate polynomial p given by (3) and that its Bernstein coefficients
b;, 0 <1 <, have been computed.

Theorems 1 and 2 below are independent of any particular method. They
characterize an affine lower bound function as the solution of a linear program-
ming problem. There is a degree of freedom in that the statements contain an
index set J which corresponds to a facet of the convex hull of the control points
of p. According to the choice of J and the way in which the linear programming
problem is posed (either all inequalities in (12) are considered or only a few),
numerous related methods can be designed. We discuss a few in the sequel.

3.1 Method 1

Constant bound functions can be computed easily and cheaply from the Bern-
stein coefficients: The left-hand side of (8) implies that the constant function
provided by the minimum Bernstein coefficient

co(x) = b =min{b; : 0 < i <1} 9)
is an affine lower bound function for the polynomial p given by (3) over the unit

box I. However, due to the lack of shape information, these bound functions
usually perform relatively poorly.



3.2 Method 2

This method was presented in [7] and relies on the following construction: Choose
a control point by with minimum Bernstein coefficient, cf. (9). Let J be a set of
at least n multiindices such that the slopes between b0 and the control points
with Greville abscissae associated with J are smaller than or equal to the slopes
between b;o and the remaining control points. Then the desired affine lower
bound function is provided as the solution of the linear programming problem to
maximize the affine function at the Greville abscissae associated with J under
the constraints that this affine function remains below all control points and
passes through b;o. More precisely, the following theorem holds true.

Theorem 1. Let {b;}\_, denote the Bernstein coefficients of the polynomial p
given by (8). Choose i° as in (9) and let J C {j: 0<j <I, j #i°} be a set of
at least n multiindices such that

b§ - bio < b; — bio

= < = - oreachﬁej,0<i<l,i i, 0 J. 10
13/1 = /1] IIz/l—ZO/lIIf ! sishigiig (10

Here, || - || denotes some vector norm. Then the linear programming problem
min (Y (/1 —i°/1)Ts subject to (11)
jed
(i)l —i°/D)T-5 > bjo —b; for 0<i<l,i#i° (12)

has the following properties:

1. It has an optimal solution §.
2. The affine function

clx) == =57 x+ (87 (i°/1) + byp) (13)
is a lower bound function for p on I.

In the univariate case, by definition (10), J can be chosen such that it consists
of exactly one element j which may not be uniquely defined. The slope of the
affine lower bound function ¢ is equal to the smallest possible slope between
the control points. Moreover, the optimal solution of the linear programming
problem (11) and (12) can be given explicitly in the univariate case.

Theorem 2. Suppose that all assumptions of Theorem 1 are satifﬁed, wherg
n = 1 and where || - || denotes the absolute value. Choose J = {j}, where j

satisfies

bs — b; b
%Zmin{%: 0<i<l, i;éio}.
l7/1 =14/l i/l =4/l

There then exists an optimal solution § of the linear programming problem (11),(12)
which satisfies

=L (14)
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Fig. 1. The curve of a polynomial of fifth degree (bold), the convex hull (shaded) of
its control points (marked by squares), and an affine lower bound function constructed
as in Theorem 2.

Figure 1 illustrates the construction of such an affine lower bound function.

In the univariate case the computational work for constructing such bound
functions is negligible, but in the multivariate case a linear programming prob-
lem has to be solved. In the branch and bound framework it may happen that
one has to solve subproblems on numerous subboxes of the starting region, so
that for higher dimensions solving the linear programming problems becomes a
computational burden.

3.3 Method 3

Overview This method was introduced in [9]. It only requires the solution
of a system of linear equations together with a sequence of back substitutions.
The following construction aims to find hyperplanes passing through the control
point b° (associated with the minimum Bernstein coefficient by, cf. (9)) which
approximate from below the lower part of the convex hull of the control points
increasingly well. In addition to b°, we designate n additional control points
bt,...,b". Starting with co, cf. (9), we construct from these control points a
sequence of affine lower bound functions ¢y, ...,c,. We end up with ¢, a hy-
perplane which passes through a lower facet of the convex hull spanned by the
control points 8°,...,b". In the course of this construction, we generate a set of



linearly independent vectors {u!,...,u"} and we compute slopes from b° to b7
in direction w/. Also, w’ denotes the vector connecting ° and 7.

Algorithm - First Iteration:

1
0
Let u! =
0
Compute slopes g; from the control point b; to b° in direction u':

9 = b

—— for all i with i; # 9.

4

L L

Let i* be a multiindex with smallest absolute value of associated slope g;. Des-
, T

ignate the control point b' = (%,bil) , the slope &y = g},, and the vector

wt = # Define the lower bound function

iO
c1(z) =00 +aut - (w — T) .

Algorithm - jth Iteration, 7 = 2,...,n:

8]
i
Let @/ = ]1
0
0
such that @/ - w* =0, k=1,...,j — 1. (15)
Normalize this vector thusly:
. )
J —
Y= 16)

Compute slopes gf from the control point b; to b° in direction wu/:

S by — i q(E . i—1°
gl = %l(l) for all 7, except where

st 2y Y
1 U

cud = 0. (17)




Let i/ be a multiindex with smallest absolute value of associated slope g7. Des-
I

) T .
ignate the control point ¥/ = (T,bij) , the slope a; = gf,j, and the vector
i —q

l

wl = . Define the lower bound function

cj(z) = cj—1(z) + aju? - (w - ?) i (18)

Remark: Solving (15) for the coefficients 6{ ey ;71 requires the solution of a
system of j — 1 linear equations in j — 1 unknowns. This system has a unique so-
lution due to the linear independence amongst the vectors w', ..., w", as proven
in [9].

For the n iterations of the above algorithm, the solution of such a sequence
of systems of linear equations would normally require $n* 4+ O(n®) arithmetic
operations. However we can take advantage of the fact that, in the jth iteration,
the vectors w',...,w’~! are unchanged from the previous iteration. The solu-
tion of these systems can then be formulated as Gaussian elimination applied
rowwise to the single (n — 1) x (n — 1) matrix whose rows consist of the vec-
tors w1 .. w" 1L and right-hand side —(w}, ..., w? 17T, In addition, a
sequence of back-substitution steps has to be performed. Then altogether only
n® + O(n?) arithmetic operations are required.

Let

There are then L™ Bernstein coefficients, so that the computation of the slopes
g} (17) in all iterations requires at most n?L™ + L"O(n) arithmetic operations.
This new approach therefore requires less computational effort in general than
Method 2, which is based on the solution of a linear programming problem with
upto L™ — 1 constraints. 2

The following results were given in [9]:

Theorem 3. With the notation of the above algorithm, it holds for oll j =
0,...,n that

ik k .
c;j T =b", fork=0,...,].

In particular, we have that

ik
Cn (—):bk,k:O,...,n, (19)

l
which means that ¢,, passes through all n + 1 control points 4°, ..., b". Since ¢,
is by construction a lower bound function, b°, ..., b" must therefore span a lower

facet of the convex hull of all control points.

2 In our computations, we have chosen exactly L™ — 1 constraints.



We obtain a pointwise error bound for the underestimating function ¢, which
also holds true for ¢, replaced by the affine lower bound function ¢ constructed
by Method 2, cf. [7].

Theorem 4. Let {b;}._, denote the Bernstein coefficients of the polynomial p
given by (3). Then the affine lower bound function c,, satisfies the a posteriori
error bound

ng(x)—cn(x)Smax{bi—cn<§) :Ogigl},wel. (20)

In the univariate case, this error bound specifies to the following bound which
exhibits quadratic convergence with respect to the width of the intervals, see [7].

Theorem 5. Suppose n =1 and that the assumptions of Theorem 4 hold, then
the affine lower bound function c,, satisfies the error bound (x € I)

. _ 10 1 _ 10 . -0
OSp(w)—Cn(x)SmaX{(bZ oL b)(j—%) :osml,z’#io}.

7 1 I I

Theorem 5 also holds true for ¢, replaced by the affine lower bound function
¢ of Method 2 and i! replaced by 7, cf. Theorem 2.

It was shown in [7] and [9] that affine polynomials coincide with their affine
lower bound functions constructed therein. This suggests that almost affine poly-
nomials should be approximated rather well by their affine lower bound func-
tions. This is confirmed by our numerical experiences.

In [8] we introduced a lower bound function for univariate polynomials which
is composed of two affine lower bound functions. The extension to the multivari-
ate case is as follows: In each step, compute slopes as before, but select a; as
the greatest negative gf value, and oz;r as the smallest positive gf value. From
each previous lower bound function ¢;_;, generate two new lower bound func-
tions, using a; and oz;r. Instead of a sequence of functions, we now obtain after
n iterations upto 2™ lower bound functions due to the binary tree structure.

It is worth noting that in the current version of our algorithm the choice of the
direction vectors u’ (16) is rather arbitrary. However our numerical experience
suggests that this may influence the resultant bound function (i.e. which lower
facet of the convex hull of the control points is emulated). A future modification
to the algorithm may therefore use a simple heuristic function to choose these
vectors in an alternative direction such that a more suitable facet of the lower
convex hull is designated. With the orthogonality requirement (15), there are
n — 7 degrees of freedom in this selection.

3.4 Methods 4 and 5

We also propose two simpler methods for the construction of affine lower bound
functions based on the Bernstein expansion, with the computation of slopes and
differences only, with still lower complexity. Method 4 is based on a choice of



control points corresponding to n+ 1 smallest Bernstein coefficients and Method
5 is based on a choice of a control point corresponding to the minimum Bernstein
coefficient and n others which connect to it with minimum absolute value of gra-
dient. In both cases, a lower bound function interpolating the designated control
points is computed, requiring the solution of a single system of linear equations.
A degenerate case may arise when this system has no unique solution — with
the terminology of Method 3, the set of vectors {w;} is linearly dependent. Such
cases are tested for and excluded from consideration during the designation of
the control points.

Additionally, both methods (unmodified) are not guaranteed to deliver a valid
lower bound function — exceptionally there may still occur control points below
it. Therefore an error term (20) is computed. If this is negative, it is necessary to
adjust the bound function by a downward shift: the absolute value of this error
is subtracted from its constant term.

As will become evident from the numerical results in the following section,
both of these methods may perform unexpectedly poorly under certain config-
urations of control points. Two such examples are illustrated in the following
figures, where the small circles are the control points of a bivariate polynomial.
Those control points filled in black are those which are designated, leading to the
construction of a lower bound function (the shaded plane), in the first case after
a necessary downward shift. Although both methods usually deliver a bound
function with correct shape information (i.e. an improvement over Method 1),
this is seen not always to be the case. For this reason, there are no worthwhile
error bounds that can be presented for these two methods.

Fig. 2. Method 4 - Example of poor lower bound function



Fig. 3. Method 5 - Example of poor lower bound function

3.5 An equilibriation transformation

A limitation of all the above methods is that the resultant lower bound function
must pass through the minimum control point b;o (except in cases where a down-
ward shift is necessary for Methods 4 and 5). Whilst this is often a good choice, it
is not always so. Figure 4 gives a simple example where the optimal lower bound
function does not in fact pass through the minimum control point. In this case it
would seem sensible to utilise the shape information provided by a broad spread
of the control points (global shape information over the box) in addition to that
already given by a small number of specially designated control points (which
may be clustered) as per the above algorithms (local shape information near the
minimum control point). We can lift the restriction that the lower bound func-
tion must pass through by. Indeed, if there are many Bernstein coefficients (i.e.
for polynomials of high degree) the global shape information may be at least as
important, if not more so, as the local information. This is especially evident in
the cases where Methods 4 and 5 perform poorly (see Figures 2 and 3).

To this end, we can envisage the determination of the lower bound function
as a three-stage process. Firstly, we apply an affine transformation to the control
points, which we call the equilibriation transformation, derived from the control
points on the edges of the box, and approximating the global shape information.
Secondly, we compute an affine lower bound function ¢* for the transformed
polynomial p* (and its control points b}), by using one of Methods 1-5 above.
Lastly, we apply the transformation in reverse to obtain an affine lower bound
function c¢ for the original polynomial.

We define the equilibriation transformation on the control points as follows:

ey N~ ) |
bi o 8= b= 30 (Ot t) (ot )  OSTSE

j=1



After applying this transformation, the global shape (i.e. the shape over the
whole box) of the polynomial has been approximately flattened, i.e.

b* :b*
(OLFLnl®]) (Bl

* *
1

=b .
b(L%L»»»,Ll"T_lJ,O) (L3l 5 k)

The effect of this transformation is illustrated in Figure 4 with a univariate
polynomial of degree 6, yielding an optimal bound function which does not pass
through the minimum control point.

bI‘

Fig. 4. Result of applying the equilibriation transformation; the improved/transformed
bound function is given in bold dashed.



3.6 Verification

Due to rounding errors, inaccuracies may be introduced into the calculation
of the Bernstein coefficients and the lower bound functions. Especially it may
happen that the computed lower bound function value is greater than the cor-
responding original function value. This may lead to erroneous results in appli-
cations. Suggestions for the way in which one can obtain functions which are
guaranteed to be lower bound functions also in the presence of rounding errors
are given in [7]. One such approach is to compute an error term (20) followed by
a downward shift, if necessary, as in Methods 4 and 5. For a different approach
see [3], [11], [14].

4 Examples

The above methods for computing lower bound functions, both with and without
the equilibriation transformation, were tested with a number of multivariate
polynomials (3) in n variables with degree | = (D,...,D)T and k non-zero
terms. The non-zero coefficients were randomly generated with a; € [-1,1].

Table 1 lists the results for different values of n, D, and k; (D + 1)™ is the
number of Bernstein coefficients. In each case 100 random polynomials were
generated and the mean computation time and error are given. The results were
produced with C++ on a 2.4 GHz PC. Method 2 utilizes the linear programming
solver LP_SOLVE [1].

The time required for the computation of the Bernstein coefficients is in-
cluded; this is equal to the time for Method 1 (constant bound functions). An
upper bound on the discrepancy between the polynomial and its lower bound
function over I is computed according to Theorem 4 as

oo (O}

The error bounds for the bound functions resulting from application of the equi-
libriation transformation are labelled 0y and are computed identically. Note that
after application of the equilibriation transformation, Method 1 delivers an affine
function instead of a constant.

The mean ¢ values for Methods 2 and 3 are very similar, with Method 3
exhibiting a slight improvement in all but the first case. The poor mean ¢ values
for Methods 4 and 5 are greatly skewed by a small minority of cases where the
shape information is incorrect. These methods are unreliable. However for any
given individual polynomial, any one method may deliver a significantly superior
bound function to the other, with the results only frequently identical in the
n = 2 case. The equilibriation transformation is effective in reducing the mean
error bound in almost all cases, i.e. typically 6 > §g. For n < 4 the computation
time for Methods 3-5 is of the same order of magnitude as for Method 1 (constant
bound function), and is faster by orders of magnitude than Method 2. Under
that method, one can typically compute bound functions in less than a second
only for n < 4; for Methods 3-5 this can be done for n < 8.



Table 1. Results for random polynomials

Method 1 (Constant/Affine)

n D k. (D+1)* time (s) ) or time (s) ) oE
2 2 5 9| 0.000040 1414 0.777

2 6 10 491 0.00013 1.989 1.570

2 10 20 121 0.00039 2.867  2.505

4 2 20 81| 0.00037 3.459  2.841

4 4 50 625/ 0.0024 5.678  5.145

6 2 20 729| 0.0011 4.043  3.333

8 2 50 6561 0.0093 6.941  6.505
10 2 50 59049| 0.091 7.143  6.583

2 (LP problems) 3 (Linear eqgs)
2 2 5 9| 0.00020 0.976  0.840( 0.000069 0.981  0.866
2 6 10 491  0.0025 1.695 1.536] 0.00031 1.677  1.533
2 10 20 121 0.023 2.543  2.383| 0.00074 2,511  2.410
4 2 20 81| 0.0082 2.847  2.690( 0.0012 2.797  2.659
4 4 50 625 2.82 5.056  4.963| 0.0093 5.045  4.880
6 2 20 729 4.48 3.403  3.292| 0.016 3.353 3.201
8 2 50 6561 greater than 0.24 6.291  6.129
10 2 50 59049 1 minute 3.43 6.503 6.371
4 (min BCs) 5 (min gradients)

2 2 5 9/ 0.000085 1.147  0.905| 0.00011 0.961  0.885
2 6 10 49| 0.00031 4.914  3.165| 0.00044 1.910 1.514
2 10 20 121 0.00090 11.49 8175 0.0012 3.014 2.514
4 2 20 81| 0.0012 4.797  4.609| 0.0015 3.199  2.766
4 4 50 625 0.0088 14.05 1491 0.011 5.940  5.843
6 2 20 729| 0.015 5.921  5.921| 0.017 3.687  3.453
8 2 50 6561 0.21 14.33 1541 0.24 7.360  7.313
10 2 50 59049| 2.69 1711  19.84| 3.11 7.680  7.966

5 Conclusions

We have presented several methods for the computation of affine lower bound
functions for multivariate polynomials based on Bernstein expansion. A simple
constant bound function based on the minimum Bernstein coefficient (Method 1)
can be computed cheaply, but performs poorly. It is possible to improve this by
exploiting the valuable shape information inherent in the Bernstein coefficients.
With Methods 4 and 5, we have demonstrated that a naive attempt to derive
such shape information based on simple differences and gradients is unreliable.
Methods 2 and 3 do this reliably and in general deliver a better quality bound
function. The principal difference between these two lies in the computational
complexity; the general construction of Method 2 requires the solution of a linear
programming problem, whereas affine bound functions according to Method 3
can be computed much more cheaply, and may therefore be of greater practical
use. Indeed one may compute up to 2" of these bound functions for a single given
polynomial which jointly bound the convex hull of the control points much more



closely than a single bound function from Method 2, in less time. Method 3 is
therefore our current method of choice.

Methods 1-5 are limited by focussing on the shape information provided by
a small number of designated control points, especially the minimum. Their
performance can therefore be improved by incorporating the wider shape infor-
mation provided by a broad spread of the control points. Our currently best
overall results are thus obtained by combining Method 3 with the equilibriation
transformation given in Section 3.5.

A fundamental limitation of our approach remains the exponential growth
of the number of underlying Bernstein coefficients with respect to the number
of variables. This means that many-variate (12 variables or more) polynomials
cannot currently be handled in reasonable time. Future work will seek to address
this limitation.

We have implemented the use of affine lower bound functions in a branch
and bound framework for solving constrained global optimization problems in-
volving a polynomial objective function and polynomial constraint functions.
Relaxations based on these bound functions lead to linear programs. In practi-
cal problems, quite often only a few variables appear in the objective function
and in each constraint. In this case, Method 3 may be highly suitable. If vali-
dated results are required, the solution of the linear program must be verified.
This can be accomplished by using the results of [12], [16], [17].
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