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a b s t r a c t 

In this paper, multivariate polynomials in the Bernstein basis over a simplex (simplicial 

Bernstein representation) are considered. Two matrix methods for the computation of the 

polynomial coefficients with respect to the Bernstein basis, the so-called Bernstein coef- 

ficients, are presented. Also matrix methods for the calculation of the Bernstein coeffi- 

cients over subsimplices generated by subdivision of the standard simplex are proposed 

and compared with the use of the de Casteljau algorithm. The evaluation of a multivariate 

polynomial in the power and in the Bernstein basis is considered as well. All the methods 

solely use matrix operations such as multiplication, transposition, and reshaping; some of 

them rely also on the bidiagonal factorization of the lower triangular Pascal matrix or the 

factorization of this matrix by a Toeplitz matrix. The latter one enables the use of the Fast 

Fourier Transform hereby reducing the amount of arithmetic operations. 
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1. Introduction 

Solving global optimization problems is of paramount importance in many real-life and scientific problems; polynomial

global optimization problems form a significant part of them. In this paper, we consider the case that the underlying re-

gion is a simplex. Applications of polynomial global optimization over a simplex include portfolio optimization, population

dynamics, genetics, finding maximum stable sets in graphs, and lower bounds for the crossing number of certain classes of

graphs, see [13] . A commonly used approach for solving global minimization problems is the branch and bound method.

This is summarized as splitting of the search region into smaller parts and using suitable tests to discard subregions that

cannot contain any global minimizer. The latter ones require the ability to compute tight bounds for the range of the ob-

jective function and the functions describing the constraints over the considered search region. In the case of polynomial

optimization problems, one can make use of the expansion of a polynomial into Bernstein polynomials, see [7,16,18,19,21,22] .

Then the minimum and maximum of the coefficients of this expansion, the so-called Bernstein coefficients, provide bounds

for the range of the polynomial over the search region. If the search region is a simplex, applications of this range enclos-

ing property of the Bernstein coefficients includes reachability analysis for differential equations [5] and Lyapunow stability

analysis [25,26] . In some cases, not all Bernstein coefficients have to be computed in order to find their minimum and maxi-

mum due to monotonicity properties of the simplicial Bernstein coefficients of multivariate monomials [28] . The advantages

and disadvantages of the use of the simplicial Bernstein basis compared to the use of the tensorial Bernstein basis, e.g., [7] ,
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where the underlying region is a box of R 

n , are discussed in [23] . For a comprehensive survey on the properties of the

Bernstein bases see [6] . 

Using the same matrix representation of the array of the Bernstein coefficients as in [22] (in the case of the tensorial

Bernstein basis), we present in this paper two methods for the calculation of the Bernstein coefficients over the standard

simplex. Our methods use as [22] solely matrix operations such as multiplication, transposition, and reshaping but rely

mainly on the use of the lower triangular Pascal matrix. The first method is based on the fact that this matrix can be

represented as a product of bidiagonal matrices [27,30] . The second method relies on a factorization of the Pascal matrix

by using a Toeplitz matrix. This enables the application of the Fast Fourier Transform (FFT), see [27] , [3, Chapter 13] , hereby

reducing the amount of arithmetic operations. 

We also consider the subdivision of the standard simplex into two subsimplices. According to the different factorizations

of the Pascal matrix, we obtain two methods for the computation of the Bernstein coefficients on the two subsimplices.

We show that in nearly all cases these methods are superior to the use of the de Casteljau algorithm [15,16,19] . For the

computation of the Bernstein coefficients on squares and triangles generated by subdivision of the standard simplex in the

bivariate case see [10,11] . 

The organization of our paper is as follows: In the next section, we introduce the notation and some matrices and

factorizations which are used throughout the paper. In Section 3 , we briefly recall the most important properties of the

Bernstein expansion over a simplex. In Section 4 , we derive the two proposed matrix methods for the computation of the

Bernstein coefficients over the standard simplex. We present matrix methods for the calculation of the Bernstein coefficients

on subsimplices generated by subdivision in Section 5 and for the evaluation of a polynomial in power as well as in the

Bernstein representation in Section 6 . 

2. Notation 

In this section, we introduce the notation that we are using throughout this paper. Let n ∈ N (set of the nonnegative in-

tegers) be the number of variables. A multi-index (i 1 , . . . , i n ) ∈ N 

n is abbreviated by i . In particular, we write 0 for (0 , . . . , 0) .

We put | i | := i 1 + · · · + i n . Comparison between multi-indices and arithmetic operations using them are understood entry-

wise. For x = (x 1 , . . . , x n ) ∈ R 

n , its monomials are defined as x i := 

∏ n 
s =1 x 

i s 
s . For d = (d 1 , . . . , d n ) ∈ N 

n such that i ≤ d , we use

the compact notations 
∑ d 

i =0 := 

∑ d 1 
i 1 =0 

. . . 
∑ d n 

i n =0 
and 

(
d 
i 

)
:= 

∏ n 
s =1 

(
d s 
i s 

)
. 

Let R 

r,t be the set of r -by- t real matrices. For M ∈ R 

r,r , the antidiagonal of M is formed by its entries in position (r + 1 −
v , v ) , v = 1 , . . . , r. We introduce the following matrices 1 of R 

k +1 ,k +1 . The lower triangular Toeplitz matrix T k is defined as 

(T k ) i j := 

{
1 

(i − j)! 
, j ≤ i, 

0 , otherwise . 
(1)

P k is the lower triangular Pascal matrix , i.e., 

(P k ) i j := 

{(
i −1 
j−1 

)
, j ≤ i, 

0 , otherwise . 
(2)

The matrices K μ, μ = 1 , . . . , k, are given by 

(K μ) i j := 

{ 

1 , if i = j, 
1 , if i = j + 1 , k − μ + 1 ≤ j ≤ k, 

0 , otherwise . 
(3)

We will make use of the following factorization, e.g., [27, Lemma 2.4] , 

P k = 

k ∏ 

μ=1 

K μ. (4)

The matrices D k ( t ), D 

′ 
k 
(t) , G k , and G 

′ 
k 

are the diagonal matrices D k (t) := diag (1 , t, t 2 , . . . , t k ) , D 

′ 
k 
(t) :=

diag (t k , t k −1 , . . . , t, 1) , G k := diag (1 , 1 , 2! , . . . , k !) , and G 

′ 
k 

:= diag (k ! , (k − 1)! , . . . , 2! , 1 , 1) . The matrix P k can also be

factorized as 

P k = G k T k G 

−1 
k 

, (5)

see, e.g., [27, Theorem 2.1] . We will suppress the lower or upper indices of these matrices when their order will be clear

from the context. 
1 We will use small Latin letters to denote not only multiindices but also row and column indices of matrix entries. 
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3. Bernstein form over the standard simplex 

In this section, we present fundamental properties of the Bernstein expansion over the standard simplex that are em-

ployed throughout the paper. 

Let v 0 , . . . , v n be n + 1 points of R 

n . The ordered list V = [ v 0 , . . . , v n ] is called simplex of the vertices v 0 , . . . , v n . The realiza-

tion | V | of the simplex V is the set of R 

n defined as the convex hull of the points v 0 , . . . , v n . The diameter of V is the length

of a largest edge of | V |. 

Throughout the paper we will assume that the points v 0 , . . . , v n are affinely independent in which case the simplex

V is non-degenerate. We denote by e 1 , . . . , e n the canonical basis of R 

n and by e 0 the zero vector in R 

n . We will often

consider the standard simplex � := [ e 0 , e 1 , . . . , e n ] . This is no restriction since any non-degenerate simplex V in R 

n can be

mapped affinely upon �, see, e.g., [15] , [20, Section 3] . Recall that any vector x ∈ R 

n can be written as an affine combi-

nation of the vertices v 0 , . . . , v n with weights λ0 (x ) , . . . , λn (x ) called barycentric coordinates . If x = (x 1 , . . . , x n ) ∈ �, then

λ = (λ0 (x ) , . . . , λn (x )) = (1 −∑ n 
s =1 x s , x 1 , . . . , x n ) . For i = (i 0 , i 1 , . . . , i n ) ∈ N 

n +1 , we put ˆ i := (i 1 , . . . , i n ) and extend the nota-

tion of the monomials introduced in Section 2 to λi and define | i | := i 0 + i 1 + . . . + i n . If | i | = k, k ∈ N , we further use the

notation 

(
k 
i 

)
:= 

k ! 
i 0 ! ... i n ! 

. Let l ∈ N 

n and p be an n -variate polynomial with the power representation 

p(x ) = 

l ∑ 

ˆ i =0 

a ˆ i x 
ˆ i . (6) 

We call 

l ′ := max 
{| ̂ i | | ̂  i = 0 , . . . , l with a ˆ i � = 0 

}
. 

the total degree of p . 

The Bernstein polynomials of degree k over � are the polynomials (B (k ) 
i 

) | i | = k , defined as 

B 

(k ) 
i 

:= 

(
k 

i 

)
λi . (7) 

The Bernstein polynomials of degree k over � take nonnegative values on � and sum up to 1: 1 = 

∑ 

| i | = k B (k ) 
i 

. Since the

Bernstein polynomials of degree k form a basis of the vector space R k [ X] of the polynomials of total degree at most k , see,

e.g., [14, Proposition 1.6] , [15,20] , we expand p for l ′ ≤ k over � as 

p(x ) = 

∑ 

| i | = k 
b (k ) 

i 
B 

(k ) 
i 

, (8) 

where b (k ) 
i 

are called the Bernstein coefficients of p of degree k with respect to �. We arrange the Bernstein coefficients in

a multidimensional array B (�) = (b (k ) 
ˆ i 

) | i | = k , the so-called Bernstein patch . Using the running index m ∈ N 

n +1 with | m | = k,

these coefficients are represented in a compact way as 

b (k ) 
i 

= 

∑ 

ˆ m ≤ˆ i 

( ˆ i 
ˆ m 

)(
k 
m 

)a ˆ m 

(9) 

with the convention that 

a ˆ m 

:= 0 for ˆ m s > l s for at least one s ∈ { 1 , . . . , n } . (10) 

We call the representation (8) the Bernstein representation of p (more precisely, the simplicial Bernstein representation to

distinguish it from the similar representation with respect to the tensorial Bernstein basis). 

The Bernstein coefficients provide lower and upper bounds for the range of p over � [7,14] 

min 

| i | = k 
b (k ) 

i 
≤ p(x ) ≤ max 

| i | = k 
b (k ) 

i 
, for all x ∈ �. (11) 

Equality holds in the left or right inequality of (11) if and only if the minimum or the maximum, respectively, is attained at

a vertex of B ( �), i.e., if ˆ i = k e j 0 , j 0 ∈ { 0 , . . . , n } , see [29, Proposition 2] . 

Another property of the Bernstein coefficients which follows immediately from the representation (9) is their linearity :

Let p = αp 1 + βp 2 , and α, β ∈ R , where the total degree of p 1 and p 2 is less than or equal to k . Then 

b (k ) 
i 

(p) = αb (k ) 
i 

(p 1 ) + βb (k ) 
i 

(p 2 ) , for all | i | = k, (12) 

where b (k ) 
i 

(p 1 ) and b (k ) 
i 

(p 2 ) are the coefficients of the Bernstein expansions of p 1 and p 2 of the degree k with respect to �,

respectively. In the sequel, we suppress the upper index if the degree of the Bernstein expansion is clear from the context. 

We can improve the enclosure (11) for the range of p over � by elevating the degree k of the Bernstein expansion or 

subdividing �, see [15] . Subdivision is more efficient than degree elevation since iteratively applied subdivision generates

a sequence of enclosures which converges quadratically in the Hausdorff metric to the range of p over �, in contrast to
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linear convergence when degree elevation is applied, see [15,29] . Therefore, we choose subdivision, put k = l ′ , and suppress

the upper index; the methods investigated in this paper are easily extended to l ′ < k . The two sub-simplices generated by

subdivision of � with respect to a point Y = (Y 1 , . . . , Y n ) lying on the edge between e f and e g , f, g ∈ { 0 , 1 , . . . , n } , are defined

as follows: 

�[ w ] := [ e 0 , e 1 , . . . , e w −1 , Y, e w +1 , . . . , e n ] , w = f, g. (13)

The Bernstein coefficients over �[ w ] , w = f, g, denoted by (b i (�
[ w ] )) | i | = k , can be computed from the Bernstein coefficients

b i ( �) by using the de Casteljau algorithm, see, e.g., [15, p. 14] , [16,19] . This algorithm is summarized as follows: 

Let εf and εg denote the f -th and g -th, respectively, unit vectors of R 

n +1 and let i (w ) := (i 0 , . . . , i w −1 , 0 , i w +1 , . . . , i n ) . Then

(1) Put b 
[0] 
i 

:= b i (�) , | i | = k ; 

(2) for ν = 1 , . . . , k : 

(3) for | i | = k − ν

b [ ν] 
i 

:= λ f (Y ) b 
[ ν−1] 
i + ε f 

+ (1 − λ f (Y )) b 
[ ν−1] 
i + εg 

; (14)

(4) b i (�
[ w ] ) := b 

[ i w ] 

i (w ) 
, | i | = k, w = f, g. 

4. Matrix methods for the computation of the Bernstein coefficients over the standard simplex 

In this section, we propose two efficient matrix methods for the computation of the Bernstein coefficients of a given

multivariate polynomial over �. These methods solely involve matrix operations such as multiplication, transposition, and

reshaping. They are faster than the computation according to (9) . However, they require an amount of formalism. Therefore,

we present here only the bivariate case and delegate details of the general multivariate case to the Appendix A . Let the

polynomial p be given by (6) . 

4.1. Outline of the proposed matrix methods 

a) Bivariate case 

Eq. (9) can be rewritten as 

b i = 

∑ 

ˆ m ≤ˆ i 

(
ˆ i 

ˆ m 

)
a ′ ˆ m 

, (15)

where a ′ 
ˆ m 

= 

a ˆ m 

( k m ) 
. Keeping our convention (10) , we embed the coefficients of p of total degree l ′ ≤ k in a matrix A as follows: 

A = 

⎡ 

⎢ ⎢ ⎣ 

a 0 , 0 a 0 , 1 . . . a 0 ,k 
a 1 , 0 a 1 , 1 . . . a 1 ,k 

. . . 
. . . . . . 

. . . 
a k, 0 a k, 1 . . . a k,k 

⎤ 

⎥ ⎥ ⎦ 

, (16)

where a j 1 , j 2 
:= NaN (not a number) for j 1 + j 2 > l ′ . 

We define the (k + 1) -by- (k + 1) matrix C(�) = (γ j 1 , j 2 
) by 

γ j 1 , j 2 := 

{
a ′ 

j 1 −1 , j 2 −1 
= 

a j 1 −1 , j 2 −1 (k − j 1 − j 2 +2)!( j 1 −1)!( j 2 −1)! 

k ! 
, j 1 + j 2 ≤ k + 2 , 

a j 1 −1 , j 2 −1 , otherwise . 
(17)

Then the Bernstein coefficients (9) of the polynomial p over � are obtained as the entries above and on the antidiagonal of

the matrix 

(P k (P k C(�)) T ) T , (18)

where P k is the lower triangular Pascal matrix of order k + 1 , see (2) . 

b) Multivariate case 

We extend the procedure introduced in a) for the n -variate polynomial p of total degree l ′ ≤ k given in (6) . The coefficients

of p are arranged in an (k + 1) × k ∗ matrix A , where k ∗ := (k + 1) n −1 . The correspondence between the coefficients a i 1 , ... ,i n
of p and the entry of A in row ι and column κ is as follows: 

ι = i 1 + 1 , 

κ = i 2 + 1 + 

n ∑ 

s =3 

i s (k + 1) s −2 . 
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The matrix A can be represented explicitly as ⎡ 

⎢ ⎢ ⎣ 

a 0 , 0 , 0 , ... , 0 a 0 , 1 , 0 , ... , 0 . . . a 0 ,k, 0 , ... , 0 a 0 , 0 , 1 , ... , 0 . . . a 0 ,k, 1 , ... , 0 . . . a 0 , 0 ,k, ... , 0 . . . a 0 ,k ,k , ... , 0 . . . 
a 1 , 0 , 0 , ... , 0 a 1 , 1 , 0 , ... , 0 . . . a 1 ,k, 0 , ... , 0 a 1 , 0 , 1 , ... , 0 . . . a 1 ,k, 1 , ... , 0 . . . a 1 , 0 ,k, ... , 0 . . . a 1 ,k ,k , ... , 0 . . . 

. . . 
. . . . . . 

. . . 
. . . . . . 

. . . . . . 
. . . . . . 

. . . . . . 

a k, 0 , 0 , ... , 0 a k, 1 , 0 , ... , 0 . . . a k ,k , 0 , ... , 0 a k, 0 , 1 , ... , 0 . . . a k ,k , 1 , ... , 0 . . . a k , 0 ,k , ... , 0 . . . a k ,k ,k , ... , 0 . . . 

. . . a 0 , 0 ,k, ... ,k a 0 , 1 ,k, ... ,k . . . a 0 ,k ,k , ... ,k 

. . . a 1 , 0 ,k, ... ,k a 1 , 1 ,k, ... ,k . . . a 1 ,k ,k , ... ,k 

. . . 
. . . 

. . . . . . 
. . . 

. . . a k , 0 ,k , ... ,k a k , 1 ,k , ... ,k . . . a k ,k ,k , ... ,k 

⎤ 

⎥ ⎥ ⎦ 

, (19) 

where a j := NaN for | j | > l ′ . 
For a graphical illustration in the trivariate case, see Figs. 1 and 2 in [22] . The matrix C ( �) is obtained from A by dividing

a i by 
(

k 
i 

)
for | i | ≤ l ′ and replacing all entries that correspond to a i with | i | > k by NaN. In the sequel, the superscript c denotes

the cyclic ordering of the sequence of the indices, i.e., the order of the indices of the entries of the array under consideration

is changed cyclically. This means that the index in the first position is replaced by the index in the second one, the index in

the second position by the one in the third, . . . , the index in the n th position by the one in the first position, so that after n

such steps the sequence of the indices is again in its initial order, see Figure 3 in [22] as an illustration in the trivariate case.

Note that in the bivariate case the cyclic ordering is just the usual matrix transposition. The Bernstein coefficients (9) of the

polynomial p over � can be obtained from the non-NaN entries of the matrix 

( P k ( · · · ( P k ( P k ︸ ︷︷ ︸ 
n times 

C(�)) c ) c · · · ) c ) c . (20) 

We put C 0 ( �) := C ( �) and define for t = 1 , . . . , n 

C t := (P k C t−1 ) 
c . (21) 

We obtain the Bernstein patch B ( �) from the non-NaN entries of the matrix C n . 

For larger n , the matrix in (20) may contain a huge number of NaN entries. In order to avoid operations with such entries

we reduce the computation of (20) to the calculation of products of the Pascal matrices P k −z and matrices B (z) 
t−1 

, see (51) in

Appendix A , where also a matrix method for the computation of these products based on the factorization (4) is given. 

Method 1: In this method we sequentially perform the multiplication in (51) by using the factorization (4) , i.e., we firstly

multiply K k −z and B (z) 
t−1 

, multiply the resulting matrix by K k −z−1 , and so on. The number of arithmetic operations that are

required by this method is n 
(

n + k 
n +1 

)
, see Appendix A . 

Method 2: The factorial j s ! appearing in 

(
k 
j 

)
and on the diagonal of G 

−1 
k 

cancel out, s = 1 , . . . , n . Therefore, if we multiply

a i 1 , ... ,i n by
i 0 ! 

k ! 
and name the resulting matrix B ′ (z) 

t−1 
then 

D 

(z) 
t−1 

= GT B 

′ (z) 
t−1 

, t = 1 , . . . , n, (22) 

yields the matrix in (51) . 

Method 2 employs factorization (5) and relies on the fact that the computation of a matrix-vector multiplication with

the matrix T can be carried out by using the FFT [27, Theorem 1.6] , see [3, Chapter 13] . At a first glance, it seems that by the

use of method 2 the number of operations required for the computation of B ( �) could significantly be reduced. However,

to apply the FFT the order of the matrices being involved has possibly to be increased. Specifically, the multiplication of a

vector of length t by the matrices K μ, μ = 1 , . . . , n, requires t (t +1) 
2 arithmetic operations, wher eas the application of the FFT

needs 5 m log 2 m + t operations [3, Section 3.1] , where m is the smallest natural number greater than or equal to 2 t − 2 such

that m = 2 σ for some σ [3, Chapter 13] . Thus, method 2 is superior to method 1 when 

t (t +1) 
2 > 5 σ2 σ + t . This inequality is

fulfilled only for t ∈ [216, 257] and for all t ≥ 321. Since the number of the rows of the matrices B (z) 
t−1 

is decreasing from k + 1

to 1 when z is increased, see Appendix A , we propose a mixed method in which method 1 or method 2 is chosen depending

on which method is preferable for the actual number of rows. 

In Table 1 , we present the results for method 1 on the test problems listed in Appendix B . According to the last paragraph,

method 1 outperforms method 2 in all these cases. The timings in Table 1 are obtained on a laptop with Intel(R) Core(TM)

i5-5200U CPU@ 3.30 GHz, 2.20 GHz, 16.00 GB RAM. The computations are done in Visual Studio 2010. 

4.2. Bernstein coefficients on faces 

In the tensorial case, the Bernstein coefficients on an r -dimensional face of an n -dimensional box, r = 1 , . . . , n − 1 , are

identical with the coefficients lying on the respective face of the Bernstein patch, see [8, Lemma 2] . In the simplicial case,

we have a parallel result. Let p be the n -variate polynomial given by (6) . Then the Bernstein coefficients of p over an r -

dimensional face of �, where 1 ≤ r ≤ n − 1 , are the same as the Bernstein coefficients that are located at the corresponding
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Table 1 

Time (in ms) required for computing the Bernstein patch 

over � by using method 1. 

Test case n k Method 1 

Booth 2 2 0.11 

Ler1 2 2 0.11 

Himmelblau 2 4 0.31 

Rosenbrock 2 4 0.31 

Ler2 2 4 0.31 

Ler3 2 4 0.31 

Camel 2 2 6 0.52 

Ler4 2 6 0.52 

Ler5 2 8 0.89 

Trid 3 3 2 0.24 

Schwefel 3 4 0.79 

L. V. 4 4 3 1.31 

Cap 4 4 4 4.93 

Wrig 5 5 2 1.5 

Cyc 5 5 4 13.31 

Reim 5 5 6 62.81 

Mag 6 6 2 4.79 

But 6 6 3 22.23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r -dimensional face of the Bernstein patch of p over �. To show this it suffices to consider the case r = n − 1 . Let p ∗ be the

polynomial of n − 1 variables given by 

p(x 1 , . . . , x h −1 , 0 , x h +1 , . . . , x n ) = 

l ∑ 

ˆ i =0 , 
i h =0 

a ˆ i x 
ˆ i . 

Then the Bernstein coefficients of p ∗ on | [ e 0 , e 1 , . . . , e h −1 , e h +1 , . . . , e n ] | are 

∑ 

ˆ m ≤ˆ i , 
m h =0 

( ˆ i 
ˆ m 

)(
k 
m 

)a ˆ m 

(23)

which coincide with the Bernstein coefficients b i 0 , ... ,i h −1 , 0 ,i h +1 , ... ,i n 
of p over �. Also, if 

∑ n 
s =1 x s = 1 , the only monomial terms

in the Bernstein representation which are not identical zero are those containing the term (1 −∑ n −1 
s =1 x s ) with a zero power,

i.e., for which | ̂ i | = k holds. Therefore, we obtain 

p(x 1 , . . . , x n −1 , 1 −
n −1 ∑ 

s =1 

x s ) = 

∑ 

| ̂ i | = k 
b ˆ i 

(
k 
ˆ i 

)
x i 1 

1 
· · · x i n −1 

n −1 
(1 −

n −1 ∑ 

s =1 

x s ) 
k −i 1 −... −i n −1 . 

By the uniqueness of the Bernstein representation over the face 
∑ n 

s =1 x s = 1 , it follows that the Bernstein coefficients of

p over this face are just the Bernstein coefficients lying in the Bernstein patch of p over � on the face given by | ̂ i | = k . 

Now let V = [ v 0 , . . . , v n ] be an arbitrary non-degenerate simplex of R 

n . Consider the affine transformation which maps

v s to e s , s = 0 , . . . , n . It maps V onto � and any face of V onto the respective face of �. Since the Bernstein coefficients are

invariant under an affine transformation, see [14, p. 24] , [15, p. 19] , the above result on the Bernstein coefficients on a face

of � extends to any non-degenerate simplex of R 

n . 

5. Simplicial subdivision 

Let p be the n -variate polynomial given in (6) with Bernstein coefficients b i over the standard simplex � arranged in the

matrix B(�) as in (19) . In this section, we consider the subdivision of � into two subsimplices with respect to a point Y ,

which lies on an edge between any two vertices of �. Without loss of generality we assume that Y lies on the edge between

e 0 and e 1 . This implies that λ2 (Y ) = · · · = λn (Y ) = 0 . In the case that Y lies between another pair of vertices of � we firstly

arrange the Bernstein matrix B(�) in such away that this pair plays the role of ( e 0 , e 1 ). Subdivision of � with respect to Y

produces two subsimplices �[0] and �[1] defined as 

�[0] := [ Y, e 1 , . . . , e n ] , (24)

�[1] := [ e 0 , Y, . . . , e n ] , 

such that � = �[0] ∪ �[1] . We arrange their Bernstein coefficients b ˆ i (�
[ w ] ) , w = 0 , 1 , likewise in matrices B(�[0] ) and

B(�[1] ) of the form (19) . For simplicity, we mean by the Bernstein coefficients of p over �[ w ] the coefficients b ˆ i (�
[ w ] ) . 
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We perform the de Casteljau algorithm, see Section 3 , with the matrix B(�) instead of the Bernstein patch B ( �) and get

then k + 1 matrices B 

[ ν] (�) . In the νth step, ν ≥ 1, B 

[ ν] (�) is obtained as follows: The first ν rows are identical with the

first ν rows in the (ν − 1) th step and the remaining rows are obtained as a convex combination of two consecutive rows. In

matrix language, these matrices are obtained from the following matrices, see Example 5.1 below for an illustration. Let the

columns of F z (�) ∈ R 

k +1 ,ψ n −1 (z) be the columns of B(�) such that each column has exactly z NaN entries and let ψ n −1 (z)

be the number of such columns, z = 0 , . . . , k . Then we form the matrices F (1) 
z (�) ∈ R 

k −z+1 ,ψ n −1 (z) from F z ( �) by deleting the

last rows which contain exactly z NaN entries (if any), z = 0 , . . . , k . Since Y is a point on the edge between e 0 and e 1 , λ0 ( Y )

and λ1 ( Y ) are related by λ0 (Y ) = 1 − λ1 (Y ) . In the sequel, we write λ1 for λ1 ( Y ). For μ = 1 , . . . , k − z, z = 0 , . . . , k, we define

the matrices L 
μ
k −z 

and R 
μ
k −z 

∈ R 

k −z+1 ,k −z+1 as follows ( δ denotes the Kronecker delta) 

(
L 
μ
k −z 

)
i j 

:= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

δi, j , if i = 1 , . . . , k − z − μ + 1 , 

1 − λ1 , if j = i − 1 , 

λ1 , if j = i, 
0 , otherwise , 

} 

for i = k − z − μ + 2 , . . . , k − z + 1 , 
(25) 

and 

(R 

μ
k −z 

) i j := 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 − λ1 , if j = i, 
λ1 , if j = i + 1 , 

0 , otherwise , 

} 

for i = 1 , . . . , μ, 

δi, j , if i = μ + 1 , . . . , k − z + 1 . 

(26) 

Let S k −z ∈ R 

k −z+1 ,k −z+1 be the permutation matrix defined by 

(S k −z ) i j := 

{
1 , if i = k − z − j + 2 , 

0 , otherwise . 
(27) 

The matrices F (2) 
z (�) ∈ R 

k −z+1 ,ψ n −1 (z) are formed from F (1) 
z (�) as follows: 

F (2) 
z (�) := 

k −z ∏ 

μ=1 

L 
μ
k −z 

F (1) 
z (�) , (28) 

where z = 0 , . . . , k . 

The matrices F (3) 
z (�) ∈ R 

k +1 ,ψ n −1 (z) are obtained from F (2) 
z (�) , see (28) , by appending at their bottom row z rows con-

taining only NaN entries. Then we replace the columns in B(�) by the corresponding resulting columns from F (3) 
z (�) . It is

not hard to see that we get in this way B(�[1] ) and the Bernstein coefficients over �[1] are the non-NaN entries of B(�[1] ) .

We define L 
† 

k −z 
∈ R 

k −z+1 ,k −z+1 by 

(
L † 

k −z 

)
i j 

:= 

{(
i −1 
j−1 

)
λ j−1 

1 
(1 − λ1 ) 

(i −1) −( j−1) , i ≥ j, 

0 , otherwise . 
(29) 

Then, the factorization 

L † 
k −z 

= 

k −z ∏ 

μ=1 

L 
μ
k −z 

, z = 0 , . . . , k, (30) 

holds [1, Proposition 3] . It is easy to see that 

L † 
k −z 

= D k −z (1 − λ1 ) P k −z D k −z 

(
λ1 

1 − λ1 

)
. (31) 

Then by using (31), (28) becomes 

F (2) 
z (�) = D k −z (1 − λ1 ) P k −z D k −z 

(
λ1 

1 − λ1 

)
F (1) 

z (�) . (32) 

After substituting (5) in (32) , we have 

F (2) 
z (�) = D 

(2) 
k −z 

T k −z D 

(1) 
k −z 

F (1) 
z (�) , (33) 

where D 

(2) 
k −z 

:= D k −z (1 − λ1 ) G k −z and D 

(1) 
k −z 

:= G 

−1 
k −z 

D k −z 

(
λ1 

1 −λ1 

)
. 

To get the Bernstein coefficients matrix over �[0] we first replace F (1) 
z (�) by F ′ (1) 

z (�) defined by 

F ′ (1) 
z (�) := S k −z F 

(1) 
z (�) , (34) 



J. Titi, J. Garloff / Applied Mathematics and Computation 315 (2017) 246–258 253 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i.e., we permute the rows of F (1) 
z (�) . We replace in L 

μ
k −z 

λ1 by 1 − λ1 to obtain L 
′ μ
k −z 

and define F ′ (2) 
z (�) ∈ R 

k −z+1 ,ψ n −1 (z)

by 

F ′ (2) 
z (�) := 

k −z ∏ 

μ

L 
′ μ
k −z 

F ′ (1) 
z (�) . (35)

Then we form the matrices F ′ (3) 
z (�) ∈ R 

k +1 ,ψ n −1 (z) from F ′ (2) 
z (�) by permutation of the rows of F ′ (2) 

z (�) by the matrix

S k −z . Note that this procedure corresponds to the relation R 
μ
k −z 

= S k −z L 
′ μ
k −z 

S k −z . In this way, (35) can be written as 

F ′ (2) 
z (�) = 

k −z ∏ 

μ

R 

μ
k −z 

F (1) 
z (�) . (36)

Then we append z rows of NaN entries to the bottom of S k −z F 
′ (2) 

z (�) or F ′ (2) 
z (�) if we use the matrices L 

′ μ
k −z 

and R 
μ
k −z 

,

respectively. Then we replace the columns in B(�) by the corresponding resulting columns from F ′ (3) 
z (�) . It is not hard to

see that we get in this way B(�[0] ) and the Bernstein coefficients over �[0] are the non-NaN entries of B(�[0] ) . 

We define R 
† 

k −z 
∈ R 

k −z+1 ,k −z+1 by 

(R 

† 

k −z 
) i j := 

{(
k −z−i +1 

j−i 

)
λ j−i 

1 
(1 − λ1 ) 

k −z− j+1 , j ≥ i, 

0 , otherwise . 
(37)

Then we get 

R 

† 

k −z 
= 

k −z ∏ 

μ=1 

R 

μ
k −z 

. (38)

The matrix R 
† 

k −z 
can also be factorized as 

R 

† 

k −z 
= (1 − λ1 ) 

k −z D k −z 

(
1 

λ1 

)
P ′ k −z D k −z 

(
λ1 

1 − λ1 

)
, (39)

where the matrix P ′ 
k −z 

is defined as 

(P ′ k −z ) i j := 

{(
k −z−i +1 

j−i 

)
, j ≥ i, 

0 , otherwise . 
(40)

By using (27) and the symmetry of the binomial coefficients, we can easily see that P ′ 
k −z 

= S k −z P k −z S k −z . By (4) , we fac-

torize P ′ 
k −z 

as follows 

P ′ k −z = 

k −z ∏ 

μ=1 

K 

′ 
μ (41)

with the matrices K 

′ 
μ := S k −z K μS k −z , μ = 1 , . . . , k − z, z = 0 , . . . , k . After substituting (39) in (35) by using (38) , we get 

F ′ (2) 
z (�) = (1 − λ1 ) 

k −z D k −z ( 
1 

λ1 

) P ′ k −z D k −z ( 
λ1 

1 − λ1 

) F (1) 
z (�) . (42)

It is easy to see that 

P ′ k −z = G 

′ 
k −z T 

T 
k −z G 

′−1 
k −z 

. (43)

After substituting (43) in (39) and using (38) , formula (35) can be written as 

F ′ (2) 
z (�) = D 

′ (2) 
k −z 

T T k −z D 

′ (1) 
k −z 

F (1) 
z (�) , (44)

where D 

′ (2) 
k −z 

:= (1 − λ1 ) 
k −z D k −z ( 

1 
λ1 

) G 

′ 
k −z 

and D 

′ (1) 
k −z 

:= G 

′−1 
k −z 

D k −z ( 
λ1 

1 −λ1 
) . 

Now we are going to derive the amount of work needed by the presented methods for the simplicial subdivision. The

number of arithmetic operations required for the multiplication of F (1) 
z (�) and F ′ (1) 

z (�) by the two diagonal matrices and

the matrix P k −z and P ′ 
k −z 

in (32) and (42) , (neglecting the multiplication by (1 − λ1 ) 
k −z ), respectively, is as follows: 

For z = 0 , . . . , k, the matrix F (1) 
z (�) has ψ n −1 (z) = 

(
n −2+ z 

n −2 

)
columns. The number of additions and multiplications for each

of these columns is 
(

k +1 −z 
2 

)
and 2(k − z) , respectively. Summing over all columns and using [9, p. 222, 4.1.6.a] results in 

additions: 

k ∑ 

z=0 

(
k + 1 − z 

2 

)(
n − 2 + z 

n − 2 

)
= 

(
n + k 

n + 1 

)
, 
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Table 2 

Number of arithmetic operations required to obtain the Bernstein patch over �[0] by using (42) . 

Calculation of Number of additions Number of multiplications/divisions 

(1 − λ1 ) 
k D k ( 

1 
λ1 

) , D k ( 
λ1 

1 −λ1 
) 1 3 k + 2 

D k −z ( 
λ1 

1 −λ1 
) F ′ (1) 

z (�) , (1 − λ1 ) 
k −z D k −z ( 

1 
λ1 

)( . . . ) , z = 0 , . . . , k 0 
(

n + k −1 
n 

)
+ 

(
n + k 

n 

)
P ′ 

k −z 
( . . . ) , z = 0 , . . . , k 

(
n + k 
n +1 

)
0 

Total 
(

n + k 
n +1 

)
+ 1 

(
n + k −1 

n 

)
+ 

(
n + k 

n 

)
+ 3 k + 2 

Table 3 

Number of arithmetic operations required to obtain the Bernstein patch over �[1] and �[0] by using (42) and (32) 

together. 

Calculation of Number of additions Number of multiplications/divisions 

D k (1 − λ1 ) , D k ( 
λ1 

1 −λ1 
) , (1 − λ1 ) 

k D k ( 
1 
λ1 

) 1 4 k + 1 

D k −z ( 
λ1 

1 −λ1 
) F (1) 

z (�) , D k −z (1 − λ1 )( . . . ) , z = 0 , . . . , k 0 2 
(

n + k −1 
n 

)
P k −z ( . . . ) , z = 0 , . . . , k 

(
n + k 
n +1 

)
0 

P ′ 
k −z 

( . . . ) , z = 0 , . . . , k 
(

n + k −1 
n +1 

)
0 

(1 − λ1 ) 
k −z D k −z ( 

1 
λ1 

)( . . . ) , z = 0 , . . . , k 0 
(

n + k −1 
n 

)
Total 

(
n + k 
n +1 

)
+ 

(
n + k −1 

n +1 

)
+ 1 3 

(
n + k −1 

n 

)
+ 4 k + 1 

Table 4 

Comparison between the de Casteljau algorithm and the new methods. 

Calculation of Number of additions Number of multiplications/divisions 

de Casteljau algorithm 

(
n + k 
n +1 

)
+ 1 2 

(
n + k 
n +1 

)
(32) 

(
n + k 
n +1 

)
+ 1 2 

(
n + k −1 

n 

)
+ 2 k − 1 

(42) 
(

n + k 
n +1 

)
+ 1 

(
n + k −1 

n 

)
+ 

(
n + k 

n 

)
+ 3 k + 2 

(32) and (42) together 
(

n + k 
n +1 

)
+ 

(
n + k −1 

n +1 

)
+ 1 3 

(
n + k −1 

n 

)
+ 4 k + 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

multiplications: 2 

k ∑ 

z=0 

(k − z) 

(
n − 2 + z 

n − 2 

)
= 2 

(
n + k − 1 

n 

)
. 

For the total number of arithmetic operations required to obtain the Bernstein patch over �[1] by using (32) , we have

to add to the given number of additions and multiplications the amount of work for the computation of the two diagonal

matrices, i.e., 1 addition and 2 k − 1 multiplications/divisions. The number of arithmetic operations required to obtain the

Bernstein patch over �[0] by using (42) is presented in Table 2 . 

In Table 3 , we assume that we want to compute the Bernstein patch over �[0] as well as over �[1] by using (32) and

(42) together. Then we can reduce the amount of the arithmetic operations by noting that both formulae share common

factors, e.g., D k −z 

(
λ1 

1 −λ1 

)
F (1) 

z (�) , and that the last row in F (2) 
z (�) and the first row of F ′ (2) 

z (�) are identical so that we can

shorten the matrices D k −z ( 
1 
λ1 

) , D k −z ( 
λ1 

1 −λ1 
) , and P ′ 

k −z 
in (42) by deletion of their first rows and columns. 

In the following comparison of the amount of arithmetic operations for the several methods, see Table 4 , we compare

only the terms which are depending on k or n and neglect the trivial multiplications. The application of the de Casteljau

algorithm, see Section 3 , requires for the computation of both B(�[1] ) and B(�[0] ) 
(

n + k 
n +1 

)
additions and 2 

(
n + k 
n +1 

)
multiplica-

tions, see [20] . We need the same amount in (28) and (35) , respectively, if we carry out the matrix multiplication from the

right to the left. The amount of arithmetic operations for each of the computations of B(�[1] ) and B(�[0] ) by using the

factorizations (4), (41) consists of 
(

n + k 
n +1 

)
additions and 2 

(
n + k −1 

n 

)
+ 2 k and 

(
n + k −1 

n 

)
+ 

(
n + k 

n 

)
+ 3 k multiplications / divisions for

(28) and (35) , respectively. If only one of both patches is needed, (32) and (42) (in case k = n, if n > 4) are superior to the

de Casteljau algorithm for k > 2, n > 1 and k > 6, n > 3, respectively. If both patches are needed, the amount of arithmetic op-

erations for both formulae consists then of 
(

n + k 
n +1 

)
+ 

(
n + k −1 

n +1 

)
additions and 3 

(
n + k −1 

n 

)
+ 4 k multiplications/ divisions. Therefore,

for k < n + 2 , n ≤ 3 the use of the de Casteljau algorithm is preferable, e.g., when the degree of at least two variables is at

least two and the other degrees are at least 1, the use of (32) and (42) is superior. If instead (33) and (44) are employed,

the amount of arithmetic operations can be reduced by using the FFT, see Section 4.1 . 

In Table 5 , we compare the different methods on the basis of our test cases, where we have chosen λ1 = 0 . 5 . In all cases,

the de Casteljau algorithm is inferior to the use of (32) as well of (42) ; in only three cases the de Casteljau algorithm out-

performs the joint use of (32) and (42) although the superiority is very small. This shows that the number of the arithmetic

operations should not be the sole basis for the choice of the procedure. 
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Table 5 

Time (in ms) required for the computation of the Bernstein patchs B(�[1] ) and B(�[0] ) 

given B(�) by using the de Casteljau agorithm, (32) , and (42) . 

Test case n k de Casteljau algorithm (32) (42) (32) and (42) 

Booth 2 2 0.12 0.09 0.10 0.14 

Ler1 2 2 0.12 0.09 0.10 0.14 

Himmelblau 2 4 0.71 0.25 0.25 0.41 

Rosenbrock 2 4 0.69 0.25 0.25 0.41 

Ler2 2 4 0.66 0.24 0.25 0.41 

Ler3 2 4 0.68 0.25 0.25 0.41 

Camel 2 2 6 0.86 0.42 0.44 0.61 

Ler4 2 6 0.84 0.43 0.42 0.60 

Ler5 2 8 1.41 0.50 0.50 0.82 

Trid 3 3 2 0.20 0.11 0.11 0.21 

Schwefel 3 4 1.10 0.74 0.74 1.27 

L. V. 4 4 3 1.82 0.39 0.40 0.52 

Cap 4 4 4 11.85 0.71 0.75 1.33 

Wrig 5 5 2 2.26 0.25 0.26 0.31 

Cyc 5 5 4 26.15 1.50 1.51 2.58 

Reim 5 5 6 152.96 5.50 5.66 6.19 

Mag 6 6 2 4.19 0.61 0.61 1.00 

But 6 6 3 32.25 2.35 2.37 3.75 

 

 

 

 

 

 

Example 5.1. Let n = 2 and k = 4 such that B(�) has the following form 

B(�) = 

⎡ 

⎢ ⎢ ⎣ 

b 00 b 01 b 02 b 03 b 04 

b 10 b 11 b 12 b 13 NaN 

b 20 b 21 b 22 NaN NaN 

b 30 b 31 NaN NaN NaN 

b 40 NaN NaN NaN NaN 

⎤ 

⎥ ⎥ ⎦ 

. 

We want to illustrate how to calculate B(�[1] ) by using (32) . Starting from 

F 0 (�) = 

⎡ 

⎢ ⎢ ⎣ 

b 00 

b 10 

b 20 

b 30 

b 40 

⎤ 

⎥ ⎥ ⎦ 

, F 1 (�) = 

⎡ 

⎢ ⎢ ⎣ 

b 01 

b 11 

b 21 

b 31 

NaN 

⎤ 

⎥ ⎥ ⎦ 

, F 2 (�) = 

⎡ 

⎢ ⎢ ⎣ 

b 02 

b 12 

b 22 

NaN 

NaN 

⎤ 

⎥ ⎥ ⎦ 

, F 3 (�) = 

⎡ 

⎢ ⎢ ⎣ 

b 03 

b 13 

NaN 

NaN 

NaN 

⎤ 

⎥ ⎥ ⎦ 

, F 4 (�) = 

⎡ 

⎢ ⎢ ⎣ 

b 04 

NaN 

NaN 

NaN 

NaN 

⎤ 

⎥ ⎥ ⎦ 

, 

and 

F (1) 
0 

(�) = 

⎡ 

⎢ ⎢ ⎣ 

b 00 

b 10 

b 20 

b 30 

b 40 

⎤ 

⎥ ⎥ ⎦ 

, F (1) 
1 

(�) = 

⎡ 

⎢ ⎣ 

b 01 

b 11 

b 21 

b 31 

⎤ 

⎥ ⎦ 

, F (1) 
2 

(�) = 

[ 

b 02 

b 12 

b 22 

] 

, F (1) 
3 

(�) = 

[
b 03 

b 13 

]
, F (1) 

4 
(�) = 

[
b 04 

]

we use (32) with the factorization of P k −z to calculate F (2) 
z , z = 0 , 1 , 2 , 3 , 4 . Then we add z rows with NaN entries to the

matrices F (2) 
z at their bottom. Finally, we arrange the columns in the same way that we have extracted them from B(�) to

get B(�[1] ) . 

6. Evaluation of multivariate polynomials 

In this section, we present matrix methods for the evaluation of a multivariate polynomial in both the power and the

Bernstein representation. 

6.1. Power representation 

In [24] , difficulties to implement variants of the multivariate Horner scheme, e.g., [20] , are reported. In this subsection

we present a matrical description for the evaluation of a multivariate polynomial by the Horner scheme which can very

easily be implemented. Let p be an n -variate polynomial given in power form as 

p(x ) = 

l ∑ 

ˆ i =0 

a ˆ i 

n ∏ 

s =1 

x 
ˆ i s 
s (45)
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with its coefficients arranged as in (19) in a matrix A . For s = 1 , . . . , n and μ = 1 , . . . , l s , we define the matrices H μ(γ ) ∈
R 

μ,μ+1 by 

(H μ(γ )) i j := 

{ 

1 , i = j, 
γ , i = μ, j = μ + 1 , 

0 , otherwise . 
(46) 

Then (45) can be written as 

p(x ) = � 

n 
s =1 (H 1 (x s ) · · · H l s −1 (x s ) H l s (x s )) 

c A, (47) 

where � denotes the composition of the induced linear mappings. After multiplication by H l s −1 
(x s −1 ) , we obtain a row

vector w of length 

∏ n 
t= s (l t + 1) which we order cyclically, i.e., we build from this vector a matrix C of order (l s + 1) ×∏ n 

t= s +1 (l t + 1) by 

(C) i j = w i +( j−1)(l s +1) . (48) 

Without loss of generality we assume that l s = κ, s = 1 , . . . , n . The number of arithmetic operations required for the eval-

uation of p ( x ) by using (47) is (κ + 1) n − 1 additions and the same amount for multiplications which is identical to the

amount of operations of the Horner scheme [17] . 

6.2. Bernstein representation 

In this section, we present a matricial algorithm for the evaluation of a multivariate polynomial over the standard sim-

plex. 

Let p be an n -variate polynomial as given in (6) . Its Bernstein representation (8) can be written as ( l ′ ≤ k ) 

p(x ) = x k 0 

∑ 

| i | = k 
b i 

(
k 

i 

)
n ∏ 

s =1 

(
x s 

x 0 

)i s 

, (49) 

where x 0 = 1 −∑ n 
s =1 x s . We divide in the Bernstein patch each entry b i by k ! 

i 0 ! 
, replace NaN entries, see Section 4.1 , by zeros,

and arrange the resulting patch in a matrix B 

′ (�) as in (19) . Application of the representation (47) to (49) with A replaced

by the matrix B 

′ (�) yields 

p(x ) = x k 0 � 

n 
s =1 (H 1 (θs, 1 ) · · · H k −1 (θs,k −1 ) H k (θs,k )) 

c B 

′ (�) , (50) 

where θs,μ := 

1 
μ

x s 
x 0 

for μ = 1 , . . . , k, s = 1 , . . . , n . 

The number of arithmetic operations for the evaluation of a multivariate polynomial in Bernstein representation accord-

ing to (50) is 
(

n + k 
k 

)
additions and 2 

(
n + k 

k 

)
multiplications. If we assume that the matrix B 

′ is precomputed, then we need(
n + k 

k 

)
additions and 

(
n + k 

k 

)
multiplications which are identical to the number of arithmetic operations of the de Boor evalua-

tion algorithm [2] , see also [4, Theorem 3.1] . 

Appendix A. Some technical details of method 1 

We start in the general multivariate case with the matrix C ( �) formed in Subsection 4.1 . For t = 1 , . . . , n, we collect in a

(k + 1) × ψ t−1 (z) matrix C (z) 
t−1 

in the same order as they appear in C t−1 all its columns (except the columns whose entries

are all NaN) which contain exactly z NaN entries, where ψ t−1 (z) is the number of such columns in C t−1 , z = 0 , . . . , k . Then

we delete the last z rows of C (z) 
t−1 

and name the resulting matrix B (z) 
t−1 

. For z = 0 , . . . , k, we put 

D 

(z) 
t−1 

:= P k −z B 

(z) 
t−1 

, t = 1 , . . . , n, (51) 

wherein we use the factorization (4) of P k −z . Then we append to the bottom row of D 

(z) 
t−1 

z rows containing only NaN

entries and replace each column of C t−1 (except the columns whose entries are all NaN) by the corresponding column of

the enlarged matrix D 

(z) 
t−1 

. Finally, we apply the cyclic ordering. It is not hard to see that the resulting matrix equals C t . 

We obtain �( �) from A by 
(

n + k 
n 

)
divisions by the binomial coefficients

(
k 
j 

)
which we consider as precomputed. In Table 6 ,

we present the number of arithmetic operations for the computation of D 

(z) 
t−1 

, t = 1 , . . . , n, z = 0 , . . . , k, by using method 1. 

In total, we obtain the following number of additions, see the calculations in Subsection 4.1 , 

n ∑ 

t=1 

k −1 ∑ 

z=0 

ψ t−1 (z) 

(
k + 1 − z 

2 

)
= 

n ∑ 

t=1 

k −1 ∑ 

z=0 

(
n − 2 + z 

n − 2 

)(
k + 1 − z 

2 

)

= n 

k −1 ∑ 

z=0 

(
n − 2 + z 

n − 2 

)(
k + 1 − z 

2 

)
= n 

(
n + k 

n + 1 

)
. 

We note that ψ n −1 (z) = 

(
n −2+ z 

n −2 

)
. For fixed n , the complexity of method 1 is O ( n 

(n +1)! 
k n +1 ) . If n is also to allow to vary, the

complexity is O ( n 
n +1 k 

n +1 ) . 
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Table 6 

Number of arithmetic operations required for the computation of (51) for t − 1 by 

using method 1, t = 1 , . . . , n. 

Calculation of Number of columns Number of additions for each column 

D (0) 
t−1 

ψ t−1 (0) 
(

k +1 −0 
2 

)
D (1) 

t−1 
ψ t−1 (1) 

(
k +1 −1 

2 

)
� � �

D (k −1) 
t−1 

ψ t−1 (k ) 
(

k +1 −(k −1) 
2 

)

 

 

 

 

 

1

1

Appendix B. Description of the test problems 

In the following, we list the abbreviated and full names, the polynomials and the dimensionality of the problems used in

our tests. Test cases nos. 1 − 4 , 10, and 11 are taken from [12] , nos. 5 − 9 from [14, Examples 5.8–5.11, 6.2] , and nos. 12 − 18

from [21] , where the number appended to the abbreviation refers to the number of the variables chosen. In all cases we

have chosen k = l ′ , see Tables 1 and 5 , and � as the underlying region. This is the original domain in the examples given

by Leroy, see Ler1- Ler5 below; in the other cases the polynomials are originally considered over a box which contains � in

the test cases nos. 1 − 4 , 10 − 12 , 14 − 17 , or is related to � in the cases nos. 13 and 18. 

1. Booth: Booth function, n = 2 

p(x 1 , x 2 ) = (x 1 + 2 x 2 − 7) 2 + (2 x 1 + x 2 − 5) 2 . 

2. Himmelblau: Himmelblau function, n = 2 

p(x 1 , x 2 ) = (x 2 1 + x 2 − 11) 2 + (x 1 + x 2 2 − 7) 2 . 

3. Rosenbrock: Rosenbrock function, n = 2 

p(x 1 , x 2 ) = 100(x 2 1 − x 2 ) 
2 + (x 1 − 1) 2 . 

4. Camel 2: Six hump camel back function, n = 2 

p(x 1 , x 2 ) = 4 x 2 1 − 2 . 1 x 4 1 + 

1 

3 

x 6 1 + x 1 x 2 − 4 x 2 2 + 4 x 4 2 . 

The five Leroy functions: 

5. Ler 1 : n = 2 

p(x 1 , x 2 ) = 625 x 2 1 + 2550 x 1 x 2 + 2601 x 2 2 − 1700 x 1 − 3468 x 2 + 

9249 

8 

. 

6. Ler 2 : n = 2 

p(x 1 , x 2 ) = 25 x 4 1 + 20 x 3 1 x 2 + 14 x 2 1 x 
2 
2 + 4 x 1 x 

3 
2 + x 4 2 + 20 x 3 1 + 28 x 2 1 x 2 

+ 12 x 1 x 
2 
2 + 4 x 3 2 − 16 x 2 1 − 8 x 1 − 8 x 2 + 

25 

6 

. 

7. Ler 3 : n = 2 

p(x 1 , x 2 ) = 2401 x 4 1 − 1078 x 3 1 x 2 − 8993 x 2 1 x 
2 
2 + 2046 x 1 x 

3 
2 + 8649 x 4 2 + 3822 x 3 1 

− 1642 x 2 1 x 2 − 7078 x 1 x 
2 
2 + 1488 x 3 2 − 5045 x 2 1 + 850 x 1 x 2 + 12526 x 2 2 

− 5226 x 1 + 1072 x 2 + 

35913 

8 

. 

8. Ler 4 : n = 2 

p(x 1 , x 2 ) = −2 x 2 1 x 2 + 6 x 5 1 + 4 x 4 1 x 2 − 3 x 6 1 + 3 x 3 1 x 
3 
2 + 5 x 6 2 . 

9. Ler 5 : n = 2 

p(x 1 , x 2 ) = x 4 1 x 
4 
2 − 4 x 4 1 x 

3 
2 + 4 x 2 1 x 

5 
2 + 8 x 4 1 x 

2 
2 − 8 x 2 1 x 

4 
2 + 4 x 6 2 − 8 x 4 1 x 2 + 4 x 2 1 x 

3 
2 

+ 4 x 4 1 + 8 x 2 1 x 
2 
2 − 8 x 4 2 − 8 x 2 1 x 2 + 4 x 2 2 + 

1 

100 

. 

0. Trid 3: 3-variable Trid function, n = 3 

p(x 1 , x 2 , x 3 ) = (x 1 − 1) 2 + (x 2 − 1) 2 + (x 3 − 1) 2 − x 1 x 2 − x 2 x 3 . 

1. Schwefel: Schwefel function 2.25, n = 3 

2 2 2 2 2 2 
p(x 1 , x 2 , x 3 ) = (x 1 − x 2 ) + (x 2 − 1) + (x 1 − x 3 ) + (x 3 − 1) . 
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1

1

1

1

1

1

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. L. V. 4: A neural network modeled by an adaptive Lotka-Volterra system, n = 4 

p(x 1 , x 2 , x 3 , x 4 ) = x 1 x 
2 
2 + x 1 x 

2 
3 + x 1 x 

2 
4 − 1 . 1 x 1 + 1 . 

3. Cap 4: Caprasse’s system, n = 4 

p(x 1 , x 2 , x 3 , x 4 ) = −x 1 x 
3 
3 + 4 x 2 x 

2 
3 x 4 + 4 x 1 x 3 x 

2 
4 + 2 x 2 x 

3 
4 

+4 x 1 x 3 + 4 x 2 3 − 10 x 2 x 4 − 10 x 2 4 + 2 . 

4. Wrig 5: System of A. H. Wright, n = 5 

p(x 1 , x 2 , x 3 , x 4 , x 5 ) = x 2 5 + x 1 + x 2 + x 3 + x 4 − x 5 − 10 . 

5. Cyc 5: Cyclic 5-roots problems, n = 5 

p(x 1 , x 2 , x 3 , x 4 , x 5 ) = x 1 x 2 x 3 x 4 + x 1 x 2 x 3 x 5 + x 1 x 2 x 4 x 5 + x 1 x 3 x 4 x 5 + x 2 x 3 x 4 x 5 . 

6. Reim 5: The 5-dimensional system of Reimer, n = 5 

p(x 1 , x 2 , x 3 , x 4 , x 5 ) = −1 + 2 x 6 1 − 2 x 6 2 + 2 x 6 3 − 2 x 6 4 + 2 x 6 5 . 

7. Mag 6: System of magnetism in physics, n = 6 

p(x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ) = 2 x 2 1 + 2 x 2 2 + 2 x 2 3 + 2 x 2 4 + 2 x 2 5 + x 2 6 − x 6 . 

8. But 6: Butcher’s problem, n = 6 

p(x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ) = x 6 x 
2 
2 + x 5 x 

2 
3 − x 1 x 

2 
4 + x 3 4 + x 2 4 −

1 

3 

x 1 + 

4 

3 

x 4 . 
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