

Prof. Dr. H. Drachenfels Version 8.0
Hochschule Konstanz 13.2.2025

Systemprogrammierung

Teil 7: C++ Standardbibliothek
Templates, Ein-/Ausgabe, Strings, Container,

Algorithmen, Iteratoren, intelligente Zeiger

Prof. Dr. H. Drachenfels Systemprogrammierung 7-1
Hochschule Konstanz

C++ Standardbibliothek: Überblick

Die C++ Standardbibliothek enthält die C Standardbibliothek und zusätzlich vor allem
templatebasierte Erweiterungen, die auf der maßgeblich von Alexander Stepanow
entwickelten STL (Standard Template Library) beruhen:

 erweiterbare objektorientierte Ein-/Ausgabe mit Streams

std::istream, std::ostream, ...

 Zeichenketten

std::string

 Container und Iteratoren

std::vector, std::array, std::list, ...

 Algorithmen

std::max, std::find, ...

 intelligente Zeiger (smart pointers)
std::unique_ptr, std::shared_ptr, std::weak_ptr

 ...

Hinweis
Notiz
Als Entsprechung zu den Javadoc-Seiten der Java API-Dokumentation hat sich bei C++ die Seite cppreference.com etabliert. Schlagen Sie dort nach, wenn Sie etwas aus der Standardbibliothek verwenden wollen:
https://en.cppreference.com/w/cpp

Prof. Dr. H. Drachenfels Systemprogrammierung 7-2
Hochschule Konstanz

C++ Templates: Syntax

C++ kennt verschieden Arten von Templates:

 Klassentemplates definieren Familien von Klassen

template< Parameterliste > class Klassenname ...

 Funktionstemplates definieren Familien von Funktionen

template< Parameterliste > Typ Funktionsname(...) ...

 ...

Template-Parameterlisten können verschiedene Arten von Parametern enthalten:

 Typ-Parameter: template<typename Name > ...

bei der Instanziierung muss ein Typ als Argument angegeben werden

 Nichttyp-Parameter: template< Typ Name > ...

bei der Instanziierung muss ein konstanter Ausdruck als Argument angegeben werden,
z.B. ein Literal

als Typen sind ganzzahlige, Zeiger-, Referenz- und Aufzählungstypen erlaubt
 ...

Anmerkung
Notiz
Eine stark vereinfachte Form der Templates kennen Sie aus Java in Gestalt der Generics, z.B. Comparable<T>, Iterable<T>, Iterator<T>.

Anmerkung
Notiz
Strings sind z.B. in Wahrheit ein Klassentemplate mit dem Zeichentyp als Typ-Parameter, und std::string ist nur ein Aliasname:
typedef basic_string<char> string;

Prof. Dr. H. Drachenfels Systemprogrammierung 7-3
Hochschule Konstanz

C++ Templates: Vergleich mit Java

C++ Templates sind sehr viel mächtiger als die Generics von Java:

 in Java gibt es keine Nichttyp-Parameter

 in Java sind nur Klassen als Argumente für Typ-Parameter erlaubt,
in C++ sind dagegen alle Typen als Argumente erlaubt,
auch Grundtypen wie z.B. int und abgeleitete Typen wie z.B. int*

 bei Java gibt es nur eine Implementierung eines Generics

der Compiler ersetzt die Typ-Parameter durch die Klasse Object und ergänzt bei der
Benutzung der Generics entsprechende Up- und Downcasts

 bei C++ erstellt der Compiler für jede Instanziierung eines Templates mit anderen
Argumenten per Copy und Paste eine eigene Implementierung

kommen in einem Programm viele unterschiedliche Argumente für das gleiche Template vor,
kann wegen der mehrfachen Vervielfältigung der Implementierung die Übersetzung lange
dauern und der ausführbare Code sehr umfangreich werden

bei Fehlern in Templates sind die Fehlermeldungen des Compilers oft sehr umfangreich und
schwer zu verstehen

Hinweis
Notiz
Weil C++-Templates ein so mächtiges Konzept sind, werden viele Dinge, die in Java mit Subtyp-Polymorphie gelöst werden (= mit Referenzen auf Oberklassen und Interfaces programmieren), in C++ eher mit Templates gelöst. Man nennt das dann parametrische Polymorphie. Schauen Sie sich dazu das Beispiel im Verzeichnis Templates/ auf der Webseite an und vergleichen Sie es mit der Interface-Lösung in Teil 5.

Hinweis
Notiz
Bei dem Beispiel Templates/ auf der Webseite können Sie die Copy-Paste-Implementierung mit dem LInux-Kommando nm (names) sichtbar machen:

make
nm -C grusstest | grep gruessen

Sie bekommen zwei Funktionen mit dem Namen gruessen angezeigt, eine mit Template-Argument systemuhr und eine mit testuhr.

Prof. Dr. H. Drachenfels Systemprogrammierung 7-4
Hochschule Konstanz

C++ Standardbibliothek: Ein-/Ausgabe (1)

Klassen-Hierarchie der Ein-/Ausgabe-Streams (vereinfacht, eigentlich Templates)

Fehlerzustand, Formatsteuerung, ...

Pufferverwaltung, ...

Lese-/Schreibschnittstelle

Dateizugriff

Stringzugriff

Mehrfachvererbung

Anmerkung
Notiz
Bei cppreference.com können Sie die Namen der Klassen-Templates sehen: https://en.cppreference.com/w/cpp/io
Bei den hier gezeigten Aliasnamen ist der Typ-Parameter CharT jeweils mit char belegt.

Anmerkung
Notiz
Die Klasse iostream erbt auf zwei Wegen von ios. Erbt es dann alles doppelt? Nein, aber dafür müssen schon istream und ostream Vorkehrungen treffen. Weil diese sogenannte diamond inheritence so heikel ist, hat man sie in Java weggelassen.

Prof. Dr. H. Drachenfels Systemprogrammierung 7-5
Hochschule Konstanz

C++ Standardbibliothek: Ein-/Ausgabe (2)

Prinzipieller Aufbau der Entitätsklasse für Ausgabe-Streams (vereinfacht):

class ostream : virtual public ios {
public:

// Ausgabeoperatoren für u.a. alle Grundtypen:
ostream& operator<<(int);
...

// Ausgabeoperatoren für Manipulatoren:
ostream& operator<<(ostream& ()(ostream&));
...

// Zeichenausgabe und Pufferleerung:
ostream& put(char);
ostream& flush();
...

};

// Manipulatoren:
ostream& endl(ostream&);
ostream& flush(ostream&);
...

Ein Manipulator ist eine Funktion, die
vom Ausgabeoperator aufgerufen wird

// globale Variablen:
extern ostream cout;
extern ostream cerr;
...

virtual: Unterklassen von ostream
sollen bei Mehrfachvererbung
nur einmal von ios erben

Prof. Dr. H. Drachenfels Systemprogrammierung 7-6
Hochschule Konstanz

C++ Standardbibliothek: Ein-/Ausgabe (3)

 Verwenden von ostream-Funktionen:

#include <iostream>

std::cout.setf(std::ios_base::fixed, std::ios_base::floatfield);
std::cout.precision(1);
std::cout << 1.26 << std::endl; // gibt 1.3 aus

std::cout.width(4);
std::cout.fill('0');
std::cout << 1 << std::endl; // gibt 0001 aus

 das gleiche mit Manipulatoren:

#include <iostream> // cout, operator<<, fixed, endl
#include <iomanip> // setprecision, setw, setfill

std::cout << std::fixed << std::setprecision(1) << 1.26 << std::endl;

std::cout << std::setw(4) << std::setfill('0') << 1 << std::endl;

gilt nur für die nächste Ausgabe

Ausprobieren!
Notiz
Sie finden das Beispiel als ostream.cpp auf der Webseite.

Erläuterung
Notiz
Der operator<< hat als linken Operanden den per return von den vorhergehenden Ausgabeoperatoren durchgereichten Ausgabe-Stream std::cout und als rechten Operanden die Manipulator-Funktion std::endl. Der Operator ruft den Manipulator mit seinem linken Operanden als Argument auf. Der aufgerufene Manipulator schreibt dann einen Zeilenwechsel auf den übergebenen Stream und ruft auf dem Stream flush() auf, um die Ausgabepuffer zu leeren.

Erläuterung
Notiz
Der Aufruf std::setw(4) liefert ein Objekt, in dem die 4 gespeichert ist. Der für die Klasse dieses Objekts überladene Ausgabeoperator ruft beim übergebenen Stream die Memberfunktion width(int) auf und übergibt dabei als Argument die 4 aus dem Objekt.

Prof. Dr. H. Drachenfels Systemprogrammierung 7-7
Hochschule Konstanz

C++ Standardbibliothek: Ein-/Ausgabe (4)

Prinzipieller Aufbau der Entitätsklasse für Eingabe-Streams (vereinfacht):

class istream : virtual public ios {
public:

// Eingabeoperatoren für alle Grundtypen:
istream& operator>>(int&);
...

// Eingabeoperatoren für Manipulatoren:

istream& operator>>(ios_base& ()(ios_base&));
...

// Zeichen- und Zeichenketteneingabe:
istream& get(char&);

istream& getline(char, int);
...

};

// Manipulatoren:
ios_base& hex(ios_base&);
...

// globale Variablen:
extern istream cin;
...

virtual: Unterklassen von istream
sollen bei Mehrfachvererbung
nur einmal von ios erben

Prof. Dr. H. Drachenfels Systemprogrammierung 7-8
Hochschule Konstanz

C++ Standardbibliothek: Ein-/Ausgabe (5)

 Verwenden von istream-Funktionen

#include <iostream>

std::cin.setf(ios_base::hex, ios_base::basefield);

int n;

std::cin >> n; // liest hexadezimale Zahl

std::cout << n << std::endl; // gibt n dezimal aus

 das gleiche mit Manipulatoren

#include <iostream> // cin, operator>>, hex

int n;

std::cin >> std::hex >> n; // liest hexadezimale Zahl

std::cout << n << std::endl; // gibt n dezimal aus

Ausprobieren!
Notiz
Das Beispiel finden Sie auch als istream.cpp auf der Webseite.

Prof. Dr. H. Drachenfels Systemprogrammierung 7-9
Hochschule Konstanz

C++ Standardbibliothek: Ein-/Ausgabe (6)

Prinzipieller Aufbau der Entitätsklassen für File-Streams (vereinfacht):

class ofstream : public ostream

{
public:
 ofstream();

 ofstream(const char);

 bool is_open();

 void open(const char);
 void close();
 ...
};

Lesezugriff mit ifstream analog

 Verwenden von ofstream-Funktionen:

std::ofstream file;
file.open("Beispiel.txt");
file << "Hallo\n";
... // Schreiben wie bei std::cout
file.close();

 das gleiche mit Konstruktor und Destruktor:

std::ofstream file("Beispiel.txt");

file << "Hallo\n";
...

// Destruktor von file sorgt für das close

Erläuterung
Notiz
Bei Java braucht man für das automatische close ein try-with-resources bzw. in älteren Versionen ein try mit finally-Block.

Ausprobieren!
Notiz
Machen Sie aus dem Beispiel ein Programm ofstream.cpp und probieren Sie es aus.

Prof. Dr. H. Drachenfels Systemprogrammierung 7-10
Hochschule Konstanz

C++ Standardbibliothek: std::string (1)

Ausschnitt aus der Wertklasse std::string (vereinfacht):

class string {
public:
 // Default- / Copy- / Move-Konstruktoren, Destruktor, Copy- / Move-Zuweisungen:
 ...

 // Typanpassungs-Konstruktor und Copy-Zuweisung für C-Strings:

 string(const char s);

 string& operator=(const char s);

 // String-Konkatenation:
 string& operator+=(const string& str);

 string& operator+=(const char s);

 // Datenabfragen:

 const char c_str() const;
 unsigned length() const;
 const char& operator[](unsigned pos) const;
 char& operator[](unsigned pos);
 ...
};

Erläuterung
Notiz
Strings sind in Wahrheit ein Klassentemplate mit dem Zeichentyp (und mehr) als Typ-Parameter, und std::string ist nur ein Aliasname:
typedef basic_string<char> string;

Die ganze Wahrheit können Sie bei cppreference versuchen zu lesen:
https://en.cppreference.com/w/cpp/string/basic_string

Einen leichter verständlichen Eindruck von der Implementierungstechnik für eine String-Klasse bekommen Sie mit der selbstgebauten stark vereinfachten String-Klasse htw::string/ auf der Webseite. Arbeiten Sie das Beispiel durch.

Erläuterung
Notiz
Move-Konstruktor und -Zuweisung sind der Übersicht halber hier weggelassen. Natürlich gibt es bei std::string die Move-Semantik.

Erläuterung
Notiz
Bei konstanten Strings kommt der erste Operator zum Zuge:
const std::string s = "Hallo"; // s ist konstant
char c = s[0]; // s . operator[](0)

Bei veränderlichen Strings kommt der zweite Operator zum Zuge:
std::string t = "Hallo"; // t ist veränderlich
t[0] = 'h'; // t . operator[](0)

Anmerkung
Notiz
std::string ist die C++-Entsprechung zu java.lang.String inklusive java.lang.StringBuilder. String-Objekte werden in C++ in einer Variablen angelegt. Ob ein String veränderlich ist, wird deshalb nicht in der Klasse festgelegt, sondern hängt davon ab, ob die Variable const ist oder nicht.

Prof. Dr. H. Drachenfels Systemprogrammierung 7-11
Hochschule Konstanz

C++ Standardbibliothek: std::string (2)

Operatoren außerhalb der Wertklasse std::string (vereinfacht):

// Verknüpfungen
string operator+(const string& s1, const string& s2);
...

// Vergleiche
bool operator==(const string& s1, const string& s2);
...

// Ein-/Ausgabe
istream& operator>>(istream& is, string& s);
ostream& operator<<(ostream& os, const string &s);
...

Anwendungsbeispiel:

#include <string> // damit std::string bekannt ist

char buffer[10];
std::cin >> buffer; // Risiko eines Pufferüberlaufs

std::string s;
std::cin >> s; // string-Objekt und operator>> sorgen für genug Speicher

Prof. Dr. H. Drachenfels Systemprogrammierung 7-12
Hochschule Konstanz

Beispielprogramm std::string

#include <iostream>
#include <string>

int main()
{
 std::string a = "halli"; // a("halli")
 std::string s = "hallo"; // s("hallo")
 std::string t; // leerer String

 // compare, copy and concatenate strings
 if (a < s) // operator<(a, s)
 {
 t = a + s; // t.operator=(operator+(a, s))
 }

 // print string values and addresses
 std::cout << a << '\n' << s << '\n' << t << '\n'; // operator<<(..., ...)
 std::cout << sizeof a << '\n' << sizeof s << '\n' << sizeof t << '\n';
 std::cout << a.length() << '\n' << s.length() << '\n' << t.length() << '\n';
}

Ausprobieren!
Notiz
Das Beispielprogramm finden Sie als stringvar.cpp auf der Webseite.

Prof. Dr. H. Drachenfels Systemprogrammierung 7-13
Hochschule Konstanz

C++ Standardbibliothek: Container std::vector (1)

Ausschnitt aus dem Wertklassen-Template std::vector<> (vereinfacht):

template <typename T> class vector
{
public:
 explicit vector(std::size_t n);

 // Default- / Copy- / Move-Konstruktoren, Destruktor, Copy- / Move-Zuweisungen:
 ...

 // Datenabfragen:
 std::size_t size() const;
 void resize(std::size_t n, T c = T());
 T& operator[](std::size_t i);
 T& at(std::size_t i);
 ...
};

template <typename T>
bool operator==(const vector<T>& v, const vector<T>& w);
...

Elementtyp als Template-Parameter

Anmerkung
Notiz
std::vector entspricht java.util.Vector, ist aber keine Collection-Entität, sondern ein Werttyp.

Anmerkung
Notiz
Siehe auch https://en.cppreference.com/w/cpp/container/vector

Zum besseren Verständnis der Implementierungstechnik finden Sie auf der Webseite das Beispiel htwg::vector/, stark reduziert ohne Kopier- und Move-Semantik.

Beachten Sie, dass bei einem Klassen-Template der ganze Quellcode in der Header-Datei stehen muss. Sonst kann der Compiler an den Aufrufstellen keine Copy-Paste-Implementierung erstellen.

Erläuterung
Notiz
Der überladene operator[] und die Memberfunktion at habe bei einem gültigen Index dieselbe Semantik. Aber bei einem ungültigen Index wirft at eine Ausnahme std::out_of_range, der operator[] dagegen nicht. Den Operator sollten man deshalb in der Regel nur innerhalb von for-Schleifen verwenden.

Prof. Dr. H. Drachenfels Systemprogrammierung 7-14
Hochschule Konstanz

C++ Standardbibliothek: Container std::vector (2)

 zu fast jedem Typ kann ein Vektortyp abgeleitet werden:

#include <vector> // damit std::vector<> bekannt ist

// Vektor von vier ganzen Zahlen, alle mit 0 initialisiert:
std::vector<int> vi(4);

// Vektor von zwei Strings, mit Leerstrings initialisiert:
std::vector<std::string> vs(2);

 ein Vektor kennt im Gegensatz zum C-Array seine Länge:

for (unsigned i = 0; i < vi.size(); i++) ...

 Vektorzugriff per [] ohne oder per .at() mit Indexprüfung:

vi[2] = 1; // vi.operator[](2) = 1;

vi.at(2) = 1;

 ein Vektor kann im Gegensatz zum C-Array per Zuweisungsoperator kopiert und
per Vergleichsoperatoren verglichen werden, sofern es diese Operatoren beim
Elementtyp gibt

Prof. Dr. H. Drachenfels Systemprogrammierung 7-15
Hochschule Konstanz

C++ Standardbibliothek: Container std::array

Seit C++11 gibt es zusätzlich zu std::vector<> ein vereinfachtes Klassentemplate

std::array<> für Arrays mit statischer Länge:

template <typename T, std::size_t N > class array
{
public:
 T _elemente[N];

 // Konstuktoren, Destruktor, Zuweisungsoperatoren vom Compiler implizit erzeugt ...

 unsigned size() const;

 T& operator[](std::size_t i);

 T& at(std::size_t i);
 ...
};

template <typename T, std::size_t N>
bool operator==(const array<T,N>& v, const array<T,N>& w);
...

Array-Länge als Nichttyp-Parameter

Name des eingebetteten C-Arrays im Standard nicht festgelegt

Anmerkung
Notiz
std::array verpackt eine C-Array in ein Objekt, damit die Arraylänge abfragbar ist. Wenn mit Optimierung -O2 übersetzt wird, läuft Code mit std::array genauso schnell wie Code mit nackten C-Arrays, weil dann alle Memberfunktionen wegoptimiert werden. Das können Sie mit dem Linux-Kommando nm nachprüfen. Verwenden Sie das Beispielprogramm arrays.cpp auf der Webseite.

Hinweis
Notiz
Siehe auch https://en.cppreference.com/w/cpp/container/array

Zum besseren Verständnis der Implementierungstechnik finden Sie auf der Webseite das Beispiel htwg::array/

Hinweis
Notiz
Zum Unterschied von operator[] und at siehe std::vector auf Folie 6-13.

Prof. Dr. H. Drachenfels Systemprogrammierung 7-16
Hochschule Konstanz

Beispielprogramm std::vector<>

#include <iostream>
#include <vector> // alternativ: #include <array>

int main()
{
 std::vector<int> v(4); // alternativ: std::array<int,4> v;
 v.at(0) = 3421;
 v.at(1) = 3442;
 v.at(2) = 3635;
 v.at(3) = 3814;

 // print vector values
 for (std::size_t i = 0; i < v.size(); ++i)
 {

 std::cout << i << ": " << v[i] << '\n'; // v.operator[](i)
 }

 // print vector size
 std::cout << "sizeof v = " << sizeof v << '\n';
 std::cout << "v.size() = " << v.size() << '\n';
}

Ausprobieren!
Notiz
Das Programm finden Sie als vectorvar.cpp auf der Webseite.

Erläuterung
Notiz
Hier wird at statt operator[] verwendet, weil der Index hier eine ungeprüfte magische Zahl ist und deshalb geprüft werden sollte.

Erläuterung
Notiz
Hier wird der operator[] statt at verwendet, weil von der umschließenden for-Schleife sichergestellt wird, dass der Index gültig ist. Ein nochmalige Prüfung bei jedem Zugriff wäre Zeitverschwendung.

Prof. Dr. H. Drachenfels Systemprogrammierung 7-17
Hochschule Konstanz

C++ Standardbibliothek: Algorithmus std::max<>

Das Funktions-Template std::max<> zur Bestimmung des Maximums zweier Werte
ist für jeden Werttyp nutzbar, der operator< unterstützt:

template<typename T>

const T& max(const T& a, const T& b);

 Beispiel:

#include <algorithm> // damit std::max<> bekannt ist

int main()
{
 // T = int
 int n = std::max(1, 2);

 // T = std::string
 std::string s = std::max(std::string("abc"), std::string("def"));
}

Was würde std::max("abc", "def") liefern?

Ausprobieren!
Notiz
Sie finden das Beispielprogramm in etwas ausführlicherer Version als max.cpp auf der Webseite. Verwenden Sie das Linux-Kommando nm, um die Instanzierungen des Funktions-Templates anzuzeigen: nm -C max | grep max

Antwort
Notiz
Hier ist T = const char *, was dazu führt, dass der String mit der größeren Speicheradresse geliefert wird. Das ist eine unangenehme Fehlerquelle. Sie können das mit dem Programm max.cpp auf der Webseite ausprobieren.

Prof. Dr. H. Drachenfels Systemprogrammierung 7-18
Hochschule Konstanz

C++ Standardbibliothek: Algorithmus std::find<> (1)

Das Funktions-Template std::find<> zur linearen Suche eines Werts ist für jeden
Typ mit zugeordnetem Iterator-Typ nutzbar:

template<typename I, typename T>

I find(I first, I last, const T& value);

 Beispiel mit einfachem C-Array:

#include <algorithm> // damit std::find<> bekannt ist
...

int a[] = {3421, 3442, 3635, 3814};
int *begin = a; // Zeiger auf Elementtyp dienen als Iteratoren
int *end = a + 4;

auto i = std::find(begin, end, 3442); // I = int* und T = int
if (i != end) {
 std::cout << *i << " ist in a enthalten\n";
}

Erläuterung
Notiz
I ist der Iteratortyp und T ist der Typ des gesuchten Werts.

Erläuterung
Notiz
std::find funktioniert auch für einfache C-Arrays. Dabei werden Zeiger als die primitivste Form eines C++-Iterators verwendet.

Ausprobieren!
Notiz
Sie finden den Beispielcode von dieser und der nächsten Folie als find.cpp auf der Webseite.

Erläuterung
Notiz
Für auto setzt der Compiler den Rückgabetyp des instanziierten Funktions-Templates ein, in diesem Fall int*.

Prof. Dr. H. Drachenfels Systemprogrammierung 7-19
Hochschule Konstanz

C++ Standardbibliothek: Algorithmus std::find<> (2)

 Beispiel mit C++ Container:

#include <array> // alternativ vector, list, ...
#include <algorithm> // damit std::find<> bekannt ist
...

std::array<int,4> a{3421, 3442, 3635, 3814};
// std::vector<int> a{3421, 3442, 3635, 3814};
// std::list<int> a{3421, 3442, 3635, 3814};
auto begin = a.begin();
auto end = a.end();

auto i = std::find(begin, end, 3442);
if (i != end) {
 std::cout << *i << " ist in a enthalten\n";
}

Erläuterung
Notiz
Egal welchen der drei Container-Typen (Sprechweise Java: Collection-Typen) Sie verwenden, der Aufruf von std::find sieht immer gleich aus. Der Compiler instanziiert das Funktions-Template einfach jedes Mal mit einem anderen Iterator-Typ. Deshalb ist es wichtig, den Typ der Variablen i per auto vom Compiler festlegen zu lassen.

Prof. Dr. H. Drachenfels Systemprogrammierung 7-20
Hochschule Konstanz

C++ Standardbibliothek: Iteratoren (1)

Damit C++ Algorithmen wie std::find<> mit einer Container-Klasse funktionieren,

muss die Klasse einen Typ iterator sowie Memberfunktionen begin() und end()
bereitstellen (vereinfacht)

 Beispiel std::array<>: ein einfacher Zeiger auf Elementtyp dient als Iterator

template <typename T, std::size_t N >
class array
{
public:
 ...

 typedef T* iterator;

 iterator begin() { return &this->_elemente[0]; }

 iterator end() { return &this->_elemente[N]; }
};

Erläuterung
Notiz
std::array ist ein einfacher Wrapper für C-Arrays. Deshalb kann der Typ iterator hier als Aliasname für Zeiger auf Element-Typ relaisiert werden.

Erläuterung
Notiz
Hier ist angenommen, dass die Membervariable für das verpackte C-Array _elemente heißt.

Prof. Dr. H. Drachenfels Systemprogrammierung 7-21
Hochschule Konstanz

C++ Standardbibliothek: Iteratoren (2)

 Beispiel intlist aus Teil 6: Iterator mit zusätzlichen Typnamen

class intlist final {

 ...

 class iterator final {

 ... // operator!=, operator*, operator++ wie in Teil 5

 typedef std::input_iterator_tag iterator_category;
 typedef T value_type;
 typedef std::ptrdiff_t difference_type;
 typedef T* pointer;
 typedef T& reference;
 };

 ...
};

Seit C++11 statt typedef auch alternative Syntax: using value_type = T;

Typnamen, die in den
Funktions-Templates der
C++ Bibliothek benutzt
werden, z.B. in std::find

Erläuterung
Notiz
Wenn der Typ iterator kein einfacher Aliasname für einen primitiven Zeigertyp ist, sondern eine Klasse, die sich wie ein Zeigertyp verhält, dann braucht der Compiler einige weitere Typnamen, damit er die Funktions-Templates der C++-Bibliothek (z.B. std::find) richtig instanziieren kann.

Prof. Dr. H. Drachenfels Systemprogrammierung 7-22
Hochschule Konstanz

C++ Standardbibliothek: Intelligente Zeiger (1)

Einfache Zeigervariable (raw pointers) sind eine regelmäßige Fehlerquelle:

 es kommt zu Speicherlecks (memory leaks), wenn für mit new allokierten

Heap-Speicher das zugehörige delete fehlt

 es kommt zu Speicherzugriffsfehlern, wenn ein Zeiger weiter dereferenziert wird,
obwohl der referenzierte Speicher gar nicht mehr allokiert ist (dangling pointers)

Intelligente Zeiger (smart pointers) sind Wrapper für einfache Zeiger:

 das Klassentemplate std::unique_ptr<T> bindet die Lebensdauer eines

Heap-Speicherstücks vom Typ T exklusiv an die Lebensdauer einer Variablen

Der Destruktor der Zeigerklasse garantiert den delete -Aufruf.

 das Klassentemplate std::shared_ptr<T> ergänzt Heap-Speicherstücke um

einen Referenzzähler und erlaubt so mehrere Zeiger pro Speicherstück

Konstruktoren, Destruktor und Copy-Zuweisung zählen den Referenzzähler hoch und runter.
Bei einem Zählerstand 0 wird delete aufgerufen.

Zyklische Referenzierungen müssen mit std::weak_ptr<T> aufgelöst werden.

Prof. Dr. H. Drachenfels Systemprogrammierung 7-23
Hochschule Konstanz

C++ Standardbibliothek: Intelligente Zeiger (2)

Ausschnitt aus dem Klassentemplate std::unique_ptr<> (vereinfacht):

template <typename T> class unique_ptr
{
private:
 T *_p;
public:
 unique_ptr();
 explicit unique_ptr(T *p);
 unique_ptr(unique_ptr&& u); // nur Move-Konstruktor, kein Copy-Konstruktor
 ~ unique_ptr();

 unique_ptr& operator=(unique_ptr&& u); // nur Move-Zuweisung

 T& operator*() const;

 T* operator->() const;

 ...
};

Objekte der Klasse unique_ptr sind nicht kopierbar. Dadurch wird die Bindung des
referenzierten Speicherbereichs an die Lebensdauer genau einer Variablen sichergestellt.

Erläuterung
Notiz
Implementierung des Destruktors: delete this->_p;
Das verhindert zuverlässig memory leaks, birgt aber das Risiko von dangling pointers. Man muss als Programmierer penibel darauf achten, dass eine Adresse, die in einem unique_ptr-Objekt gekapselt ist, in keiner weiteren Variablen gespeichert wird.

Anmerkung
Notiz
Der Konstruktor ist explicit markiert,damit ein einfacher Zeiger nicht unbemerkt per automatischer Typanpassung in einen unique_ptr gewandelt wird. Überraschende delete-Aufrufe und dangling pointers wären sonst die Folge.

Hinweis
Notiz
Der Quellcode von std::unique_ptr ist leider nur für sehr fortgeschrittene C++-Programmierer lesbar. Ich habe eine sehr stark reduzierte Implementierung htwg::unique_ptr auf die Webseite gestellt, um die Grundidee der Klasse besser nachvollziehbar zu machen.

Anmerkung
Notiz
Dadurch wird für die gekapselte Adresse nur einmal delete aufgerufen. Ein merhfaches delete für die gleiche Adresse würde i.d.R. zum Programmabsturz führen.

Prof. Dr. H. Drachenfels Systemprogrammierung 7-24
Hochschule Konstanz

C++ Standardbibliothek: Intelligente Zeiger (3)

Ausschnitt aus dem Klassentemplate std::shared_ptr<> (vereinfacht):

template <typename T> class shared_ptr
{
private:
 T *_M_ptr;
 _control_block *_M_pi; // der Kontrollblock enthält den Referenzzähler
public:
 shared_ptr();
 explicit shared_ptr(T *p);
 shared_ptr(const shared_ptr& s);
 shared_ptr(shared_ptr&& s);
 ~ shared_ptr();

 shared_ptr& operator=(const shared_ptr& s);

 shared_ptr& operator=(shared_ptr&& s);

 T& operator*() const;

 T* operator->() const;

 ...
};

Objekte der Klasse
shared_ptr
sind kopierbar.
Jede Kopie erhöht den
Referenzzähler um 1.

Hinweis
Notiz
Auch der Quellcode von std::shared_ptr ist für C++-Anfänger ungenießbar. Ich habe eine sehr stark reduzierte Implementierung htwg::shared_ptr auf die Webseite gestellt, um die Grundidee der Klasse nachvollziehbar zu machen.

Erläuterung
Notiz
Der Destruktor zählt den Wert des Referenzzählers um 1 herunter. Ist der Wert danach 0, wird delete aufgerufen.

Prof. Dr. H. Drachenfels Systemprogrammierung 7-25
Hochschule Konstanz

Beispielprogramm Intelligente Zeiger (1)

 Fabrikfunktion für die Entitätenklasse termin aus Teil 5:

class termin final
{
 ...

public:
 static std::unique_ptr<termin> new_instance(const datum&,
 static std::unique_ptr<termin> new_instance(const std::string&);
 ...
};

 Implementierung der Fabrikfunktion:

std::unique_ptr<termin> termin::new_instance(const datum& d, const std::string& s)
{
 return std::unique_ptr<termin>(new termin(d, s));
}

Ausprobieren!
Notiz
Das ausprogrammierte Beispielprogramm finden Sie unter Intelligente Zeiger/ auf der Webseite.

Prof. Dr. H. Drachenfels Systemprogrammierung 7-26
Hochschule Konstanz

Beispielprogramm Intelligente Zeiger (2)

 Objektbenutzung:

...

std::list<std::shared_ptr<termin> > pruefer_kalender;

std::list<std::shared_ptr<termin> > kandidaten_kalender;

std::shared_ptr<termin> pruefung
 = termin::new_instance(datum::heute(), "Pruefung Systemprogrammierung");

pruefer_kalender.push_back(pruefung); // Referenzzähler = 2

kandidaten_kalender.push_back(pruefung); // Referenzzähler = 3

pruefung->verschieben({1, 4, 2040}); // Aufruf operator->()

...

Die Destruktoraufrufe für pruefung, kandidaten_kalender und pruefer_kalender zählen den
Referenzzähler des Termin-Objekts herunter, beim letzten Aufruf wird delete aufgerufen

Erläuterung
Notiz
Hier findet über einen Konstruktor von std::shared_ptr eine automatische Typanpassung von std::unique_ptr<termin> nach std::shared_ptr<termin> statt. Der Konstruktor allokiert dabei einen Kontrollblock mit Referenzzähler für den Termin und setzt den Zähler auf 1.

Anmerkung
Notiz
In beide Listen wird je eine Kopie des shared_pointer-Objekts pruefung eingetragen.

Anmerkung
Notiz
Die Klasse std::shared_ptr realisiert bei richtiger Benutzung also eine einfache Garbage-Collection.

Prof. Dr. H. Drachenfels Systemprogrammierung 7-27
Hochschule Konstanz

C++ Standardbibliothek: Index

Ausgabe-Stream 7-5,7-6

dangling pointer 7-22

Eingabe-Stream 7-7,7-8

File-Stream 7-9
Funktionstemplate 7-2

intelligenter Zeiger 7-22
Iterator 7-20,7-21

Klassentemplate 7-2

memory leak 7-22

smart pointer 7-22

std::array 7-15
std::find 7-18,7-19
std::istream 7-7
std::max 7-17
std::ofstream 7-9
std::ostream 7-5
std::shared_ptr 7-22,7-24
std::string 7-10,7-11,7-12
std::unique_ptr 7-22,7-23
std::vector 7-13,7-14,7-16

Stream 7-4

Template 7-2,7-3

