Systemprogrammierung

Tell 7: C++ Standardbibliothek

Templates, Ein-/Ausgabe, Strings, Container,
Algorithmen, lteratoren, intelligente Zeiger

achenfels Version 8.0
onstanz 13.2.2025

C++ Standardbibliothek: Uberblick

Die C++ Standardbibliothek enthalt die C Standardbibliothek und zusatzlich vor allem
templatebasierte Erweiterungen, die auf der mal3geblich von Alexander Stepanow
entwickelten STL (Standard Template Library) beruhen:

e erweiterbare objektorientierte Ein-/Ausgabe mit Streams
std: :istream, std: :ostream, ...

e Zeichenketten

std: : string
e Container und lteratoren

std: :vector, std: :array, std: :list, ...
e Algorithmen

std: :max, std: :find, ...

e intelligente Zeiger (smart pointers)
std: :unique_ptr, std: :shared ptr, std: :weak ptr

Prof. Dr. H. Drachenfels Systemprogrammierung 7-1
Hochschule Konstanz

Hinweis
Notiz
Als Entsprechung zu den Javadoc-Seiten der Java API-Dokumentation hat sich bei C++ die Seite cppreference.com etabliert. Schlagen Sie dort nach, wenn Sie etwas aus der Standardbibliothek verwenden wollen:
https://en.cppreference.com/w/cpp

C++ Templates: Syntax

C++ kennt verschieden Arten von Templates:

o Klassentemplates definieren Familien von Klassen
template< Parameterliste > class Klassenname ...

e Funktionstemplates definieren Familien von Funktionen
template< Parameterliste > Typ Funktionsname(...) ...

Template-Parameterlisten konnen verschiedene Arten von Parametern enthalten:

e Typ-Parameter: template<typename Name > ...
bei der Instanziierung muss ein Typ als Argument angegeben werden

o Nichttyp-Parameter. template< Typ Name > ...

bei der Instanziierung muss ein konstanter Ausdruck als Argument angegeben werden,
z.B. ein Literal

als Typen sind ganzzahlige, Zeiger-, Referenz- und Aufzéhlungstypen erlaubt
o ...

Prof. Dr. H. Drachenfels Systemprogrammierung
Hochschule Konstanz

7-2

Anmerkung
Notiz
Eine stark vereinfachte Form der Templates kennen Sie aus Java in Gestalt der Generics, z.B. Comparable<T>, Iterable<T>, Iterator<T>.

Anmerkung
Notiz
Strings sind z.B. in Wahrheit ein Klassentemplate mit dem Zeichentyp als Typ-Parameter, und std::string ist nur ein Aliasname:
typedef basic_string<char> string;

C++ Templates: Vergleich mit Java

C++ Templates sind sehr viel machtiger als die Generics von Java:

in Java gibt es keine Nichttyp-Parameter

in Java sind nur Klassen als Argumente fur Typ-Parameter erlaubt,
in C++ sind dagegen alle Typen als Argumente erlaubt,
auch Grundtypen wie z.B. int und abgeleitete Typen wie z.B. int*

bei Java gibt es nur eine Implementierung eines Generics

der Compiler ersetzt die Typ-Parameter durch die Klasse Object und ergénzt bei der
Benutzung der Generics entsprechende Up- und Downcasts

bei C++ erstellt der Compiler fur jede Instanziierung eines Templates mit anderen
Argumenten per Copy und Paste eine eigene Implementierung
kommen in einem Programm viele unterschiedliche Argumente fiir das gleiche Template vor,

kann wegen der mehrfachen Vervielféltigung der Implementierung die Ubersetzung lange
dauern und der ausfiihrbare Code sehr umfangreich werden

bei Fehlern in Templates sind die Fehlermeldungen des Compilers oft sehr umfangreich und
schwer zu verstehen

Prof. Dr. H. Drachenfels Systemprogrammierung 7'3
Hochschule Konstanz

Hinweis
Notiz
Weil C++-Templates ein so mächtiges Konzept sind, werden viele Dinge, die in Java mit Subtyp-Polymorphie gelöst werden (= mit Referenzen auf Oberklassen und Interfaces programmieren), in C++ eher mit Templates gelöst. Man nennt das dann parametrische Polymorphie. Schauen Sie sich dazu das Beispiel im Verzeichnis Templates/ auf der Webseite an und vergleichen Sie es mit der Interface-Lösung in Teil 5.

Hinweis
Notiz
Bei dem Beispiel Templates/ auf der Webseite können Sie die Copy-Paste-Implementierung mit dem LInux-Kommando nm (names) sichtbar machen:

make
nm -C grusstest | grep gruessen

Sie bekommen zwei Funktionen mit dem Namen gruessen angezeigt, eine mit Template-Argument systemuhr und eine mit testuhr.

C++ Standardbibliothek: Ein-/Ausgabe (1)

Klassen-Hierarchie der Ein-/Ausgabe-Streams (vereinfacht, eigentlich Templates)

ios_bas e‘ _____— Fehlerzustand, Formatsteuerung, ...

> Lese-/Schreibschnittstelle

J

} Dateizugriff

i
Mehrfachvererbung _—Pufferverwaltung, ...
oS
57
| |)
istream ostream
77 | 3
ilostream
ifstream fstream ofstream
1 I_ I—
istringstream | stringstream || ostringstream |

} Stringzugriff

Prof. Dr. H. Drachenfels
Hochschule Konstanz

Systemprogrammierung

7-4

Anmerkung
Notiz
Bei cppreference.com können Sie die Namen der Klassen-Templates sehen: https://en.cppreference.com/w/cpp/io
Bei den hier gezeigten Aliasnamen ist der Typ-Parameter CharT jeweils mit char belegt.

Anmerkung
Notiz
Die Klasse iostream erbt auf zwei Wegen von ios. Erbt es dann alles doppelt? Nein, aber dafür müssen schon istream und ostream Vorkehrungen treffen. Weil diese sogenannte diamond inheritence so heikel ist, hat man sie in Java weggelassen.

C++ Standardbibliothek: Ein-/Ausgabe (2)

Prinzipieller Aufbau der Entitatsklasse fur Ausgabe-Streams (vereinfacht):

virtual: Unterklassen von ostream
sollen bei Mehrfachvererbung
nur einmal von ios erben

class ostream : virtual public ios {

public:
/ / Ausgabeoperatoren fiir u.a. alle Grundtypen:

ostream& operator<<(int);
Ein Manipulator ist eine Funktion, die

/ / Ausgabeoperatoren fiir Manipulatoren: / vom Ausgabeoperator aufgerufen wird

ostream& operator<<(ostreamé& (*) (ostreamé&)) ;

// Zeichenausgabe und Pufferleerung:
ostreamé& put (char) ;
ostream& flush () ;

};

// Manipulatoren: // globale Variablen:
ostreamé& endl (ostreamé&) ; extern ostream cout;
ostreamé& flush (ostreamég&) ; extern ostream cerr;

Prof. Dr. H. Drachenfels Systemprogrammierung
Hochschule Konstanz

7-5

C++ Standardbibliothek: Ein-/Ausgabe (3)

e VVerwenden von ostream-Funktionen:

#include <iostream>

std :
std :
std :

std :
std :
std :

:cout.
:cout.
: cout

:cout.
:cout.
: cout

setf (std: :ios_base: :fixed, std: :ios_base: :floatfield) ;
precision (1) ;
<< 1.26 << std::endl; // gibt1.3aus

md(thé 4; ’ gilt nur fiir die ndchste Ausgabe
I] 1 ;
<< 1 << std::endl; // gibt 0001 aus

e das gleiche mit Manipulatoren:

#include <iostream> // cout, operator<<, fixed, endl
#include <iomanip> // setprecision, setw, setfill

std: :cout << std: :fixed << std: :setprecision (1) << 1.26 << std: :endl;

std: :cout << std::setw(4) << std::seffill ('0') << 1 << std::endl;

Prof. Dr. H. Drachenfels
Hochschule Konstanz

Systemprogrammierung

7-6

Ausprobieren!
Notiz
Sie finden das Beispiel als ostream.cpp auf der Webseite.

Erläuterung
Notiz
Der operator<< hat als linken Operanden den per return von den vorhergehenden Ausgabeoperatoren durchgereichten Ausgabe-Stream std::cout und als rechten Operanden die Manipulator-Funktion std::endl. Der Operator ruft den Manipulator mit seinem linken Operanden als Argument auf. Der aufgerufene Manipulator schreibt dann einen Zeilenwechsel auf den übergebenen Stream und ruft auf dem Stream flush() auf, um die Ausgabepuffer zu leeren.

Erläuterung
Notiz
Der Aufruf std::setw(4) liefert ein Objekt, in dem die 4 gespeichert ist. Der für die Klasse dieses Objekts überladene Ausgabeoperator ruft beim übergebenen Stream die Memberfunktion width(int) auf und übergibt dabei als Argument die 4 aus dem Objekt.

C++ Standardbibliothek: Ein-/Ausgabe (4)

Prinzipieller Aufbau der Entitatsklasse fur Eingabe-Streams (vereinfacht):

class istream : virtual public ios { virtual: Unterklassen von istream
public: sollen bei Mehrfachvererbung

/ / Eingabeoperatoren fiir alle Grundtypen: nur einmal von ios erben

istream& operator>>(inté&) ;

/ / Eingabeoperatoren fiir Manipulatoren:
istream& operator>> (ios_base& (*) (ios_baseé&)) ;

// Zeichen- und Zeichenketteneingabe:
istream& get(charé&) ;

istream& getline (char*, int);

};

// Manipulatoren:
ios_base& hex (ios baseé&) ;

// globale Variablen:
extern istream cin;

Prof. Dr. H. Drachenfels Systemprogrammierung
Hochschule Konstanz

/-7

C++ Standardbibliothek: Ein-/Ausgabe (5)

e \VVerwenden von istream-Funktionen
#include <iostream>

std: :cin.setf (ios_base: :hex, ios_base: :basefield) ;
int n;

std: :cin >> n; // liest hexadezimale Zahl

std: :cout << n << std::endl; // gibtn dezimal aus

e das gleiche mit Manipulatoren

#include <iostream> // cin, operator>>, hex
int n;

std: :cin >> std: :hex >> n; // liest hexadezimale Zahl
std: :cout << n << std::endl; // gibtndezimal aus

Prof. Dr. H. Drachenfels Systemprogrammierung
Hochschule Konstanz

Ausprobieren!
Notiz
Das Beispiel finden Sie auch als istream.cpp auf der Webseite.

C++ Standardbibliothek: Ein-/Ausgabe (6)

Prinzipieller Aufbau der Entitatsklassen fur File-Streams (vereinfacht):

class ofstream : public ostream

{

public:
ofstream () ;
ofstream (const charx) ;
bool is open() ;
void open(const charx) ;
void close () ;

}s;

Lesezugriff mit ifstream analog

e VVerwenden von ofstream-Funktionen:

std : : ofstream file;

file.open ("Beispiel. txt") ;
file << "Hallo\n";

.../ / Schreiben wie bei std : : cout
file.close () ;

e das gleiche mit Konstruktor und Destruktor:

std: : ofstream file ("Beispiel.txt") ;
fle << "Hallo\n";

/ / Destruktor von £ile sorgt fiir das close

Prof. Dr. H. Drachenfels
Hochschule Konstanz

Systemprogrammierung

7-9

Erläuterung
Notiz
Bei Java braucht man für das automatische close ein try-with-resources bzw. in älteren Versionen ein try mit finally-Block.

Ausprobieren!
Notiz
Machen Sie aus dem Beispiel ein Programm ofstream.cpp und probieren Sie es aus.

C++ Standardbibliothek: std::string (1)

Ausschnitt aus der Wertklasse std::string (vereinfacht):

class string {
public:
/ / Default- / Copy- / Move-Konstruktoren, Destruktor, Copy-/ Move-Zuweisungen:

// Typanpassungs-Konstruktor und Copy-Zuweisung fiir C-Strings:
string (const char #*s) ;

stringé operator=(const char #*s);

/ / String-Konkatenation:

stringé operator+=(const stringé& str) ;

stringé operator+=(const char #s);

/ / Datenabfragen:

const char *c str() const;

unsigned length() const;

const charé& operator|[] (unsigned pos) const;
charé& operator|[] (unsigned pos) ;

};

Prof. Dr. H. Drachenfels Systemprogrammierung 7'1 O
Hochschule Konstanz

Erläuterung
Notiz
Strings sind in Wahrheit ein Klassentemplate mit dem Zeichentyp (und mehr) als Typ-Parameter, und std::string ist nur ein Aliasname:
typedef basic_string<char> string;

Die ganze Wahrheit können Sie bei cppreference versuchen zu lesen:
https://en.cppreference.com/w/cpp/string/basic_string

Einen leichter verständlichen Eindruck von der Implementierungstechnik für eine String-Klasse bekommen Sie mit der selbstgebauten stark vereinfachten String-Klasse htw::string/ auf der Webseite. Arbeiten Sie das Beispiel durch.

Erläuterung
Notiz
Move-Konstruktor und -Zuweisung sind der Übersicht halber hier weggelassen. Natürlich gibt es bei std::string die Move-Semantik.

Erläuterung
Notiz
Bei konstanten Strings kommt der erste Operator zum Zuge:
const std::string s = "Hallo"; // s ist konstant
char c = s[0]; // s . operator[](0)

Bei veränderlichen Strings kommt der zweite Operator zum Zuge:
std::string t = "Hallo"; // t ist veränderlich
t[0] = 'h'; // t . operator[](0)

Anmerkung
Notiz
std::string ist die C++-Entsprechung zu java.lang.String inklusive java.lang.StringBuilder. String-Objekte werden in C++ in einer Variablen angelegt. Ob ein String veränderlich ist, wird deshalb nicht in der Klasse festgelegt, sondern hängt davon ab, ob die Variable const ist oder nicht.

C++ Standardbibliothek: std::string (2)

Operatoren aulierhalb der Wertklasse std::string (vereinfacht):

// Verkniipfungen
string operator+ (const string& s1, const string& s2) ;

// Vergleiche
bool operator==(const string& s1, const string& s2) ;

// Ein-/Ausgabe
istream& operator>> (istreamé& is, string& s) ;
ostream& operator<<(ostreamé& o0s, const string &s) ;

Anwendungsbeispiel:
#include <string> // damit std: :string bekannt ist

char buffer[10];
std: :cin >> buffer; // Risiko eines Pufferiiberlaufs

std: :string s;
std: :cin >> s; / / string-Objekt und operatoxr>> sorgen fiir genug Speicher

Prof. Dr. H. Drachenfels Systemprogrammierung 7'1 1
Hochschule Konstanz

Beispielprogramm std::string

#include <iostream>
#include <string>

int main|()

{

std: :string a = "halli"; //a("halli)

std: :string s = "hallo"; //s("hallo")

std: :string t; // leerer String

// compare, copy and concatenate strings

if (a < s) // operator<(a, s)

{

t=a +s; //t.operator=(operator+(a, s))

}

/ / print string values and addresses

std: :cout << a << '\n'<< s << '\n' <K<K t << '\n'; // operator<<(..., ...)

std: :cout << sizeof a << '\n' << sizeof s << '\n' << sizeof t << '\n';

std: :cout << a.length() << '\n' << s.length() << '\n' << t.length() << '\n’';
}

Prof. Dr. H. Drachenfels Systemprogrammierung 7'1 2
Hochschule Konstanz

Ausprobieren!
Notiz
Das Beispielprogramm finden Sie als stringvar.cpp auf der Webseite.

C++ Standardbibliothek: Container std::vector (1)

Ausschnitt aus dem Wertklassen-Template std::vector<> (vereinfacht):

template <typename T> class vector

{
public: Elementtyp als Template-Parameter

explicit vector(std: :size_t n) ;

/ / Default- / Copy- / Move-Konstruktoren, Destruktor, Copy-/ Move-Zuweisungen:

/ / Datenabfragen:

std: :size t size () const;

void resize (std::sizet n, T ¢ = T());
T& operator([] (std: :size t i) ;

T& at(std: :size t i) ;

};

template <typename T>
bool operator==(const vector<T>& v, const vector<T>& w) ;

Prof. Dr. H. Drachenfels Systemprogrammierung
Hochschule Konstanz

7-13

Anmerkung
Notiz
std::vector entspricht java.util.Vector, ist aber keine Collection-Entität, sondern ein Werttyp.

Anmerkung
Notiz
Siehe auch https://en.cppreference.com/w/cpp/container/vector

Zum besseren Verständnis der Implementierungstechnik finden Sie auf der Webseite das Beispiel htwg::vector/, stark reduziert ohne Kopier- und Move-Semantik.

Beachten Sie, dass bei einem Klassen-Template der ganze Quellcode in der Header-Datei stehen muss. Sonst kann der Compiler an den Aufrufstellen keine Copy-Paste-Implementierung erstellen.

Erläuterung
Notiz
Der überladene operator[] und die Memberfunktion at habe bei einem gültigen Index dieselbe Semantik. Aber bei einem ungültigen Index wirft at eine Ausnahme std::out_of_range, der operator[] dagegen nicht. Den Operator sollten man deshalb in der Regel nur innerhalb von for-Schleifen verwenden.

C++ Standardbibliothek: Container std::vector (2)

e zu fast jedem Typ kann ein Vektortyp abgeleitet werden:
#include <vector> // damit std::vector<> bekannt ist

/ / Vektor von vier ganzen Zahlen, alle mit O initialisiert:
std: :vector<int> vi(4) ;

// Vektor von zwei Strings, mit Leerstrings initialisiert:
std: : vector<std: :string> vs(2) ;

e ein Vektor kennt im Gegensatz zum C-Array seine Lange:
for (unsigned i = 0; i < vi.size(); i++)

o Vektorzugriff per []1 ohne oder per .at () mit Indexprufung:
vi[2] = 1; //vi.operator[] (2) = 1,
vi.at(2) = 1;
e ein Vektor kann im Gegensatz zum C-Array per Zuweisungsoperator kopiert und

per Vergleichsoperatoren verglichen werden, sofern es diese Operatoren beim
Elementtyp gibt

Prof. Dr. H. Drachenfels Systemprogrammierung 7'1 4
Hochschule Konstanz

C++ Standardbibliothek: Container std::array

Seit C++11 gibt es zusatzlich zu std: : vector<> ein vereinfachtes Klassentemplate
std::array<> fur Arrays mit statischer Lange:
/Array-Lénge als Nichttyp-Parameter

template <typename T, std::size_t N> class array
{

public:
T elemente[N];
/ / Konstuktoren, Destruktor, Zuweisungsoperatoren vom Compiler implizit erzeugt ...
unsigned size () const;
T& operator([] (std: :size t i) ;
T& at(std: :size t i) ;

/Name des eingebetteten C-Arrays im Standard nicht festgelegt

};

template <typename T, std: :size_ t N>
bool operator==(const array<T,N>& v, const array<T , N>& w) ;

Prof. Dr. H. Drachenfels Systemprogrammierung 7'1 5
Hochschule Konstanz

Anmerkung
Notiz
std::array verpackt eine C-Array in ein Objekt, damit die Arraylänge abfragbar ist. Wenn mit Optimierung -O2 übersetzt wird, läuft Code mit std::array genauso schnell wie Code mit nackten C-Arrays, weil dann alle Memberfunktionen wegoptimiert werden. Das können Sie mit dem Linux-Kommando nm nachprüfen. Verwenden Sie das Beispielprogramm arrays.cpp auf der Webseite.

Hinweis
Notiz
Siehe auch https://en.cppreference.com/w/cpp/container/array

Zum besseren Verständnis der Implementierungstechnik finden Sie auf der Webseite das Beispiel htwg::array/

Hinweis
Notiz
Zum Unterschied von operator[] und at siehe std::vector auf Folie 6-13.

Beispielprogramm std::vector<>

#include <iostream>
#include <vector> // alternativ: #include <array>

int main|()

{

std: :vector<int> v (4) ; // alternativ: std: :array<int, 4> v;

v.at(0) = 3421;
v.at(l) = 3442;
v.at(2) = 3635;
v.at(3) = 3814;

// print vector values

for (std::sizet i = 0;
{

i < v.size(); ++i)

std: :cout <K | <K "

}

// print vector size
std: :cout << "sizeof v
std: :cout << "v.size()

" << v[i] << '\n'; // v.operator[] (i)

" K<L sizeof v L
" <L v.size() <<

'\n';

l\nl;

Prof. Dr. H. Drachenfels
Hochschule Konstanz

Systemprogrammierung

7-16

Ausprobieren!
Notiz
Das Programm finden Sie als vectorvar.cpp auf der Webseite.

Erläuterung
Notiz
Hier wird at statt operator[] verwendet, weil der Index hier eine ungeprüfte magische Zahl ist und deshalb geprüft werden sollte.

Erläuterung
Notiz
Hier wird der operator[] statt at verwendet, weil von der umschließenden for-Schleife sichergestellt wird, dass der Index gültig ist. Ein nochmalige Prüfung bei jedem Zugriff wäre Zeitverschwendung.

C++ Standardbibliothek: Algorithmus std::max<>

Das Funktions-Template std::max<> zur Bestimmung des Maximums zweier Werte
ist fur jeden Werttyp nutzbar, der operator< unterstiutzt:

template<typename T>
const T& max(const T& a, const T& b);
e Beispiel:
#include <algorithm> // damit std : : max<> bekannt ist

int main()

{
// T = int
int n = std: :max (1, 2);
// T = std: :string
std: :string s = std: :max(std: :string ("abc") , std: :string("def")) ;
}
\ Was wiirde std: :max ("abc", "def") liefern?

Prof. Dr. H. Drachenfels Systemprogrammierung 7'1 7
Hochschule Konstanz

Ausprobieren!
Notiz
Sie finden das Beispielprogramm in etwas ausführlicherer Version als max.cpp auf der Webseite. Verwenden Sie das Linux-Kommando nm, um die Instanzierungen des Funktions-Templates anzuzeigen: nm -C max | grep max

Antwort
Notiz
Hier ist T = const char *, was dazu führt, dass der String mit der größeren Speicheradresse geliefert wird. Das ist eine unangenehme Fehlerquelle. Sie können das mit dem Programm max.cpp auf der Webseite ausprobieren.

C++ Standardbibliothek: Algorithmus std::find<> (1)

Das Funktions-Template std::find<> zur linearen Suche eines Werts ist fur jeden
Typ mit zugeordnetem Iterator-Typ nutzbar:

template<typename I, typename T>
I find(I first, I last, const T& value) ;

e Beispiel mit einfachem C-Array:
#include <algorithm> // damit std : : find<> bekannt ist

int a[] = {3421, 3442, 3635, 3814};
int *begin = a; // Zeiger auf Elementtyp dienen als Iteratoren
int *end = a + 4;

auto i = std: :find (begin, end, 3442); // I = int* und T = int
if (i '= end) {
std: :cout << *ji << " istin a enthalten\n";

}

Prof. Dr. H. Drachenfels Systemprogrammierung 7'1 8
Hochschule Konstanz

Erläuterung
Notiz
I ist der Iteratortyp und T ist der Typ des gesuchten Werts.

Erläuterung
Notiz
std::find funktioniert auch für einfache C-Arrays. Dabei werden Zeiger als die primitivste Form eines C++-Iterators verwendet.

Ausprobieren!
Notiz
Sie finden den Beispielcode von dieser und der nächsten Folie als find.cpp auf der Webseite.

Erläuterung
Notiz
Für auto setzt der Compiler den Rückgabetyp des instanziierten Funktions-Templates ein, in diesem Fall int*.

C++ Standardbibliothek: Algorithmus std::find<> (2)

e Beispiel mit C++ Container:

#include <array> / / alternativ vector, list, ...
#include <algorithm> // damit std : : find<> bekannt ist

std: :array<int, 4> a{3421, 3442, 3635, 3814};
// std: :vector<int> a{3421, 3442, 3635, 3814},
// std: :list<int> a{3421, 3442, 3635, 3814},
auto begin = a.begin() ;

auto end = a.end() ;

auto i = std: :find (begin, end, 3442) ;
if (i '= end) {
std: :cout << *i << " istin a enthalten\n" ;

}

Prof. Dr. H. Drachenfels Systemprogrammierung 7'1 9
Hochschule Konstanz

Erläuterung
Notiz
Egal welchen der drei Container-Typen (Sprechweise Java: Collection-Typen) Sie verwenden, der Aufruf von std::find sieht immer gleich aus. Der Compiler instanziiert das Funktions-Template einfach jedes Mal mit einem anderen Iterator-Typ. Deshalb ist es wichtig, den Typ der Variablen i per auto vom Compiler festlegen zu lassen.

C++ Standardbibliothek: Iteratoren (1)

Damit C++ Algorithmen wie std : : find<> mit einer Container-Klasse funktionieren,

muss die Klasse einen Typ iterator sowie Memberfunktionen begin() und end()
bereitstellen (vereinfacht)

e Beispiel std: : array<>: ein einfacher Zeiger auf Elementtyp dient als Iterator

template <typename T, std::size t N>
class array

{
public:

typedef T* iterator;
iterator begin () { return &this-> elemente[0]; }
iterator end () { return &this-> elemente[N]; }

};

Prof. Dr. H. Drachenfels Systemprogrammierung 7'20
Hochschule Konstanz

Erläuterung
Notiz
std::array ist ein einfacher Wrapper für C-Arrays. Deshalb kann der Typ iterator hier als Aliasname für Zeiger auf Element-Typ relaisiert werden.

Erläuterung
Notiz
Hier ist angenommen, dass die Membervariable für das verpackte C-Array _elemente heißt.

C++ Standardbibliothek: Iteratoren (2)

e Beispiel intlist aus Teil 6: Iterator mit zusatzlichen Typnamen

class intlist £inal {

class iterator £final {

// operator!= operator* operator++ wie in Teil 5

typedef std: :input_iterator_tag iterator_category; A
typedef T value type;

typedef std: :ptrdiff_t difference_type ;

typedef T* pointer;

typedef T& reference;)

Typnamen, die in den

. Funktions-Templates der
C++ Bibliothek benutzt
werden, z.B. in std::find

};

Seit C++11 statt typedef auch alternative Syntax: using value type = T,

Prof. Dr. H. Drachenfels Systemprogrammierung 7'21
Hochschule Konstanz

Erläuterung
Notiz
Wenn der Typ iterator kein einfacher Aliasname für einen primitiven Zeigertyp ist, sondern eine Klasse, die sich wie ein Zeigertyp verhält, dann braucht der Compiler einige weitere Typnamen, damit er die Funktions-Templates der C++-Bibliothek (z.B. std::find) richtig instanziieren kann.

C++ Standardbibliothek: Intelligente Zeiger (1)

Einfache Zeigervariable (raw pointers) sind eine regelmaldige Fehlerquelle:

e es kommt zu Speicherlecks (memory leaks), wenn fir mit new allokierten
Heap-Speicher das zugehorige delete fehlt

e es kommt zu Speicherzugriffsfehlern, wenn ein Zeiger weiter dereferenziert wird,
obwonhl der referenzierte Speicher gar nicht mehr allokiert ist (dangling pointers)

Intelligente Zeiger (smart pointers) sind Wrapper fur einfache Zeiger:

e das Klassentemplate std: : unique_ptr<T> bindet die Lebensdauer eines
Heap-Speicherstucks vom Typ T exklusiv an die Lebensdauer einer Variablen

Der Destruktor der Zeigerklasse garantiert den delete -Aufruf.

e das Klassentemplate std: : shared ptr<T> erganzt Heap-Speicherstliicke um
einen Referenzzahler und erlaubt so mehrere Zeiger pro Speicherstuck

Konstruktoren, Destruktor und Copy-Zuweisung zéhlen den Referenzzéahler hoch und runter.
Bei einem Zéahlerstand 0 wird delete aufgerufen.

Zyklische Referenzierungen miissen mit std : : weak_ptr<T> aufgeldst werden.

Prof. Dr. H. Drachenfels Systemprogrammierung 7'22
Hochschule Konstanz

C++ Standardbibliothek: Intelligente Zeiger (2)

Ausschnitt aus dem Klassentemplate std::unique ptr<> (vereinfacht):

template <typename T> class unique_ptr

{
private:

T * p;
public:
unique_ptr () ;
explicit unique_ptr(T *p) ;
unique_ptr (unique_ptr&& u) ; // nur Move-Konstruktor, kein Copy-Konstruktor
~ unique_ptr () ;
unique_ptr& operator= (unique ptr&& u) ; // nur Move-Zuweisung
T& operator* () const;

T* operator->() const;

};

Objekte der Klasse unique ptr sind nicht kopierbar. Dadurch wird die Bindung des
referenzierten Speicherbereichs an die Lebensdauer genau einer Variablen sichergestellt.

Prof. Dr. H. Drachenfels Systemprogrammierung 7'23
Hochschule Konstanz

Erläuterung
Notiz
Implementierung des Destruktors: delete this->_p;
Das verhindert zuverlässig memory leaks, birgt aber das Risiko von dangling pointers. Man muss als Programmierer penibel darauf achten, dass eine Adresse, die in einem unique_ptr-Objekt gekapselt ist, in keiner weiteren Variablen gespeichert wird.

Anmerkung
Notiz
Der Konstruktor ist explicit markiert,damit ein einfacher Zeiger nicht unbemerkt per automatischer Typanpassung in einen unique_ptr gewandelt wird. Überraschende delete-Aufrufe und dangling pointers wären sonst die Folge.

Hinweis
Notiz
Der Quellcode von std::unique_ptr ist leider nur für sehr fortgeschrittene C++-Programmierer lesbar. Ich habe eine sehr stark reduzierte Implementierung htwg::unique_ptr auf die Webseite gestellt, um die Grundidee der Klasse besser nachvollziehbar zu machen.

Anmerkung
Notiz
Dadurch wird für die gekapselte Adresse nur einmal delete aufgerufen. Ein merhfaches delete für die gleiche Adresse würde i.d.R. zum Programmabsturz führen.

C++ Standardbibliothek: Intelligente Zeiger (3)

Ausschnitt aus dem Klassentemplate std::shared ptr<> (vereinfacht):

template <typename T> class shared_ptr

{
private:

T * M pitr;

_control _block * M pi; [/ der Kontrollblock enthélt den Referenzzahler
public:

shared ptr () ;

explicit shared ptr(T *p);

shared ptr (const shared ptr& s),;, —

\ -
shared_ptr (shared_ptr&& s) ; Objekte der Klasse
~ shared_ptr () ; shared ptr
sind kopierbar.

shared_ptr& operator=(const shared ptr& s) ; Jede Kopie erhéht den
shared_ptr& operator=(shared_ptr&& s) ; Referenzzéhler um 1.
T& operator* () const;

T* operator->() const;

};

Prof. Dr. H. Drachenfels Systemprogrammierung 7'24
Hochschule Konstanz

Hinweis
Notiz
Auch der Quellcode von std::shared_ptr ist für C++-Anfänger ungenießbar. Ich habe eine sehr stark reduzierte Implementierung htwg::shared_ptr auf die Webseite gestellt, um die Grundidee der Klasse nachvollziehbar zu machen.

Erläuterung
Notiz
Der Destruktor zählt den Wert des Referenzzählers um 1 herunter. Ist der Wert danach 0, wird delete aufgerufen.

Beispielprogramm Intelligente Zeiger (1)

e Fabrikfunktion fur die Entitatenklasse termin aus Teil 5:

class termin final

{
public:
static std: :unique ptr<termin> new instance (const datumg,
const std: :string&) ;
};

e Implementierung der Fabrikfunktion:

std: : unique_ptr<termin> termin: :new_instance (const datum& d, const std: :string& s)

{

return std: :unique_ ptr<termin> (new termin(d, s)) ;

}

Prof. Dr. H. Drachenfels Systemprogrammierung 7'25
Hochschule Konstanz

Ausprobieren!
Notiz
Das ausprogrammierte Beispielprogramm finden Sie unter Intelligente Zeiger/ auf der Webseite.

Beispielprogramm Intelligente Zeiger (2)

e Objektbenutzung:

std: :list<std : : shared ptr<termin> > pruefer_kalender;
std: :list<std: : shared_ ptr<termin> > kandidaten_kalender;

std: : shared ptr<termin> pruefung
= termin: :new_instance (datum: : heute () , "Pruefung Systemprogrammierung") ;

pruefer_kalender . push_back (pruefung) ; // Referenzzéhler = 2
kandidaten_kalender . push_back (pruefung) ; // Referenzzéhler = 3

pruefung->verschieben ({1, 4, 2040}) ; // Aufruf operator->()

Die Destruktoraufrufe fiir pruefung, kandidaten kalender und pruefer _kalender zéhlen den
Referenzzéhler des Termin-Objekts herunter, beim letzten Aufruf wird delete aufgerufen

Prof. Dr. H. Drachenfels Systemprogrammierung 7'26
Hochschule Konstanz

Erläuterung
Notiz
Hier findet über einen Konstruktor von std::shared_ptr eine automatische Typanpassung von std::unique_ptr<termin> nach std::shared_ptr<termin> statt. Der Konstruktor allokiert dabei einen Kontrollblock mit Referenzzähler für den Termin und setzt den Zähler auf 1.

Anmerkung
Notiz
In beide Listen wird je eine Kopie des shared_pointer-Objekts pruefung eingetragen.

Anmerkung
Notiz
Die Klasse std::shared_ptr realisiert bei richtiger Benutzung also eine einfache Garbage-Collection.

C++ Standardbibliothek

- Index

Ausgabe-Stream 7-5,7-6
dangling pointer 7-22
Eingabe-Stream 7-7,7-8
File-Stream 7-9
Funktionstemplate 7-2

intelligenter Zeiger 7-22
lterator 7-20,7-21

Klassentemplate 7-2
memory leak 7-22
smart pointer 7-22

std:
std:
std::
std::
std:
std:
std:
std:
std::
std:

array 7-15
find 7-18,7-19

istream 7-7
max 7-17

:ofstream 7-9
:ostream 7-5
:shared _ptr 7-22,7-24
.string 7-10,7-11,7-12

unique_ptr 7-22,7-23

:vector 7-13,7-14,7-16

Stream 7-4
Template 7-2,7-3

Prof. Dr. H. Drachenfels
Hochschule Konstanz

Systemprogrammierung 7-27

