Systemprogrammierung
Teil 5: POSIX

Elementare Ein-/Ausgabe, Dateizugriff

Version 17.0
5.12.2024

POSIX: Ubersicht

POSIX (Portable Operating System Interface) ist ein von IEEE und Open Group
entwickelter Standard fur die Programmierschnittstelle von Betriebssystemen.
e der Standard legt C-Systemaufrufe und die zugehorigen Header-Dateien fest:

uber 80 Header-Dateien mit Uber 1000 Funktionen und Makros
(dabei teilweise Uberlappungen mit dem C-Standard)

Die meisten UNIX-Varianten und viele weitere Betriebssysteme
halten sich ganz oder zumindest weitgehend an diesen Standard.

e der Standard umfasst Themen wie
Ein-/Ausgabe
Speicherverwaltung
Synchronisation paralleler Ablaufe
Nachrichtenaustausch zwischen parallelen Prozessen

Prof. Dr. H. Drachenfels Systemprogrammierung 5'1
Hochschule Konstanz

Hinweis
Notiz
Der POSIX-Standard hat mehrere Versionen durchlaufen. Eine Übersicht der Versionen und eine Auflistung kompatibler Betriebssystem finden Sie im deutschen und englischen Wikipedia-Artikel:
https://de.wikipedia.org/wiki/Portable_Operating_System_Interface
https://en.wikipedia.org/wiki/POSIX

Hinweis
Notiz
Die Spezifikation der POSIX-Funktionen ist im Internet frei zugänglich. Sie können auf der Webseite nach Funktionsnamen suchen oder sich unter "System Interfaces" eine Liste aller Funktionen anzeigen lassen.:
https://pubs.opengroup.org/onlinepubs/9699919799/

POSIX Ein-/Ausgabe: Ubersicht

Wichtige Header-Dateien im Zusammenhang mit Ein-/Ausgabe:

e Ein-/Ausgabe der C-Standardbibliothek:
<stdio.h>
Umgang mit FILE-Streams (fopen, fclose, £fgetc, fputc, ..)
e elementare Ein-/Ausgabe:

<fentl.h> und <unistd . h> - kein Schreibfehler!
Umgang mit Dateien und Datenstromen (creat, open, read, write, close)

<sys/stat.h> und <dirent.h>
Umgang mit Verzeichnissen (stat, mkdir, opendir, readdir, closedir)

<errno. h>
Fehlerzustand und symbolische Namen fur Fehlernummern (exrrno)

Prof. Dr. H. Drachenfels Systemprogrammierung 5'2
Hochschule Konstanz

Ein-/Ausgabe mit der C-Standardbibliothek: <stdio.h> (1)

Bei den Ein-/Ausgabefunktionen der C Standard-Bibliothek werden die
Eingabe-Quellen und Ausgabe-Ziele mit einem FILE-Zeiger angegeben:

e FILE ist ein (Alias-)Name fur eine Struktur,
die den Zustand einer Eingabe-Quelle bzw. eines Ausgabe-Ziels verwaltet

zum Zustand gehéren Puffer, Lese-/Schreibposition, aufgetretene Fehler, ...

¢ vordefinierte globale Variablen fur die Standard-Ein-/Ausgabe:

extern FILE *stdin;
extern FILE *stdout;
extern FILE *stderr;

Hinweis: stdin, stdout und stderr kbnnen auch
Préprozessor-Makros sein, die einen Zeiger liefern

o fopen liefert Zeiger auf weitere FILE-Objekte:
FILE *fopen(const char *dateiname, const char *mode) ;

mode "r'" fur reinen Lesezugriff, "w" fiir reinen Schreibzugriff, ...

e fclose schliel3t nicht mehr bendtigte Eingabe-Quellen und Ausgabe-Ziele:
int fclose (FILE *fp) ;

Prof. Dr. H. Drachenfels Systemprogrammierung 5'3
Hochschule Konstanz

Erläuterung
Notiz
Die für C unübliche Großschreibung des Typnamens rührt daher, dass FILE ein mit #define definierter symbolischer Name für den eigentlichen Typ sein darf.

Erläuterung
Notiz
Die Java-Entsprechung der drei C-Variablen sind System.in, System.out und System.err.

Ein-/Ausgabe mit der C-Standardbibliothek: <stdio.h> (2)

e Ein-/Ausgabe von Einzelzeichen:
int fgetc (FILE *fp) ;
liefert das nédchste Zeichen (umgewandelt in int) oder EOF bei Eingabeende / Fehler
int fputc(int c, FILE *fp) ;
Schreibt das Zeichen c und liefert ¢ oder bei Fehler EOF

e Ein-/Ausgabe von Zeichenketten:
char *fgets(char *s, int n, FILE *fp);

liefert in s die ndchsten maximal n - 1 Zeichen einer Zeile
und gibt s zurtick, bzw. NULL bei Eingabeende / Fehler

int fputs (const char *s, FILE *fp);
schreibt die Zeichenkette s und liefert nicht-negativen Wert bzw. bei Fehler EOF

Prof. Dr. H. Drachenfels Systemprogrammierung 5'4
Hochschule Konstanz

Erläuterung
Notiz
EOF ist ein symbolischer Name für eine negative Zahl, auf den meisten Plattformen die -1.

Nachschlagen!
Notiz
Lesen Sie die Spezifikationen der gezeigten Funktion im Linux-Handbuch:
https://man7.org/linux/man-pages/man3/fgetc.3p.html
https://man7.org/linux/man-pages/man3/fputc.3p.html
https://man7.org/linux/man-pages/man3/fgets.3p.html
https://man7.org/linux/man-pages/man3/fputs.3p.html

Alternativ finden Sie die Spezifikationen auch auf der POSIX-Webseite:
https://pubs.opengroup.org/onlinepubs/9699919799/

Anmerkung
Notiz
Für die Standard-Ein-/Ausgabe können alternativ auch Funktionen ohne Parameter aufgerufen werden:
getchar() statt fgetc(stdin)
putchar() statt fputc(stdout)

Ein-/Ausgabe mit der C-Standardbibliothek: <stdio.h> (3)

o formatierte Ein-/Ausgabe:
int fscanf(FILE *fp, const char *format, ...);

versucht die in format genannten Werte zu lesen und liefert die Anzahl der
erfolgreich gelesenen Werte oder EOF bei Eingabeende / Fehler

int fprintf(FILE *fp, const char *format, ...);

Schreibt die Zeichenkette format inklusive der mit Werten gefiillten Licken und
liefert die Anzahl der insgesamt geschriebenen Bytes oder bei Fehler EOF

e Ein-/Ausgabe von Binardaten:
size t fread (void *p, size t size, size t n, FILE *fp);

liefert in p maximal n Portionen von size Byte und gibt die Anzahl der tatséchlich
gelesenen Portionen zurtick

size t fwrite (const wvoid *p, size t size, size t n, FILE *fp) ;
schreibt maximal n Portionen von size Byte aus p und gibt die Anzahl der
tatsachlich geschriebenen Portionen zurtick

Prof. Dr. H. Drachenfels Systemprogrammierung 5'5
Hochschule Konstanz

Erläuterung
Notiz
Weil Funktionen in C nicht überladen werden können, müssen Funktionen anders heißen, wenn sie einen zusätzlichen Parameter haben, hier FILE *fp.
scanf(...) tut das gleiche wie fscanf(stdin, ...)
printf(...) tut das gleiche wie fprintf(stdout, ...)

Beispiel
Notiz
Aufruf für das Lesen eines double-Arrays (ohne Fehlerbehandlung):
 double array[ANZAHL];
 FILE *datei = fopen("xyz", "r");
 fread(array, sizeof (double), ANZAHL, datei);
Das Schreiben funktioniert analog.

Ein-/Ausgabe mit der C-Standardbibliothek: <stdio.h> (4)

e Fehlerbehandlung:
int feof (FILE *fp) ;
liefert einen von 0 verschiedenen Wert, wenn das Eingabeende erreicht wurde

int ferror (FILE *fp) ;
liefert einen von 0 verschiedenen Wert, wenn ein Fehler aufgetreten ist

void perror (const char *prefix) ;
gibt prefix gefolgt von der Fehlermeldung des aktuellen Fehlers auf stderr aus

void clearerr (FILE *fp) ;
Setzt den Eingabeende- und Fehlerzustand zurtick

Prof. Dr. H. Drachenfels Systemprogrammierung 5'6
Hochschule Konstanz

Beispiel-Programm <stdio.h>

#include <stdio.h> // fopen, fgetc, EOF, ferror, fclose, size t

int main(int argc, char *argv[])

{
for (int i = 1; 1 < argc; ++i)
{
FILE *fp = fopen(argv[i], "x");
if (fp == NULL) ... // Fehlerbehandlung
size t n = 0; // Warum size_t und nicht int?
while (fgetc(fp) '= EOF) {
++n;
}
if (ferror(fp)) ... // Fehlerbehandlung
if (fclose(fp) '= 0) ... // Fehlerbehandlung
printf ("%s: %zu Byte\n", argv[i], n);
}
return O;
}

Zahlt die Bytes in Dateien

Prof. Dr. H. Drachenfels Systemprogrammierung
Hochschule Konstanz

S5-7

Ausprobieren!
Notiz
Das Beispiel finden Sie mit vollständiger Fehlerbehandlung als count.c auf der Webseite.

drachen
Notiz
Auf z.B. einer LP64-Plattform kann man mit int nur die Bytes in Dateien korrekt zählen, die maximal 2 GiB groß sind.

POSIX: Elementare Ein-/Ausgabe (1)

Bei den elementaren Ein-/Ausgabefunktionen nach POSIX-Standard werden

Eingabe-Quellen und Ausgabe-Ziele uber einen Dateideskriptor angesprochen:

e ein Dateideskriptor ist eine nicht-negative ganze Zanhl
bei der C-Standardbibliothek Ein-/Ausgabe in der FILE-Struktur gespeichert

¢ vordefinierte Dateideskriptoren fur die Standard-Ein-/Ausgabe:
0 Standardeingabe
1 Standardausgabe
2 Standardfehlerausgabe
e open liefert einen Dateideskriptor fur eine Datei:
int open (const char *dateiname, int flags); // <fcntl.h>

liefert den kleinsten nicht belegten Dateideskriptor oder bei Fehler -1

e close schlieldt nicht mehr bendtigte Eingabe-Quellen und Ausgabe-Ziele:
int close (int fd) ; // <unistd.h>
liefert O oder bei Fehler -1

Prof. Dr. H. Drachenfels Systemprogrammierung
Hochschule Konstanz

Erläuterung
Notiz
Alles ist eine Zahl. Die aktuell offenen Eingabe-Quellen und Ausgabe-Ziele werden bei POSIX einfach durchnummeriert. Der Betriebssystem-Kernel kann die Dateideskriptoren z.B. als Index in ein Array von Verwaltungsstrukturen verwenden.

POSIX: Elementare Ein-/Ausgabe (2)

e Ein-/Ausgabe von Bytes:
ssize_ t read (int fd, wvoid *p, size t n); // <unistd.h>

liefert in p maximal n Byte und gibt die Anzahl der tatséchlich gelesenen Bytes zurtick,
0 bei Eingabeende, -1 bei Fehler

ssize_t write (int fd, const wvoid *p, size t n); // <unistd.h>

Schreibt maximal n Byte aus p und gibt die Anzahl der tatsachlich geschriebenen Bytes
oder bei Fehler -1 zuriick

ssize t // <sys/types.h>
Aliasname flir einen ganzzahligen Typ mit Vorzeichen (int oder 1ong)

e Fehlerbehandlung:
extern int errno; // <errno.h>, errno kann auch ein Makro sein
POSIX-Funktionen weisen errno im Fehlerfall eine Fehlernummer ungleich 0 zu

fur die Fehlernummern sind symbolische Konstanten definiert
(z.B: EACCES fiir fehlendes Zugriffsrecht auf eine Datei)

Prof. Dr. H. Drachenfels Systemprogrammierung 5'9
Hochschule Konstanz

Erläuterung
Notiz
In Java gibt man Fehlern mittels Exception-Klassen einen Namen. In C gibt es kein Exception-Handling. Fehler werden hier durchnummeriert und die Nummern in der globalen Variablen errno gespeichert. Achtung: POSIX-Funktionen setzen die errno nicht auf 0, wenn kein Fehler passiert ist. Deshalb immer zuerst den Rückgabewert der Funktion prüfen und nur im Fehlerfall die errno auswerten.

Beispiel-Programm Dateien (1)

#define POSIX C SOURCE 1 Kopiert eine Datei

#include <stdio.h> / / forintf
#include <string.h> / / strerror

#include <fcntl.h> // open, O_ RDONLY, O_WRONLY, O_CREAT, O_EXCL
#include <sys/stat.h> // mode t S IRUSR|S IWUSR|S IRGRP|S IROTH
#include <unistd.h> // read, write

#include <errno.h> // ermo

int main(int argc, char *argv[])

{

if (argc '= 3)

{
forintf (stderr, "Aufruf: $s Quelle Ziel\n", argv[0]) ;
return 1;

}

int in = open(argv[1l], O RDONLY) ; // Dateideskriptor Quelle

if (in == -1) ... // Fehlerbehandlung

Prof. Dr. H. Drachenfels Systemprogrammierung 5'1 O
Hochschule Konstanz

Ausprobieren!
Notiz
Sie finden das Beispielprogramm mit vollständiger Fehlerbehandlung als copy.c auf der Webseite.

Erläuterung
Notiz
C-Programme, die POSIX-Funktionen verwenden, sollten vor den #include-Anweisungen mit dem symbolischen Namen _POSIX_C_SOURCE festlegen, dass und in welcher Version sie die POSIX-Bibliothek brauchen. Die 1 bedeutet, dass die Version 1 von POSIX ausreichend ist.

Erläuterung
Notiz
Auf jeden Aufruf einer POSIX-Funktion muss ein if (schiefgegangen) ... folgen
(das gilt im Übrigen auch für viele Funktion der C-Standardbibliothek, z.B. malloc).

Erläuterung
Notiz
Die gewünschte Zugriffsart wird mit Bits in einer Zahl codiert. O_RDONLY ist ein symbolischer Name für eine Zahl, in der ein bestimmtes Bit auf 1 steht, und bedeutet einen nur lesenden Zugriff (read only).

Beispiel-Programm Dateien (2)

const mode t mode = S IRUSR | S IWUSR | S IRGRP | S IROTH; // Zugriffsrechte

int out = open(argv[2], O WRONLY | O CREAT | O_EXCL, mode) ;

if (out == -1) ... // Fehlerbehandlung

int n;
unsigned char byte;
while ((n = read(in, &byte, 1)) > 0)

{
int m = write (out, &byte, 1) ;
if (m '= 1) ... // Fehlerbehandlung
}
if (n == -1) ... // Fehlerbehandlung
if (close(out) == -1) ... // Fehlerbehandlung
if (close(in) == -1) ... // Fehlerbehandlung

return 0;

Prof. Dr. H. Drachenfels Systemprogrammierung

Hochschule Konstanz

5-11

Erläuterung
Notiz
So wie es zu jedem malloc ein free geben muss, muss es auch zu jedem open eine close geben. Dateideskriptoren sind eine vom Betriebssystem beschränkte Ressource. Es ist deshalb wichtig, Dateien zu schließen, sobald der Zugriff nicht mehr gebraucht wird.

Anmerkung
Notiz
mode_t ist ein Aliasname für einen ganzahligen Typ.
Die Zugriffsrechte auf Dateien werden mit Bits in der Zahl codiert. Der Besitzer einer Datei (USR von user) hat das Leserecht (R von read), wenn ein bestimmtes Bit auf 1 gesetzt ist, analog für die anderen Benutzer in der gleichen Gruppe (GRP von group) und für alle übrigen Benutzer (OTH von other).
Man kann die Zugriffsrechte auch ohne symbolische Namen als Oktalzahl schreiben, hier 0644, vom ls-Kommando im Terminal angezeigt als rw-r--r--. Siehe zu den oktalen Zahlenwerten die POSIX-Spezifikation:
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_stat.h.html

POSIX Ein-/Ausgabe: Verzeichnisse

Nach POSIX-Standard werden Verzeichnisse Uber DIR-Zeiger angesprochen:
e opendir liefert einen DIR-Zeiger fur ein Verzeichnis:

DIR *opendir (const char *verzeichnisname) ; // <dirent.h>

liefert NULL bei Fehler
e closedir beendet den Verzeichniszugriff:

int closedir (DIR *dirp) ; // <dirent.h>

liefert O oder bei Fehler -1

e readdir liefert einen Zeiger auf den nachsten ungelesenen Verzeichniseintrag:
struct dirent *readdir (DIR *dirp) ; // <dirent.h>
der Verzeichniseintrag enthélt unter d_name einen Dateinamen
liefert NULL bei Verzeichnisende oder Fehler

o stat liefert Statusinformation zu einer Datei (Dateityp, Zugriffsrechte, ...):
int stat (const char *dateiname, struct stat *buf) ; // <sys/stat.h>

liefert O oder bei Fehler -1 Ausgabeparameter

Prof. Dr. H. Drachenfels Systemprogrammierung 5-1 2
Hochschule Konstanz

Hinweis
Notiz
Zum Aufbau von struct stat siehe die POSIX-Spezifiaktion
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_stat.h.html
oder das Linux-Manual
https://man7.org/linux/man-pages/man0/sys_stat.h.0p.html

Beispiel-Programm Verzeichnisse (1)

#define POSIX_C_SOURCE 1

#include <stdio.h> / / forintf, printf
#include <string.h> / / strerror

#include <sys/stat.h> // struct stat, S ISDIR

#include <dirent.h> // DIR, struct dirent, opendir, readdir

#include <errno.h> // errno

int main(int argc, char *argv[])

{
for (int i = 1; 1 < argc; ++i) {

// Datei vorhanden?
struct stat s; // Dateistatus

Listet Verzeichnisse auf

if (stat(argv[i], &s) == -1) ... // Fehlerbehandlung

/ / Dateityp Verzeichnis?

if ('S ISDIR(s.st mode)) ... // Fehlerbehandlung

Prof. Dr. H. Drachenfels Systemprogrammierung
Hochschule Konstanz

5-13

Ausprobieren!
Notiz
Das Beispielprogramm finden Sie mit vollständiger Fehlerbehandlung als list.c auf der Webseite.

Beispiel-Programm Verzeichnisse (2)

DIR *d = opendir(argv[i]) ; // geoeffnetes Verzeichnis
if (d == NULL) ... // Fehlerbehandlung

errmo = 0;

struct dirent *e; // gelesener Verzeichniseintrag
while ((e = readdir(d)) '= NULL) {
printf ("%$s/%s\n", argv[i], e->d _name) ;

}
if (errno) ... // Fehlerbehandlung
if (closedir(d) == -1) ... // Fehlerbehandlung

}

return 0;

Prof. Dr. H. Drachenfels Systemprogrammierung
Hochschule Konstanz

5-14

Erläuterung
Notiz
Hier muss die errno auf 0 (keine Fehler) gesetzt werden, damit nach der Schleife unterscheidbar ist, ob bis zum Verzeichnisende gelesen wurde oder ob es zu einem Fehler gekommen ist. readdir liefert in beiden Fällen NULL, weist der errno wie alle POSIX-Funktionen aber nur im Fehlerfall einen Wert zu.

Ein-/Ausgabe: Index

<dirent.h> 5-2,5-12,5-13
<errno.h> 5-2,5-9
<fcentl.h> 5-2,5-8,5-10
<stdio.h> 5-3 bis 5-6
<sys/stat.h> 5-2,5-10,5-12
<unistd.h> 5-2,5-7 bis 5-10

clearerr 5-5
close 5-2,5-8
closedir 5-2,5-12

Dateideskriptor 5-8
DIR 5-12

errno 5-2,5-9

fclose 5-3
feof 5-6
ferror 5-6
fgetc 5-4
fgets 5-4
FILE 5-3
fopen 5-3
fprintf 5-5

fputc 5-4
fputs 5-4
fread 5-5
fscanf 5-5
fwrite 5-5

open 5-2,5-8
opendir 5-2,5-12

perror 5-6
POSIX 5-1

read 5-2,5-9
readdir 5-2,5-12

ssize t 5-9

stat 5-2,5-12

stderr 5-3

stdin 5-3

stdout 5-3

struct dirent 5-12,5-13
struct stat 5-12,5-13

write 5-2,5-9

Prof. Dr. H. Drachenfels
Hochschule Konstanz

Systemprogrammierung

5-15

