

Prof. Dr. H. Drachenfels Version 17.0
Hochschule Konstanz 5.12.2024

Systemprogrammierung

Teil 5: POSIX
Elementare Ein-/Ausgabe, Dateizugriff

Prof. Dr. H. Drachenfels Systemprogrammierung 5-1

Hochschule Konstanz

POSIX: Übersicht

POSIX (Portable Operating System Interface) ist ein von IEEE und Open Group
entwickelter Standard für die Programmierschnittstelle von Betriebssystemen.

 der Standard legt C-Systemaufrufe und die zugehörigen Header-Dateien fest:

über 80 Header-Dateien mit über 1000 Funktionen und Makros
(dabei teilweise Überlappungen mit dem C-Standard)

Die meisten UNIX-Varianten und viele weitere Betriebssysteme
halten sich ganz oder zumindest weitgehend an diesen Standard.

 der Standard umfasst Themen wie

Ein-/Ausgabe

Speicherverwaltung

Synchronisation paralleler Abläufe

Nachrichtenaustausch zwischen parallelen Prozessen

...

Hinweis
Notiz
Der POSIX-Standard hat mehrere Versionen durchlaufen. Eine Übersicht der Versionen und eine Auflistung kompatibler Betriebssystem finden Sie im deutschen und englischen Wikipedia-Artikel:
https://de.wikipedia.org/wiki/Portable_Operating_System_Interface
https://en.wikipedia.org/wiki/POSIX

Hinweis
Notiz
Die Spezifikation der POSIX-Funktionen ist im Internet frei zugänglich. Sie können auf der Webseite nach Funktionsnamen suchen oder sich unter "System Interfaces" eine Liste aller Funktionen anzeigen lassen.:
https://pubs.opengroup.org/onlinepubs/9699919799/

Prof. Dr. H. Drachenfels Systemprogrammierung 5-2

Hochschule Konstanz

POSIX Ein-/Ausgabe: Übersicht

Wichtige Header-Dateien im Zusammenhang mit Ein-/Ausgabe:

 Ein-/Ausgabe der C-Standardbibliothek:

<stdio.h>
 Umgang mit FILE-Streams (fopen, fclose, fgetc, fputc, ...)

 elementare Ein-/Ausgabe:

<fcntl.h> und <unistd.h>
 Umgang mit Dateien und Datenströmen (creat, open, read, write, close)

<sys/stat.h> und <dirent.h>
 Umgang mit Verzeichnissen (stat, mkdir, opendir, readdir, closedir)

<errno.h>
 Fehlerzustand und symbolische Namen für Fehlernummern (errno)

kein Schreibfehler!

Prof. Dr. H. Drachenfels Systemprogrammierung 5-3

Hochschule Konstanz

Ein-/Ausgabe mit der C-Standardbibliothek: <stdio.h> (1)

Bei den Ein-/Ausgabefunktionen der C Standard-Bibliothek werden die
Eingabe-Quellen und Ausgabe-Ziele mit einem FILE-Zeiger angegeben:

 FILE ist ein (Alias-)Name für eine Struktur,
die den Zustand einer Eingabe-Quelle bzw. eines Ausgabe-Ziels verwaltet

zum Zustand gehören Puffer, Lese-/Schreibposition, aufgetretene Fehler, ...

 vordefinierte globale Variablen für die Standard-Ein-/Ausgabe:

extern FILE *stdin;
extern FILE *stdout;
extern FILE *stderr;

 fopen liefert Zeiger auf weitere FILE-Objekte:

FILE *fopen(const char *dateiname, const char *mode);

mode "r" für reinen Lesezugriff, "w" für reinen Schreibzugriff, ...

 fclose schließt nicht mehr benötigte Eingabe-Quellen und Ausgabe-Ziele:

int fclose(FILE *fp);

Hinweis: stdin, stdout und stderr können auch
Präprozessor-Makros sein, die einen Zeiger liefern

Erläuterung
Notiz
Die für C unübliche Großschreibung des Typnamens rührt daher, dass FILE ein mit #define definierter symbolischer Name für den eigentlichen Typ sein darf.

Erläuterung
Notiz
Die Java-Entsprechung der drei C-Variablen sind System.in, System.out und System.err.

Prof. Dr. H. Drachenfels Systemprogrammierung 5-4

Hochschule Konstanz

Ein-/Ausgabe mit der C-Standardbibliothek: <stdio.h> (2)

 Ein-/Ausgabe von Einzelzeichen:

int fgetc(FILE *fp);

liefert das nächste Zeichen (umgewandelt in int) oder EOF bei Eingabeende / Fehler

int fputc(int c, FILE *fp);

schreibt das Zeichen c und liefert c oder bei Fehler EOF

...

 Ein-/Ausgabe von Zeichenketten:

char *fgets(char *s, int n, FILE *fp);

liefert in s die nächsten maximal n - 1 Zeichen einer Zeile

und gibt s zurück, bzw. NULL bei Eingabeende / Fehler

int fputs(const char *s, FILE *fp);

schreibt die Zeichenkette s und liefert nicht-negativen Wert bzw. bei Fehler EOF

...

Erläuterung
Notiz
EOF ist ein symbolischer Name für eine negative Zahl, auf den meisten Plattformen die -1.

Nachschlagen!
Notiz
Lesen Sie die Spezifikationen der gezeigten Funktion im Linux-Handbuch:
https://man7.org/linux/man-pages/man3/fgetc.3p.html
https://man7.org/linux/man-pages/man3/fputc.3p.html
https://man7.org/linux/man-pages/man3/fgets.3p.html
https://man7.org/linux/man-pages/man3/fputs.3p.html

Alternativ finden Sie die Spezifikationen auch auf der POSIX-Webseite:
https://pubs.opengroup.org/onlinepubs/9699919799/

Anmerkung
Notiz
Für die Standard-Ein-/Ausgabe können alternativ auch Funktionen ohne Parameter aufgerufen werden:
getchar() statt fgetc(stdin)
putchar() statt fputc(stdout)

Prof. Dr. H. Drachenfels Systemprogrammierung 5-5

Hochschule Konstanz

Ein-/Ausgabe mit der C-Standardbibliothek: <stdio.h> (3)

 formatierte Ein-/Ausgabe:

int fscanf(FILE *fp, const char *format, ...);

versucht die in format genannten Werte zu lesen und liefert die Anzahl der

erfolgreich gelesenen Werte oder EOF bei Eingabeende / Fehler

int fprintf(FILE *fp, const char *format, ...);

schreibt die Zeichenkette format inklusive der mit Werten gefüllten Lücken und

liefert die Anzahl der insgesamt geschriebenen Bytes oder bei Fehler EOF

...

 Ein-/Ausgabe von Binärdaten:
size_t fread(void *p, size_t size, size_t n, FILE *fp);

liefert in p maximal n Portionen von size Byte und gibt die Anzahl der tatsächlich

gelesenen Portionen zurück

size_t fwrite(const void *p, size_t size, size_t n, FILE *fp);

schreibt maximal n Portionen von size Byte aus p und gibt die Anzahl der

tatsächlich geschriebenen Portionen zurück

Erläuterung
Notiz
Weil Funktionen in C nicht überladen werden können, müssen Funktionen anders heißen, wenn sie einen zusätzlichen Parameter haben, hier FILE *fp.
scanf(...) tut das gleiche wie fscanf(stdin, ...)
printf(...) tut das gleiche wie fprintf(stdout, ...)

Beispiel
Notiz
Aufruf für das Lesen eines double-Arrays (ohne Fehlerbehandlung):
 double array[ANZAHL];
 FILE *datei = fopen("xyz", "r");
 fread(array, sizeof (double), ANZAHL, datei);
Das Schreiben funktioniert analog.

Prof. Dr. H. Drachenfels Systemprogrammierung 5-6

Hochschule Konstanz

Ein-/Ausgabe mit der C-Standardbibliothek: <stdio.h> (4)

 Fehlerbehandlung:

int feof(FILE *fp);

liefert einen von 0 verschiedenen Wert, wenn das Eingabeende erreicht wurde

int ferror(FILE *fp);

liefert einen von 0 verschiedenen Wert, wenn ein Fehler aufgetreten ist

void perror(const char *prefix);

gibt prefix gefolgt von der Fehlermeldung des aktuellen Fehlers auf stderr aus

void clearerr(FILE *fp);

Setzt den Eingabeende- und Fehlerzustand zurück

Prof. Dr. H. Drachenfels Systemprogrammierung 5-7

Hochschule Konstanz

Beispiel-Programm <stdio.h>

#include <stdio.h> // fopen, fgetc, EOF, ferror, fclose, size_t

int main(int argc, char *argv[])
{
 for (int i = 1; i < argc; ++i)
 {
 FILE *fp = fopen(argv[i], "r");
 if (fp == NULL) ... // Fehlerbehandlung

 size_t n = 0; // Warum size_t und nicht int?
 while (fgetc(fp) != EOF) {
 ++n;
 }

 if (ferror(fp)) ... // Fehlerbehandlung

 if (fclose(fp) != 0) ... // Fehlerbehandlung

 printf("%s: %zu Byte\n", argv[i], n);
 }

 return 0;
}

Zählt die Bytes in Dateien

Ausprobieren!
Notiz
Das Beispiel finden Sie mit vollständiger Fehlerbehandlung als count.c auf der Webseite.

drachen
Notiz
Auf z.B. einer LP64-Plattform kann man mit int nur die Bytes in Dateien korrekt zählen, die maximal 2 GiB groß sind.

Prof. Dr. H. Drachenfels Systemprogrammierung 5-8

Hochschule Konstanz

POSIX: Elementare Ein-/Ausgabe (1)

Bei den elementaren Ein-/Ausgabefunktionen nach POSIX-Standard werden
Eingabe-Quellen und Ausgabe-Ziele über einen Dateideskriptor angesprochen:

 ein Dateideskriptor ist eine nicht-negative ganze Zahl

bei der C-Standardbibliothek Ein-/Ausgabe in der FILE-Struktur gespeichert

 vordefinierte Dateideskriptoren für die Standard-Ein-/Ausgabe:

0 Standardeingabe
1 Standardausgabe
2 Standardfehlerausgabe

 open liefert einen Dateideskriptor für eine Datei:

int open(const char *dateiname, int flags); // <fcntl.h>

liefert den kleinsten nicht belegten Dateideskriptor oder bei Fehler -1

 close schließt nicht mehr benötigte Eingabe-Quellen und Ausgabe-Ziele:

int close(int fd); // <unistd.h>

liefert 0 oder bei Fehler -1

Erläuterung
Notiz
Alles ist eine Zahl. Die aktuell offenen Eingabe-Quellen und Ausgabe-Ziele werden bei POSIX einfach durchnummeriert. Der Betriebssystem-Kernel kann die Dateideskriptoren z.B. als Index in ein Array von Verwaltungsstrukturen verwenden.

Prof. Dr. H. Drachenfels Systemprogrammierung 5-9

Hochschule Konstanz

POSIX: Elementare Ein-/Ausgabe (2)

 Ein-/Ausgabe von Bytes:

ssize_t read(int fd, void *p, size_t n); // <unistd.h>

liefert in p maximal n Byte und gibt die Anzahl der tatsächlich gelesenen Bytes zurück,

0 bei Eingabeende, -1 bei Fehler

ssize_t write(int fd, const void *p, size_t n); // <unistd.h>

schreibt maximal n Byte aus p und gibt die Anzahl der tatsächlich geschriebenen Bytes

oder bei Fehler -1 zurück

ssize_t // <sys/types.h>

Aliasname für einen ganzzahligen Typ mit Vorzeichen (int oder long)

 Fehlerbehandlung:

extern int errno; // <errno.h>, errno kann auch ein Makro sein

POSIX-Funktionen weisen errno im Fehlerfall eine Fehlernummer ungleich 0 zu

für die Fehlernummern sind symbolische Konstanten definiert
(z.B: EACCES für fehlendes Zugriffsrecht auf eine Datei)

Erläuterung
Notiz
In Java gibt man Fehlern mittels Exception-Klassen einen Namen. In C gibt es kein Exception-Handling. Fehler werden hier durchnummeriert und die Nummern in der globalen Variablen errno gespeichert. Achtung: POSIX-Funktionen setzen die errno nicht auf 0, wenn kein Fehler passiert ist. Deshalb immer zuerst den Rückgabewert der Funktion prüfen und nur im Fehlerfall die errno auswerten.

Prof. Dr. H. Drachenfels Systemprogrammierung 5-10

Hochschule Konstanz

Beispiel-Programm Dateien (1)

#define _POSIX_C_SOURCE 1

#include <stdio.h> // fprintf
#include <string.h> // strerror

#include <fcntl.h> // open, O_RDONLY, O_WRONLY, O_CREAT, O_EXCL
#include <sys/stat.h> // mode_t, S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH
#include <unistd.h> // read, write
#include <errno.h> // errno

int main(int argc, char *argv[])
{
 if (argc != 3)
 {
 fprintf(stderr, "Aufruf: %s Quelle Ziel\n", argv[0]);
 return 1;
 }

 int in = open(argv[1], O_RDONLY); // Dateideskriptor Quelle
 if (in == -1) ... // Fehlerbehandlung

 ...

Kopiert eine Datei

Ausprobieren!
Notiz
Sie finden das Beispielprogramm mit vollständiger Fehlerbehandlung als copy.c auf der Webseite.

Erläuterung
Notiz
C-Programme, die POSIX-Funktionen verwenden, sollten vor den #include-Anweisungen mit dem symbolischen Namen _POSIX_C_SOURCE festlegen, dass und in welcher Version sie die POSIX-Bibliothek brauchen. Die 1 bedeutet, dass die Version 1 von POSIX ausreichend ist.

Erläuterung
Notiz
Auf jeden Aufruf einer POSIX-Funktion muss ein if (schiefgegangen) ... folgen
(das gilt im Übrigen auch für viele Funktion der C-Standardbibliothek, z.B. malloc).

Erläuterung
Notiz
Die gewünschte Zugriffsart wird mit Bits in einer Zahl codiert. O_RDONLY ist ein symbolischer Name für eine Zahl, in der ein bestimmtes Bit auf 1 steht, und bedeutet einen nur lesenden Zugriff (read only).

Prof. Dr. H. Drachenfels Systemprogrammierung 5-11

Hochschule Konstanz

Beispiel-Programm Dateien (2)

 ...

 const mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH; // Zugriffsrechte

 int out = open(argv[2], O_WRONLY | O_CREAT | O_EXCL, mode);
 if (out == -1) ... // Fehlerbehandlung

 int n;
 unsigned char byte;
 while ((n = read(in, &byte, 1)) > 0)
 {
 int m = write(out, &byte, 1);
 if (m != 1) ... // Fehlerbehandlung
 }

 if (n == -1) ... // Fehlerbehandlung

 if (close(out) == -1) ... // Fehlerbehandlung

 if (close(in) == -1) ... // Fehlerbehandlung

 return 0;
}

Erläuterung
Notiz
So wie es zu jedem malloc ein free geben muss, muss es auch zu jedem open eine close geben. Dateideskriptoren sind eine vom Betriebssystem beschränkte Ressource. Es ist deshalb wichtig, Dateien zu schließen, sobald der Zugriff nicht mehr gebraucht wird.

Anmerkung
Notiz
mode_t ist ein Aliasname für einen ganzahligen Typ.
Die Zugriffsrechte auf Dateien werden mit Bits in der Zahl codiert. Der Besitzer einer Datei (USR von user) hat das Leserecht (R von read), wenn ein bestimmtes Bit auf 1 gesetzt ist, analog für die anderen Benutzer in der gleichen Gruppe (GRP von group) und für alle übrigen Benutzer (OTH von other).
Man kann die Zugriffsrechte auch ohne symbolische Namen als Oktalzahl schreiben, hier 0644, vom ls-Kommando im Terminal angezeigt als rw-r--r--. Siehe zu den oktalen Zahlenwerten die POSIX-Spezifikation:
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_stat.h.html

Prof. Dr. H. Drachenfels Systemprogrammierung 5-12

Hochschule Konstanz

POSIX Ein-/Ausgabe: Verzeichnisse

Nach POSIX-Standard werden Verzeichnisse über DIR-Zeiger angesprochen:

 opendir liefert einen DIR-Zeiger für ein Verzeichnis:

DIR *opendir(const char *verzeichnisname); // <dirent.h>

liefert NULL bei Fehler

 closedir beendet den Verzeichniszugriff:

int closedir(DIR *dirp); // < dirent.h>

liefert 0 oder bei Fehler -1

 readdir liefert einen Zeiger auf den nächsten ungelesenen Verzeichniseintrag:

struct dirent *readdir(DIR *dirp); // < dirent.h>

der Verzeichniseintrag enthält unter d_name einen Dateinamen
liefert NULL bei Verzeichnisende oder Fehler

 stat liefert Statusinformation zu einer Datei (Dateityp, Zugriffsrechte, ...):

int stat(const char *dateiname, struct stat *buf); // < sys/stat.h>

liefert 0 oder bei Fehler -1 Ausgabeparameter

Hinweis
Notiz
Zum Aufbau von struct stat siehe die POSIX-Spezifiaktion
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_stat.h.html
oder das Linux-Manual
https://man7.org/linux/man-pages/man0/sys_stat.h.0p.html

Prof. Dr. H. Drachenfels Systemprogrammierung 5-13

Hochschule Konstanz

Beispiel-Programm Verzeichnisse (1)

#define _POSIX_C_SOURCE 1

#include <stdio.h> // fprintf, printf
#include <string.h> // strerror

#include <sys/stat.h> // struct stat, S_ISDIR
#include <dirent.h> // DIR, struct dirent, opendir, readdir
#include <errno.h> // errno

int main(int argc, char *argv[])
{
 for (int i = 1; i < argc; ++i) {

 // Datei vorhanden?
 struct stat s; // Dateistatus

 if (stat(argv[i], &s) == -1) ... // Fehlerbehandlung

 // Dateityp Verzeichnis?
 if (!S_ISDIR(s.st_mode)) ... // Fehlerbehandlung

 ...

Listet Verzeichnisse auf

Ausprobieren!
Notiz
Das Beispielprogramm finden Sie mit vollständiger Fehlerbehandlung als list.c auf der Webseite.

Prof. Dr. H. Drachenfels Systemprogrammierung 5-14

Hochschule Konstanz

Beispiel-Programm Verzeichnisse (2)

 ...

 DIR *d = opendir(argv[i]); // geoeffnetes Verzeichnis
 if (d == NULL) ... // Fehlerbehandlung

 errno = 0;

 struct dirent *e; // gelesener Verzeichniseintrag

 while ((e = readdir(d)) != NULL) {
 printf("%s/%s\n", argv[i], e->d_name);
 }

 if (errno) ... // Fehlerbehandlung

 if (closedir(d) == -1) ... // Fehlerbehandlung
 }

 return 0;
}

Erläuterung
Notiz
Hier muss die errno auf 0 (keine Fehler) gesetzt werden, damit nach der Schleife unterscheidbar ist, ob bis zum Verzeichnisende gelesen wurde oder ob es zu einem Fehler gekommen ist. readdir liefert in beiden Fällen NULL, weist der errno wie alle POSIX-Funktionen aber nur im Fehlerfall einen Wert zu.

Prof. Dr. H. Drachenfels Systemprogrammierung 5-15

Hochschule Konstanz

Ein-/Ausgabe: Index

<dirent.h> 5-2,5-12,5-13
<errno.h> 5-2,5-9
<fcntl.h> 5-2,5-8,5-10
<stdio.h> 5-3 bis 5-6
<sys/stat.h> 5-2,5-10,5-12
<unistd.h> 5-2,5-7 bis 5-10

clearerr 5-5
close 5-2,5-8
closedir 5-2,5-12

Dateideskriptor 5-8
DIR 5-12

errno 5-2,5-9

fclose 5-3
feof 5-6
ferror 5-6
fgetc 5-4
fgets 5-4
FILE 5-3
fopen 5-3
fprintf 5-5

fputc 5-4
fputs 5-4
fread 5-5
fscanf 5-5
fwrite 5-5

open 5-2,5-8
opendir 5-2,5-12

perror 5-6
POSIX 5-1

read 5-2,5-9
readdir 5-2,5-12

ssize_t 5-9
stat 5-2,5-12
stderr 5-3
stdin 5-3
stdout 5-3
struct dirent 5-12,5-13
struct stat 5-12,5-13

write 5-2,5-9

