Systemprogrammierung

Teil 2: C Daten

Literale, Variablen, Typen

Version 25
13.2.2025

C Literale: Ganze Zahlen

Schreibweisen fur ganze Zahlen (Integers):
e dezimal 1 23 456 7890

e oktal 01 023 045670
e hexadezimal Ox1l O0x23 0x456 0x789a OxbcdefO

Typ des Literals ist je nach Schreibweise der jeweils kleinste passende Typ:

e dezimal int, long int, long long int

o oktal oder int, unsigned int, long int, unsigned long int,
hexadezimal long long int, unsigned long long int

e mit Suffix L z.B. 12345L mindestens 1long int

e mit Suffix LL. z.B. 12345LL mindestens 1long long int (erst ab C99)

e mit Suffix U z.B. 123450 mit Zusatz unsigned

Nicht vergessen: der Compiler wandelt alle Schreibweisen in Binédrzahlen!

Prof. Dr. H. Drachenfels Systemprogrammierung 2-1
Hochschule Konstanz

Hinweis
Notiz
Neu gegenüber Java sind die vorzeichenlosen ganzen Zahlen und die etwas andere Ermittlung der Datentypen der Literale.

Beispielprogramm ganzzahlige Literale

$x ist hexadezimales Format
e Quellcode sd ist dezimales Format
%o ist oktales Format

include <stdio.h>
#include <stdio %u ist dezimales Format fir Zahlen ohne Vorzeichen

int main (void) \n ist Zeilenwechsel
{
orintf ("$x\n" , 12) ; Konsolenausgabe
orintf ("%d\n" , 012) ; des Programms:
printf ("$o\n", 0x12) ; iO
printf ("%$u\n" , 340) ; 22
printf ("$1d\n", 56L) ; 34
printf ("%$11d\n", 78LL) ; 32
return O;

} 1 st Ldngenanpassung fiir long
11 ist Ldngenanpassung fiir long long

Prof. Dr. H. Drachenfels Systemprogrammierung 2-2
Hochschule Konstanz

Hinweis
Notiz
Auf der Webseite der Lehrveranstaltung finden Sie eine kommentierte Version des Programms. Übersetzen und starten Sie das Programm mit:

gcc intliteral.c -o intliteral
./intliteral

Vergleichen Sie das Programm mit IntLiteral.java aus dem ersten Semester.

C Literale: Gleitkomma-Zahlen

Schreibweisen fur Gleitkomma-Zahlen (Floating Point Numbers):
e nur dezimal 1. .23 0.456 78.9 . 789%e2 789%e-1

. 789e2 stehtfir 0,789 - 10°

Typ des Literals abhangig vom Suffix:

e ohne Suffix double

e mit Suffix L long double
z.B.1.2345L

e mit Suffix F float
z.B.1.2345F

Nicht vergessen: Gleitkomma-Zahlen sind ungenau!

Auch bei Gleitkomma-Literalen wandelt der Compiler alle Schreibweisen in ein Bindrformat
(je nach Zielhardware z.B. IEEE 754)

Prof. Dr. H. Drachenfels Systemprogrammierung
Hochschule Konstanz

Hinweis
Notiz
Neu gegenüber Java ist der Datentyp long double.

Beispielprogramm Gleitkomma-Literale

e Quellcode:

#include <stdio.h> Konsolenausgabe
des Programms:

int main (void)

0
{
printf ("$g\n", (le-30 + 1e30) - 1e30); |1&~30
. 12.345679
printf ("%$g\n", 1e-30 + (1e30 - 1e30)); 1234567 .890000
printf ("$£\n", 12.3456789) ; 1.234568e+01
printf ("$LE\n" , 1234567 89L) ; 1.234568e+06

printf("%e\n" , 12. 3456’789) : Ausgabe bei %f und %e

_ . standardméf3ig mit
return 0;

%qg ist Fest- oder Gleitkommaformat nach Bedarf
% £ ist Festkommaformat

%e ist Gleitkommaformat

L ist Ld&ngenanpassung fiir long double

Prof. Dr. H. Drachenfels Systemprogrammierung 2-4
Hochschule Konstanz

Hinweis
Notiz
Vergleichen Sie das Programm mit DoubleLiteral.java aus dem ersten Semester.

C Literale: Einzelzeichen (1)

Schreibweisen fur Einzelzeichen (Characters).
e in Einfach-Hochkommas

'a' 'a' "1 ‘".*' ‘"' ! Buchstaben, Ziffern, Satzzeichen, Leerstelle, ...
'"\0' das NULL-Zeichen (Code-Nummer 0)

'"\ooo' Codenummer oktal (1 bis 3 Oktalziffern o)

'"\xhh' Codenummer hexadezimal (mindestens eine Hex-Ziffer h)

"\¢' Ersatzdarstellung fur Steuerzeichen (¢ ist a, b, f, n, r oder t)

"\'' das Einfach-Hochkomma

"\"' das Doppel-Hochkomma

Der Compiler wandelt alle Schreibweisen
"\ der Backslash in bindre Zeichencode-Nummern
(je nach Plattform z.B. ASCI|).

Typ des Literals ist int (in C++ char)

Prof. Dr. H. Drachenfels Systemprogrammierung 2'5
Hochschule Konstanz

C Literale: Einzelzeichen (2)

e Bedeutung der Ersatzdarstellungen fur Steuerzeichen:

\a’
B
g
"
—
g
g

Alarm

Ruckschritt (Backspace)
Seitenvorschub (Formfeed)
Zeilenende (Newline)
Wagenrucklauf (Carriage-Return)
Horizontal-Tabulator

Vertikal-Tabulator

Nicht vergessen: der Compiler wandelt alle Schreibweisen
in bindre Zeichencode-Nummern (je nach Plattform z.B. ASCII)

Prof. Dr. H. Drachenfels Systemprogrammierung
Hochschule Konstanz

C Literale: Zeichenketten

Schreibweise fur Zeichenketten (Strings):

e in Doppel-Hochkommas zwischen den Doppelhochkommas sind
"Hallo" alle Schreibweisen fiir Einzelzeichen erlaubt,
wobei die Einfach-Hochkommas entfallen,
o leerer String z.B. "Hallo\n"

e nur durch Zwischenraum (Whitespace) getrennte Zeichenketten fasst der Compiler
zu einer Zeichenkette zusammen:

"Hal" "lo" das gleiche wie "Hallo"

Typ des Literals ist char[] (in C++ const char[])

Prof. Dr. H. Drachenfels Systemprogrammierung 2-7
Hochschule Konstanz

Hinweis
Notiz
Die Konkatenation (das Aneinanderhängen) von String-Literalen schreibt man in C ohne Operator +.

Beispielprogramm Zeichen-Literale

e Quellcode: Konsolenausgabe
des Programms:
#include <stdio.h>
Hallo
int main (void) Hallo
{ Hallo
printf ("$s\n", "Hallo"); Hallo

printf("%s\n", "Hal" "lO"),’

printf ("Hallo\n") ;

printf ("%$c%c%c%c%c\n", 'H', 'a', '1l', '1', 'o');

return 0O; \\\\\
}

%s ist Zeichenkettenausgabe
%c ist Einzelzeichenausgabe

Prof. Dr. H. Drachenfels Systemprogrammierung 2'8

Hochschule Konstanz

C Literale: Symbolische Konstanten

Der C-Praprozessor erlaubt es, symbolische Namen fur Literale zu vergeben.

e Definition einer symbolischen Konstanten:
##define Name Literal

Préaprozessor-Anweisungen sind Zeilen, die mit # beginnen

der Name sollte nur aus Grol8buchstaben bestehen
(und eventuell Ziffern und Unterstriche, allerdings nicht als erstes Zeichen)

e Benutzung einer symbolischen Konstanten:

nach der Definition kann der Name anstelle des Literals geschrieben werden

der Name wird beim Ubersetzen vom Préprozessor durch das Literal ersetzt

e Beispiel:
#define Pl 3.14159265358979323846

Prof. Dr. H. Drachenfels Systemprogrammierung 2'9
Hochschule Konstanz

Hinweis
Notiz
Symbolische Namen gibt es in Java nicht. Sie werden in C verwendet, um "magic numbers" einen Namen zu geben. In Java mussten für diesen Zweck Konstanten definiert werden (Sie erinnern sich an checkstyle?).

C Literale: Vergleich mit Java

Schreibweise der Literale ist in C und Java weitgehend gleich
Wichtige Unterschiede:

e in C gibt es ganze Zahlen ohne Vorzeichen

e in C ist der Zeichencode plattformabhangig (nicht fest UTF-16)

e in C Verkettung von String-Literalen ohne +

in C keine Literale true und false
aber seit C99 lber die Standardbibliothek symbolische Namen

e in C gibt es symbolische Namen fur Literale

Prof. Dr. H. Drachenfels Systemprogrammierung
Hochschule Konstanz

2-10

C Literale: Empfehlungen

Zahlen-Literale:
e echte Zahlen immer dezimal schreiben
e Bitmuster immer oktal oder noch besser hexadezimal schreiben

Zeichen-Literale:

e die oktale und hexadezimale Angabe von Code-Nummern (ausser "\0') vermeiden
Es drohen sonst Uberraschungen auf Rechnern mit verschiedenen Zeichencodes.

symbolische Konstanten:

e Literale in der Regel nur zum Initialisieren von Variablen verwenden,
ansonsten symbolische Konstanten bevorzugen

Kommt ein bestimmtes Literal an mehreren Stellen im Programm vor, ist nicht erkennbar,
ob zwischen diesen Stellen ein logischer Zusammenhang besteht

Prof. Dr. H. Drachenfels Systemprogrammierung 2'1 1
Hochschule Konstanz

C Variablen: Eigenschaften

Variablen dienen dazu, Werte im Hauptspeicher abzulegen und anzusprechen.

e eine Variable hat einen Namen:
Besteht aus Buchstaben, Ziffern und Unterstrichen.
Darf nicht mit einer Ziffer beginnen und darf kein C Schllisselwort sein.

e eine Variable hat einen Typ:
Legt fest, welche Art von Werten die Variable aufnehmen kann (z.B. nur ganze Zahlen).
Legt fest, welche Operationen erlaubt sind (z.B. Addition usw.).

e eine Variable hat einen Wert:
Steht in bindrer Zahlendarstellung im Hauptspeicher.

e eine Variable hat eine Adresse:
Die Anfangsadresse des Werts im Hauptspeicher.

e eine Variable hat einen Platzbedarf:
Anzahl Bytes, die der Wert im Hauptspeicher belegt. Hangt vom Typ und der Plattform ab.

Prof. Dr. H. Drachenfels Systemprogrammierung 2'1 2
Hochschule Konstanz

C Variablen: Syntax

e Variablen-Definition legt Typ und Name fest:

Erst nach ihrer Definition ist eine Variable benutzbar Typ Name;

Definition lokaler Variablen bei ANSI-C, C90, C95 nur am Anfang eines { }-Blocks
e Wert:

definierter Anfangswert nur mit Initialisierung Typ Name = Wert;

Wertanderung per Zuweisung Name = Wert;

bei Konstanten Initialisierungspflicht und keine Zuweisung const Typ Name = Wert;

e Adresse:

der Adressoperator liefert die Adresse einer Variablen &Name
I.d.R. miissen Variablen eine durch sizeof (Typ) teilbare Adresse haben (Alignment)

e Platzbedart:
der sizeof-Operator liefert den Platzbedarf einer Variablen sizeof Name

bzw. den Platzbedarf eines Typs in Anzahl Byte. sizeof (Typ)
ein Byte hat normalerweise 8 Bit, darf nach C-Standard aber auch mehr als 8 Bit haben

Prof. Dr. H. Drachenfels Systemprogrammierung 2'1 3
Hochschule Konstanz

Hinweis
Notiz
Variablendefinitionen schreibt man in C so wie in Java, nur muss man statt final bei Java const bei C schreiben.

In C kann man die Speicheradresse und den Platzbedarf in Byte einer Variablen abfragen. Das geht in Java nicht. Der Platzbedarf ist in Java auch uninteressant, weil er von der Sprache für jeden Grundtyp fest vorgegeben und damit nicht vom Rechner abhängig ist.

C Datentypen: Ubersicht

Grundtypen (elementare Datentypen)

o Arithmetische Typen

Ganzzahlige Typen: char,

int,

Gleitkommatypen: float, double,

Logischer Typ: _Bool (erstab C99, Aliasname bool aus <stdbool.h> bevorzugen)

e Anonymer Typ: wvoid

Abgeleitete Typen

o Zeiger. *
e Arrays: []

Benutzerdefinierte Typen

e Aufzahlungen: enum

e Strukturen: struct, union

Prof. Dr. H. Drachenfels
Hochschule Konstanz

Systemprogrammierung

2-14

C Grundtypen: int

e Variablen-Definition: int zahl = 123;
short int zahl = 123;
long int zahl = 123L;
long long int zahl = 123LL;

unsigned int bytefolge = OxffffffffuU;
unsigned short int bytefolge = O0xf£f£ffU;
// usw. mit long und long long

Kurzschreibweise: hinter short, long, unsigned kann int weggelassen werden
e Wert: ganze Zahl mit Vorzeichen, mit unsigned Bitmuster (ganze Zahl ohne Vorzeichen)

e Platzbedarf: unterschiedlich je nach Rechner bzw. Compiler

sizeof (short) < sizeof (int) < sizeof (long) < sizeof (long long)
auf den ublichen Plattformen mit 1 Byte gleich 8 Bit gilt aul3erdem:
2< sizeof (short) und 4 < sizeof (long) und 8< sizeof (long long)

typisch: short 2 Byte, int 4 Byte, long und 1long long 8 Byte (LP64-Rechner)
Zusatz unsigned ist ohne Einfluss auf den Platzbedarf

Prof. Dr. H. Drachenfels Systemprogrammierung 2'1 5
Hochschule Konstanz

Beispielprogramm int-Variablen

* Quelicode: Konsolenausgabe

#include <stdio.h> des Programmes:

int main(void) n=20

{ m=1
int n = 0; &n = 0x7£££65240c9c
int m=1; &m = O0x7£££65240c98
// print variable values s:.l.zeoi (lftz = 4
printff ("n = %d\n", n); sizeot n =

printf ("m = %d\n", m);

// print variable addresses

printf ("&n = %p\n", (void*) &n);

printf ("&m = %p\n", (void*) &m);

// print type and variable sizes

printf ("sizeof (int) = %zu\n", sizeof (int));
printf ("sizeof n = %zu\n", sizeof n);

return O;
} z Ist Ldngenanpassung fiir sizeof-Werte (ab C99)

Prof. Dr. H. Drachenfels Systemprogrammierung 2'1 6
Hochschule Konstanz

Hinweis
Notiz
Auf der Webseite der Lehrveranstaltung finden Sie eine kommentierte Version des Programms.

C Grundtypen: float und double

e Variablen-Definition: float zahl = 3.14F;
double zahl = 3.14;
long double zahl = 3.14L;

e Wert:
bei £loat einfach genaue Gleitkommazahlen (single precision)
bei double doppelt genaue Gleitkommazahlen (double precision)

bei long double erweitert genaue Gleitkommazahlen (extended precision)

e Platzbedarf je nach Rechner bzw. Compiler:

sizeof (float) < sizeof (double) < sizeof (long double)

typisch: 4 Byte fur £loat
8 Byte fur double
16 Byte fir 1long double

Prof. Dr. H. Drachenfels Systemprogrammierung 2'1 7
Hochschule Konstanz

C Grundtypen: char

e Variablen-Definition: char zeichen = 'a';

signed char byte = -1;
unsigned char byte = Oxff;

e Wert:
bei char Einzelzeichen im Standard-Zeichensatz (normalerweise ASCII)
bei signed char ganze Zahl mit Vorzeichen

bei unsigned char Bitmuster (ganze Zahlen ohne Vorzeichen)

e Platzbedarf ist 1 Byte:

1 = sizeof (char)

1 = sizeof (signed char) = sizeof (unsigned char)

Prof. Dr. H. Drachenfels Systemprogrammierung 2'1 8
Hochschule Konstanz

C Grundtypen: Bool bzw. bool

e Variablen-Definition: @ _Bool ja = 1;

bool ja = true; // mit Aliasnamen aus <stdbool.h>

In C++ funktioniert nur bool, der Typ Bool ist dort unbekannt
deshalb in C den Aliasnamen bevorzugen

o Wert:
Entweder die Zahl 1 (Aliasname true) oder die Zahl 0 (Aliasnamen £false)

e Platzbedarf ist im Sprachstandard offengelassen

Prof. Dr. H. Drachenfels Systemprogrammierung 2'1 9
Hochschule Konstanz

C Grundtypen: void

e Variablen-Definition:
entfallt — es gibt keine Variablen vom Typ void

e Wert:
entfallt

e Platzbedarf:
entfallt — sizeo£f-Operator auf void nicht anwendbar

Verwendung des Typs void:

e zur Definition abgeleiteter Typen
void* Zeiger auf "irgendwas"” (allgemeinster Zeigertyp)

e bei Funktions-Definitionen
void f(void) ; Funktion ohne Riickgabewert und ohne Parameter

Prof. Dr. H. Drachenfels Systemprogrammierung
Hochschule Konstanz

2-20

C Grundtypen: Vergleich mit Java

Grundtypen und Schreibweise der Variablendefinition sind in C und Java sehr ahnlich

Wichtige Unterschiede:

e in C gibt es zwar seit C99 einen Typ Bool (bzw. bool),
Ergebnistyp der Vergleichsoperatoren ist aber weiterhin int

e in C gibt es ganze Zahlen ohne Vorzeichen

¢ in C lassen sich Platzbedarf und Speicheradresse von Variablen mit Operatoren
sizeof bzw. & ermitteln

e in C sind Platzbedarf und damit Wertebereiche der Zahltypen plattformabhangig

Prof. Dr. H. Drachenfels Systemprogrammierung 2'21
Hochschule Konstanz

C Grundtypen: Empfehlungen

e in der Regel die Grundtypen char, int, double verwenden, die Ubrigen
Varianten nur mit zwingendem Grund

Als oft bessere Alternative zu den ganzzahligen Grundtypen gibt es in der
Standardbibliothek Typnamen mit garantierten Zahlbereichen int32 t, inté64_t usw.,
die der Compiler plattformabhéangiqg auf die Grundtypen abbildet.

e /Zusatz const verwenden, wenn eine Variable ihren Wert nach der Initialisierung
nicht mehr andern soll:

const double pi = 3.14159265358979323846;

e Achtung - die Mischung unterschiedlich grof3er Zahltypen sowie von Zahltypen
mit und ohne Vorzeichen kann zu Uberraschenden Ergebnissen fuhren:

double x = 8.5 + 1 / 2; // setzt x auf 8.5 statt 9

unsigned a = 1;
int b = -2;
if (a+ b >0) ... // Summeist4294967 295 statt -1

Prof. Dr. H. Drachenfels Systemprogrammierung 2'22
Hochschule Konstanz

Hinweis
Notiz
Die Version mit symbolischem Namen PI von Folie 2-9 ist besserer C-Stil.

Hinweis
Notiz
Die Zahl 429496295 stimmt natürlich nur für Rechner, auf denen unsigned int einen Platzbedarf von 4 Byte hat.

C Abgeleitete Typen: Zeiger (1)

Zu jedem Typ kann ein Zeigertyp (Pointertyp) abgeleitet werden, indem man
in der Variablen-Definition einen Stern * vor den Variablen-Namen schreibt.

e Variablen-Definition: Typ Name = Wert;

Typ *Zeigername 1 = &Name;

Typ **xZeigername 2 = &Zeigername 1;
e Wert:
Die Adresse eines Speicherbereichs (Wert 0 bedeutet, der Zeiger zeigt nirgendwohin)

e Platzbedarf je nach Rechner bzw. Compiler:

sizeof (int) < sizeof (Typ *) typisch: 8 Byte

e Grafische Darstellung:

Zeigername_2 Zeigername_1 Name _— Kastchen stehen fiir
& Zeige}’name_1 & Nﬁme Wert Speicherbereiche
—— ____—

Pfeile stehen fiir Adresswerte

Prof. Dr. H. Drachenfels Systemprogrammierung 2'23
Hochschule Konstanz

Hinweis
Notiz
Schauen Sie sich dazu das Beispielprogramm auf Folie 2-27 an, das Sie auch als pointervar.c auf der Webseite finden.

C Abgeleitete Typen: Zeiger (2)

e Zeiger auf konstanten Wert:
const Typ Name = Wert;

Typ *Zeigername = &Name; // Fehler Der Wert einer Konstanten kann

auch auf dem Umweg Uber Zeiger

const Typ *Zeigername = &Name; nicht geéndert werden.
e konstanter Zeiger:
Typ Name = Wert; Ein konstanter Zeiger zeigt
Typ * const Zeigername = &Name; wéhrend des ganzen Programmlaufs

auf denselben Speicherbereich.
e konstanter Zeiger auf konstanten Wert:

const Typ * const Zeigername = &Name;

e Inhaltsoperator * macht vom Zeiger adressierten Speicherbereich zugreifbar:

xZeigername Achtunq: Programm-Absturz, wenn der Zeiger den Wert 0 hat
Inhaltsoperator ist Gegenstuck zum Adressoperator:

*&Name ist das gleiche wie Name

Prof. Dr. H. Drachenfels Systemprogrammierung 2'24
Hochschule Konstanz

Hinweis
Notiz
Zu dieser Folie finden Sie Beispielprogramme constpointer.c und iptrptr.c auf der Webseite.

C Abgeleitete Typen: Zeiger (3)

void-Pointer
e Variablen-Definition: Typ Name = Wert;

void x*xvoid pointer = &Name;

e Wert:
Adresse eines Speicherbereichs beliebigen Typs (aber Inhalt nicht zugreifbar)

o Platzbedarf:
wie andere Zeiger auch

e Typecast-Operator (T) wandelt einen void-Pointer in einen konkreten Pointer:

Typ =*typ pointer = (Typ *) void_pointer;

Der explizite Downcast (Typ*) darf bei einem void-Pointer auch weggelassen werden.
Der Compiler fligt ihn dann implizit ein.

Achtung: Zeigt der void-Pointer nicht auf einen Speicherbereich des Zieltyps,
kommt es zu Laufzeitfehlern durch Fehlinterpretation des Speicherinhalts.

Prof. Dr. H. Drachenfels Systemprogrammierung 2'25
Hochschule Konstanz

Hinweis
Notiz
Zu dieser Folie finden Sie ein Beispielprogamm voidpointer.c auf der Webseite.

C Abgeleitete Typen: Zeiger (4)

Verwendung von Zeigern z.B. bei dynamischer Spreicherverwaltung:

e die Funktion malloc reserviert Speicher fur Werte eines Typs und liefert die
Adresse des Speicherbereichs:

Typ *Zeigername = (Typ¥*) maIIoc(iizeof (Typl);

if (Zeigername == NULL) Y\
{ Anzahl bendétigte Bytes
\ \/ / Fehlerbehandiung malloc hat Riickgabetyp void*

malloc liefert die ungliltige Adresse 0 (in C als NULL geschrieben),
wenn die angeforderte Menge Speicher nicht verfiigbar ist.

Achtung: malloc reserviert nur Speicher, initialisiert ihn aber nicht

e mit der Funktion free kann (und sollte!) per malloc reservierter Speicher
irgendwann wieder freigegeben werden:

#include <stdlib.h> erforderlich,

free (Zeigername) ; damit malloc und free bekannt sind

Prof. Dr. H. Drachenfels Systemprogrammierung 2'26
Hochschule Konstanz

Hinweis
Notiz
Zu dieser Folie finden Sie ein Beispielprogramm nameadresse.c auf der Webseite.

Beispielprogramm Zeiger-Variable

e Quellcode:

#include <stdio.h>

int main (void)

{

int n = 3082;

int *p = é&n;

// print pointer value

printf ("p = %p\n", (void*) p);

// print pointer address
printf ("&p = %$p\n", (void*) &p);

// print pointer size
printf ("sizeof p = %$zu\n", sizeof p);

// print dereferenced pointer value
printf ("*p = %d\n", *p);

return 0;

Konsolenausgabe

des Programms:

p = Ox7fffcea’7d8ec
&p = Ox7fffcea’7d8e0
sizeof p = 8

*p = 3082

Prof. Dr. H. Drachenfels Systemprogrammierung
Hochschule Konstanz

2-27

Hinweis
Notiz
Das Beispielprogramm finden Sie auch als pointervar.c auf der Webseite.

C Abgeleitete Typen: Arrays (1)

Zu jedem Typ kann ein Arraytyp abgeleitet werden, indem man in der Variablen-
Definition eine Arraygrof3e in Klammern [] angibt.

e Variablen-Definition: Typ Arrayname[ArraygréBe] = {Wert 1, Wert 2, ...};

Die Arraygré8e muss ein ganzzahliges Literal sein (oder eine symbolischer Name daftir).
Die Arraygro3e kann entfallen, wenn eine Initialisierung angegeben ist.

e Wert: Folge von Werten gleichen Typs
(Zugriff nur elementweise mit Indexoperator)
e Platzbedarf: sizeof Arrayname = ArraygroBe * sizeof (Typ)
e Grafische Darstellung: Arrayname []
[0] = Wert 1
[1] = Wert 2

[ArraygréBe - 1] = Wert N

Prof. Dr. H. Drachenfels Systemprogrammierung 2'28
Hochschule Konstanz

Anmerkung
Notiz
Das Array enthält in C anders als in Java keine Variable length. Weil der Speicherplatz für das Array per Variablendefinition reserviert wird, muss außerdem die Arraygröße bereits zur Übersetzungszeit feststehen, also ein Literal sein.

C Abgeleitete Typen: Arrays (2)

e Indexoperator [] macht die Array-Elemente zugreifbar:

Arrayname [Index]

Der Index muss ganzzahlig sein und zwischen 0 und ArraygréBe — 1 liegen.
Indices aullerhalb dieses Bereichs flihren zu undefinierten Laufzeitfehlern!

der Arrayname ohne [] ist Kurzschreibweise fur die Adresse des ersten Arrayelements:
Arrayname ist das gleiche wie &Arrayname [0]

Der Arrayname ist also keine Name fiir den Speicherbereich des Arrays,
sondern ein Name flir die Anfangsadresse des Arrays!

e der Indexoperator ist Kurzschreibweise fur Inhaltsoperator und Zeigerarithmetik:
Typ *Zeigername =
Zeigername [Index] ist das gleiche wie * (Zeigername + Index)

Zeigerarithmetik arbeitet mit der Einheit sizeof (Typ):

Zeigername + Index bedeutet Adresse + Index * sizeof (Typ)

Prof. Dr. H. Drachenfels Systemprogrammierung 2'29
Hochschule Konstanz

Erläuterung
Notiz
Weil im Array die Anzahl der Elemente nicht gespeichert ist, kann der Index beim Zugriff nicht automatisch geprüft werden. Es ist ein gefürchteter Fehler in C-Programmen, dass mit falschen Indices wild im Hauptspeicher herumgelesen und -geschreiben wird.

Anmerkung
Notiz
Dass mit Adressen gerechnet werden kann, ist ein zentrales Konzept von C. Man braucht das z.B. auch, wenn man eine Speicherverwaltung programmiert. In Java geht so etwas nicht.

C Abgeleitete Typen: Arrays (3)

Arrays und dynamischer Spreicherverwaltung:

e die Funktion calloc reserviert Speicher fur ein Array von Werten eines Typs und
liefert die Adresse des Speicherbereichs:

Typ =*=Zeigername = (Typ*) calloc(Arraygréle, sizeof (Typ)) ;
if (Zeigername == NULL)

{
... / / Fehlerbehandlung

}

e calloc initialisiert den reservierten Speicher mit 0

wird die Initialisierung nicht gebraucht, kann malloc verwendet werden:
Typ *Zeigername = (Typ*) malloc (ArraygréBe * sizeof (Typ)) ;

e Speicher auch bei calloc mit free wieder freigegeben:

free (Zeigername) ;

Prof. Dr. H. Drachenfels Systemprogrammierung 2'30
Hochschule Konstanz

Anmerkung
Notiz
Es gibt in C keinen Unterschied zwischen einem Zeiger auf einen einzelnen Wert und einem Zeiger auf ein Array von Werten.

Erläuterung
Notiz
calloc liefert die Adresse 0 (symbolischer Name NULL), wenn nicht genug Speicher für das Array vorhanden ist. Um Programmabstürze wegen Zugriff auf die illegale Adresse 0 zu verhindern, muss der Rückgabewert deshalb immer geprüft werden.

Beispielprogramm Array-Variable

e Quellcode:
#include <stdio.h>

int main (void)

{
int a[] = {3421, 3442, 3635, 3814};
const int n = (int) (sizeof a / sizeof (int));
// print array values and addresses
printf("&a = %p, &a+1 = %$p\n", (void¥*) &a, (void*) (& + 1));
printf("a = %p, a+1 = %p\n", (void*) a, (void*) (a + 1));
for (int i = 0; i < n; ++i)
{
printf ("$d: %p %d\n", i, (void*) &ali]l, ali])
}
// print array size
printf ("sizeof a = %zu\n", sizeof a);
return O;
}

Was gibt das Programm auf der Konsole aus?

Prof. Dr. H. Drachenfels Systemprogrammierung 2'31
Hochschule Konstanz

Hinweis
Notiz
Das Beispielprogramm finden Sie auch als arrayvar.c auf der Webseite, ergänzt um ein Speicherbild.

Beispielprogramm Array-Zeiger (1)

e Quellcode:

#include <stdio.h>
#include <stdlib.h> // calloc, malloc, free,
#include <stddef.h> // NULL, size t,

J{'nt main (void) oder ohne Initialisierung mit O:

] * = 1 * * 7] .
const int n = 4; /////’1nt a (int*) malloc (n sizeof (int));
int *a = (int¥*) calloc((size t) n, sizeof (int));
if (a == NULL)

{

printf ("' Speicherreservierung fehlgeschlagen!\n") ;
return 1;

}

a[0] = 3421;
a[l] = 3442;
a[2] = 3635;

a[3] = 3814;

Prof. Dr. H. Drachenfels Systemprogrammierung 2'32
Hochschule Konstanz

Hinweis
Notiz
Das Beispielprogramm finden Sie auch als arraypointer.c auf der Webseite.
Es ist das gleiche Programm wie arrayvar.c, nur liegt das Array hier auf dem Heap statt auf dem Stack und wird über eine Zeigervariable verwendet, statt über eine Arrayvariable. Deshalb muss die Arraygröße hier auch nicht unbedingt zur Übersetzungszeit feststehen.

Beispielprogramm Array-Zeiger (2)

e Fortsetzung Quellcode:

// print array values and addresses
printf ("&a = %p\n", (void*) &a);
printf ("a = %$p\n", (void*) a);

for (int i = 0; i < n; ++i)
{

printf ("$d: %p %d\n", i, (void*) &al[i]l, a[i]l)
}

// print array size
printf ("sizeof a = %$zu\n", sizeof a); // pointer size
printf ("$d * sizeof *a = %zu\n", n, n * sizeof *a);

free (a) ;

return 0;

Prof. Dr. H. Drachenfels Systemprogrammierung 2'33
Hochschule Konstanz

C Abgeleitete Typen: String (1)

Ein String ist ein Array von Einzelzeichen mit "\Q" als letztem Zeichen.
Strings werden uUber Zeiger-Variablen benutzt. const, weil

_— String-Literal

e Variablen-Definition: const char *s = "Hallo"; nicht Znderbar]
e Wert: Anfangsadresse eines Strings (d.h. die Adresse seines ersten Zeichens)
e Platzbedarf: sizeof "Hallo" = 6 (Anzahl Zeichenincl. '\0"')
sizeof s = sizeof (charx)
e Grafische Darstellung: ¢ / [0] = 'H'
-« [1] = '3'
[2] = "1
[3] = '1'
[24] = o Zeichen '\ 0"
oder einfacher: [5] = '\O' dient in C als
S Endemarkierung
— "Hallo" von Strings

Prof. Dr. H. Drachenfels Systemprogrammierung 2'34
Hochschule Konstanz

Erläuterung
Notiz
Es gibt in C anders als in Java keinen benutzerdefinierten Typ String in der Bibliothek. Man muss sich mit Arrays von Zeichen behelfen. Und weil in Arrays nicht vermerkt ist, wie viele Elemente sie haben, verwendet man den Zeichncode 0, um das Stringende zu markieren.

C Abgeleitete Typen: String (2)

String-Literale sind als Array-Initialisierer verwendbar

e Variablen-Definition: char s[] = "Hallo";

Kurzschreibweise fiir:
char S[] — {'H', |a|’ 'l', 'l', 101’ 1\01};

e Wert: Folge der Zeichen (Kopie des String-Literals einschliel3lich \0°)
e Platzbedartf: sizeof s = 6 (Anzahl Zeichen einschl. \0')
e Grafische Darstellung: s[]

[0] = 'H'

[1] = 'a’

[2] = "1

[3] = '1"

[4] = 'O

[5] = '\O'

Prof. Dr. H. Drachenfels Systemprogrammierung 2'35
Hochschule Konstanz

C Abgeleitete Typen: String (3)

e Manipulation von C-Strings mit Bibliotheks-Funktionen:

char =*strcpy (char #*s1, const char #*s2);
kopiert den String s2 in den Speicherbereich s1 und liefert s1 als Rlickgabewert

char x*strcat (char #*s1, const char *s2) ;
héngt den String s2 an den String s1 an und liefert s1 als Rlickgabewert

int strcmp (const char *s1, const char #*s2);
Vergleicht die Strings s1 und s2 und liefert 0, wenn die Strings gleich sind,
eine Zahl gré3er O bei s1 > s2 bzw. eine Zahl kleiner 0 bei s1 < s2
size t strlen (const char #*s);
liefert die Lange des Strings s ohne '"\0' als Wert vom Typ size t
Size t steht flir einen ganzzahligen Typ ohne Vorzeichen (i.d.R. unsigned long)

// noch einige weitere str-Funktionen

Prof. Dr. H. Drachenfels Systemprogrammierung 2'36
Hochschule Konstanz

Erläuterung
Notiz
Es gibt in der C-Bibliothek zwar keinen Typ String, aber es gibt Funktionen, die mit Arrays von Zeichen umgehen. Die Funktionen bekommen immer die Adresse des ersten Zeichens der Zeichenkette (= Anfangsadresse des Arrays) und erwarten, dass in dem Array ein String-Endezeichen '\0' enthalten ist. Fehlt das Zeichen, gehen die Funktionen im Hauptspeicher spazieren, bis sie irgendwo eine zufällige 0 finden oder abstürzen.

Anmerkung
Notiz
Das Verhalten kennen Sie von der Methode compareTo der Java-Klasse String.

Erläuterung
Notiz
Der String s2 wird nur gelesen. Deshalb ist der Zeiger s2 ein Zeiger auf konstantes Zeichen.
Achtung: strcpy reserviert keinen Speicher für die Kopie. Es muss vor dem Aufruf ein ausreichend großes Array für die Kopie reserviert werden. Die Adresse dieses Arrays wird als s1 übergeben.

Erläuterung
Notiz
Bei strcat muss das Array s1 bereits ein Stringende '\0' enthalten. Ab diesem Zeichen wird der String s2 in das Array s1 hineinkopiert. Das Array s1 muss so groß sein, dass ab dem ursprünglichen '\0'-Zeichen noch ausreichend Platz für den String s2 inklusive Stringende ist.

Erläuterung
Notiz
Die Abfrage der Stringlänge ist in C relativ teuer, denn es muss mit einer Schleife nach dem '\0'-Zeichen im Array s gesucht werden.

Beispielprogramm String-Variablen (1)

e Quellcode:

#include <stdio.h>

Was gibt das Programm auf der Konsole aus?

#include <stdlib.h>

#include <string.h>

T damit die strxxx-Funktionen bekannt sind

int main (void)

{
char a[] = "halli"; strcpy und strcat
const char *s = "hallo": allokieren keinen Speicher
char *t = NULL; deshalb zuerst mit malloc

// compare, copy and concatenate strings

genug Speicher reservieren

if (strcmp(a, s) < 0)

{

t = (char*) malloc(sizeof a + strlen(s)) ;
if (t == NULL) ... // error handling

strcat (strepy (t, a) , s) ; // or: strepy (t, a) ; strecat (t, s) ;

Prof. Dr. H. Drachenfels
Hochschule Konstanz

Systemprogrammierung 2'37

Hinweis
Notiz
Das Programm finden Sie auch als stringvar.c auf der Webseite, dort natürlich mit vollständiger Fehlerbehandlung.

Beispielprogramm String-Variablen (2)

e Fortsetzung Quellcode:

// print string values and addresses
printf("a = %p %$s\ns = %p %$s\nt = %p %$s\n",
(void*) a, a, (void*) s, s, (void*) t, t);

printf ("sizeof a=%zu\n", sizeof a); // 6
printf ("sizeof s = %zu\n", sizeof s); // 4 bzw. 8
printf ("sizeof t = %zu\n", sizeof t); // 4 bzw. 8

printf ("strlen(a) = %$zu\n", strlen(a)) ; // 5
printf ("strlen(s) = %$zu\n", strlen(s)) ; // 5
printf ("strlen(t) = %zu\n", strlen(t)) ; // 10

s = a; // copies the address, not the string
// a = s; //syntax error
free (t) ;

return 0;

Prof. Dr. H. Drachenfels Systemprogrammierung 2'38
Hochschule Konstanz

C Abgeleitete Typen: Array von Arrays

Mehrdimensionales Array am Beispiel einer 2x3-Matrix
e Variablen-Definition: int matrix[]1[3] = {{10, 11, 12}, {20, 21, 22}};

e Wert: zeilenweise Folge der Matrix-Elemente

(Zugriff nur elementweise mit Indizierungs-Operatoren)
e Platzbedart: sizeof matrix = 2 * 3 * sizeof (int)
e Indizierung: matrix [i] [j] = * (% (matrix + i) + |j

N

e Grafische Darstellung: matrix[] [R?Cheneinh_eit
[0]|[0] = 10) sizeof (int)
(1] =11 ~ 1. Zeile Recheneinheit
[2] = 12 sizeof (1int[3])
[1] |[0] = 20 h
[1] = 21 > 2. Zeile
[2] = 22

~

Prof. Dr. H. Drachenfels Systemprogrammierung 2'39
Hochschule Konstanz

Hinweis
Notiz
Sehen Sie sich dazu auch das Programm matrixvar.c auf der Webseite an.
Das Konzept der ineinander verschachtelten Arrays gibt es so in Java nicht, weil Arrays in Java Referenztypen sind, Arrays also auf dem Heap allokiert werden müssen und nur über Referenzen (= Zeiger in C) zugreifbar sind.

Erläuterung
Notiz
matrix ist ein Array mit 2 Elementen. Jedes dieser beiden Element ist wiederum eine Array von 3 ganzen Zahlen (rot hervorgehoben).

Beispielprogramm Matrix-Zeiger (1)

e Quellcode:

#include <stdio.h>
#include <stdlib.h>

#define M 3 // number of columns

int main (void)

{

/ Spaltenanzahl muss bereits zur
Ubersetzungszeit feststehen!

/ / allocate and initialize memory for 2x3 matrix

const int n

int (*matrix) [M]
NULL)

10;
11;
12;
20;
21;
22;

if (matrix ==

matrix [0] [O0]
matrix [0] [1]
matrix[0] [2]
matrix[1] [0]
matrix[1] [1]
matrix[1] [2]

2;

// number of lines
(int(*) [M]) malloc(n * sizeof (int[M]))
/ / error handling

[0]

[0]

= 10

[1]

11

[2]

= 12

[1]

[0]

= 20

[1]

= 21

[2]

= 22

Prof. Dr. H. Drachenfels
Hochschule Konstanz

Systemprogrammierung

2-40

Hinweis
Notiz
Das Programm finden Sie auch als matrixpointer.c auf der Webseite, dort natürlich mir vollständiger Fehlerbehandlung.

Anmerkung
Notiz
Die Matrix aus matrixvar.c wird hier auf dem Heap statt auf dem Stack angelegt. Der Typ des Zeigers matrix und die zugehörige Typanpassung sehen schlimmer aus als sie sind. Die Adresse eines Arrays ist die Adresse des ersten Arrayelements und das erste Arrayelement ist halt ein Array mit M int-Werten.

Erläuterung
Notiz
Die Spaltenzahl geht in die Recheneinheit beim Arrayzugriff ein (siehe Folie 2-39) und muss deshalb zur Übersetzungszeit feststehen. Das macht diese Art von Matrizen sehr unflexibel. Eine flexiblere Lösung finden Sie ab Folie 2-42.

Beispielprogramm Matrix-Zeiger (2)

e Fortsetzung Quellcode:

// print matrix addresses and values
printf ("&matrix = %$p\n", (void¥*) &matrix) ;
printf ("matrix = %$p\n", (void*) matrix) ;
for (int i = 0; i < n; ++i)
{
printf (" [$d] %p: %$p\n", i, (void¥*) &matrix[i], (void*) matrix[i]) ;
for (int j = 0; | < M; ++4))
{
printf (" [%d] %p: %d\n", |, (void*) &matrix[i] [j], matrix[i] [j1) ;
}
}

// print matrix size
printf ("sizeof matrix = %zu\n", sizeof matrix) ;
printf ("$d * sizeof *matrix=%zu\n", n, n * sizeof *matrix) ;

free (matrix) ;
return O;

}

Prof. Dr. H. Drachenfels Systemprogrammierung 2'41
Hochschule Konstanz

Aufgabe
Notiz
Lassen Sie das Programm laufen und erstellen Sie anhand der ausgegebenen Adressen ein Speicherbild.

C Abgeleitete Typen: Array von Zeigern

Array von Zeigern am Beispiel einer 2x3-Matrix

e Variablen-Definition:

e Wert:
e Platzbedartf:

e Indizierung:

e Grafische Darstellung:

sizeof matrix

matrix [i] [j]

matrix []

int line 0[]
int line 1[]
int *matrix[]

= {10,

= {line_
Folge von Zeilen-Adressen
2 * sizeof (intx)

* (*k (matrix + 1) + J)

[0] = line 0

[1] = line T1e—
\‘

11,

12};
= {20, 21, 22};
0, line_ 1};

line O[]

[0] = 10
[1] = 11
[2] = 12
line_1[]

[0] = 20
[1] = 21
[2] = 22

Recheneinheit
sizeof (int)

Recheneinheit
sizeof (int*)

Prof. Dr. H. Drachenfels
Hochschule Konstanz

Systemprogrammierung

2-42

Anmerkung
Notiz
Diese Art der Speicherung einer 2x3- Matrix in drei Speicherbereichen kenne Sie von Java.

Anmerkung
Notiz
Im Array matrix stehen jetzt die Adressen der Zeilen und nicht mehr die Zeilen selbst.

Erläuterung
Notiz
Anders als auf Folie 2-39 geht hier die Spaltenanzahl der Matrix nicht mehr in die Recheneinheit ein.

Beispielprogramm Matrix-Doppelzeiger (1)

e Quellcode:
#:f-nclude <stdio.h> sowohl Zeilen- als auch Spaltenanzahl
#include <stdlib.h> brauchen erst zur Laufzeit festzustehen
int main (void)
{

/ / allocate and initialize memory for 2x3-matrix
const int n = 2; // numberoflines
const int m = 3; // number of columns

int **matrix = (int**) malloc(n * sizeof (int*));
if (matrix == NULL) ... // errorhandling
for (int i = 0; i < n; ++i)
{
matrix[i] = (int*) malloc(m * sizeof (int));
if (matrix[i] == NULL) ... // error handling
}

Prof. Dr. H. Drachenfels Systemprogrammierung 2'43
Hochschule Konstanz

Erläuterung
Notiz
Dieses Programm finden Sie auch als matrixpointerpointer.c auf der Webseite.

Anmerkung
Notiz
Der Typ der Variablen matrix ist hier einfacher als in matrixpointer.c. Sie brauchen einfach so viele Sterne, wie die Matrix Dimensionen hat.

Beispielprogramm Matrix-Doppelzeiger (2)

e Fortsetzung Quellcode:

matrix [0] [O0] 10;
wie Array von Arrays (Folie 2-40)

r.nét.rix[l] [2] = 22;

wie Array von Arrays (Folie 2-41),
aber Variable m statt symbolische
Konstante M

// print matrix addresses and values }

// free matrix memory
for (int i = 0; i < n; ++i)
{

free (matrix [i]) ;

}

free (matrix) ;

return 0;

Prof. Dr. H. Drachenfels Systemprogrammierung 2'44
Hochschule Konstanz

Aufgabe
Notiz
Erstellen Sie analog zu Folie 2-40 auch hier ein Speicherbild.

C Abgeleitete Typen: Vergleich mit Java

Bei abgeleiteten Typen kaum Gemeinsamkeiten zwischen C und Java:

o C Zeiger bieten sehr viel mehr Moglichkeiten als Java Referenzen
in Java nur Referenzen auf Objekte im Heap
in C Zeiger auf jeden beliebigen Speicherbereich, auch auf dem Stack

e C kennt keinen echten Array-Typ

der Indexoperator ist nur eine Kurzschreibweise fir Adressarithmetik
und kann auf jede beliebige Adresse angewendet werden

die Arraylange wird nicht im Array hinterlegt,
deshalb beim Arrayzugriff keine automatische Uberwachung der Indexgrenzen

in Java Arrays nur im Heap, in C auch auf dem Stack

Arrays von Arrays gibt es in Java nicht

e C kennt keinen echten String-Typ
nur Arrays von Zeichen mit ungliltigem Zeichen '\ 0' als Endemarkierung

Prof. Dr. H. Drachenfels Systemprogrammierung 2'45
Hochschule Konstanz

C Abgeleitete Typen: Empfehlungen

e Zeiger-Typen sind ein zentrales Konzept von C

e Array-Typen sind verkappte Verwandte der Zeiger

der Name einer Array-Variablen ist kein Name flir einen Speicherbereich,
sondern ein Name fiir die Adresse eines Speicherbereichs

an Stelle von Array-Variablen besser Zeiger auf mit calloc bzw. malloc
dynamisch reservierten Speicher verwenden (free nicht vergessen!)

an Stelle der Arrays von Arrays besser Arrays von Zeigern verwenden

e Strings sind Arrays von Einzelzeichen
Speicherreservierung per Array-Variable (vermeiden) oder dynamisch per malloc (besser)

beim Speicherplatzbedarf das abschlieBende '\ 0 '-Zeichen nicht vergessen!

Prof. Dr. H. Drachenfels Systemprogrammierung 2'46
Hochschule Konstanz

C Benutzerdefinierte Typen: enum

Eine Aufzahlung (Enumeration) definiert Namen fur int-Literale.

e Typ-Deklaration: enum Enumname Die Angabe der
. { Enumerator-Werte
Vorsicht. Enumerator 1 = Wert 1, ist optional.

die Namen der
Enumeratoren
sind nicht lokal

Enumerator 2 = Wert 2, Default-Wert flir den
ersten Enumerator ist O,

zur Typdeklaration! Enumerator N = Wert N fur die anderen der
}; Vorgéngerwert plus 1.
e Variablen-Definition: enum Enumname Name = Enumerator;
e Wert: einer der Enumerator-Werte

Enumerator-Werte kbnnen tberall verwendet werden,
wo int-Werte verwendet werden kbnnen.

e Platzbedarf: sizeof (enum Enumname) = sizeof (int)

Prof. Dr. H. Drachenfels Systemprogrammierung 2'47
Hochschule Konstanz

Anmerkung
Notiz
Das enum-Konzept ist sehr viel primitiver als in Java.

Anmerkung
Notiz
Das Keyword enum gehört bei C mit zum Typnamen.

Beispielprogramm enum-Variable

e Quellcode:

#include <stdio.h>

enum month {jan = 1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec};

int main (void)

{

// enum month m = 3; // funktioniert bei C, aber nicht bei C++

enum month m = mar;

// print variable value
printf ("m = %d\n", m);

// print variable address
printf ("&m = %p\n", (void*) &m);

// print variable size

printf ("sizeof m = %$zu\n", sizeof m);

return 0;

Konsolenausgabe

des Programms:

m= 3

&m = Ox7fffeacafcé6bec
sizeof m = 4

Prof. Dr. H. Drachenfels

Systemprogrammierung

Hochschule Konstanz

2-48

Hinweis
Notiz
Dass Programm finden Sie als enumvar.c auf der Webseite.

Anmerkung
Notiz
Standardmäßig würde jan den Wert 0 bekommen, feb den Wert 1 usw. Wenn bei jan der Wert 1 vorgegeben wird, erhält feb den Wert 2 usw. Zur Laufzeit des Programms gibt es nur noch die Zahlenwerte. Deshalb wird die Variable aMonth unten mit %d ausgegeben und es erscheint die 3 auf auf dem Bildschirm und nicht der Name mar.

C Benutzerdefinierte Typen: struct (1)

Eine Struktur fasst Werte beliebiger Typen zusammen.

e Typ-Deklaration: struct Strukturname
{

Typ 1 Komponente 1;

Typ N Komponente N;
}s

e Variablen-Definition: struct Strukturname Name = {Wert 1, ..., Wert N} ;

o Wert: Folge der Komponenten-Werte.
N
e Platzbedarf: Z sizeof (Typ i) < _ sizeof (struct Strukturname)
=1 wegen Alignment der Komponenten
Name

e Grafische Darstellung: Komponente 1= Wert 1

Komponente N = Wert N

Prof. Dr. H. Drachenfels Systemprogrammierung 2'49
Hochschule Konstanz

Anmerkung
Notiz
struct ist in C die primitive Vorstufe zu class in Java. Eine struct ist quasi eine Klasse mit lauter öffentlichen Instanzvariablen und ohne Methoden, insbesondere auch ohne Konstruktor.

Anmerkung
Notiz
Achten Sie auf das Semikolon am Ende der struct-Deklaration. Es darf nicht fehlen.
Das Keyword struct gehört wie bei der enum mit zum Typnamen.

Anmerkung
Notiz
Diese Initialisierung analog zum Array gibt es so in Java nicht. Bei Java-Klassen funktioniert die Initialisierung nur per Konstruktor.

C Benutzerdefinierte Typen: struct (2)

e Komponentenauswahl-Operatoren (Punkt und Pfeil):

Name . Komponente 1

Pfeil ist Kurzschreibweise flr
Zeigername—>Komponente 1 —

(*Zeigername) . Komponente 1
e Adresse einer Komponente:

& Name . Komponente_1 Adresse der ersten Komponente

& Zeigername—>Komponente_ 1 ist Adresse der Struktur insgesamt

o Verkettete Strukturen enthalten einen Zeiger auf den eigenen Strukturtyp:
struct int list

{
struct int list *next; // Verkettung
int n;
}i first last
struct int list last = {NULL, 10}; next = o—’/' next = NULL
struct int list first = {&last, 20} ; n=20 n=10
Prof. Dr. H. Drachenfels

Systemprogrammierung
Hochschule Konstanz

2-50

Anmerkung
Notiz
In C kann man eine verkettete Liste auch mit Variablen auf dem Stack anlegen. Ist aber mehr ein Gag, als dass es nützlich ist.

Anmerkung
Notiz
Die Entsprechung zu Zeigername->Komponente in C ist in Java Objektreferenz.Komponente. Den Punkt-Operator von C gibt es in Java nicht, weil Klassen in Java strikt Referenz(=Zeiger)-Typen sind. Aus dem Punkt-Operator in Java wird also in C der Pfeil-Operator (= minus größer).

Beispielprogramm struct-Variable

e Quellcode:
#include <stdio.h>

struct date

{
int day;
const char *month;
int year;

};

int main (void)

{

struct date d = {1, "September", 2000} ;

// print variable value
printf ("%d. %s %d\n", d.day, d.month, d.year) ;

// print variable address

printf ("&d = %$p\n", (void*) &d);

printf ("&d.day = %$p\n", (void*) &d.day) ;
printf ("&d .month = %p\n", (void*) &d.month) ;
printf ("&d.year = %$p\n", (void*) &d.year) ;

// print variable size
printf ("sizeof d = %$zu\n", sizeof d);

return 0;

Prof. Dr. H. Drachenfels
Hochschule Konstanz

Systemprogrammierung 2'5 1

Hinweis
Notiz
Das Programm finden Sie als structvar.c auf der Webseite.

Anmerkung
Notiz
Das Datum liegt als lokale Variable auf dem Stack. Bei Java geht das nicht.

Anmerkung
Notiz
Die Java-Entsprechung zum struct-Typs wäre

public final class Date {
 public int day;
 public String month;
 public int year;
}

C Benutzerdefinierte Typen: union (1)

Eine Variante ist eine Struktur, bei der alle Komponenten dieselbe Adresse haben.

e Typ-Deklaration: union Unionname zu einer Zeit kann
{ nur eine der Varianten
Typ 1 Variante 1; gespeichert sein

Typ_N Variante_N; nur die erste Variante

}; kann initialisiert werden

e Variablen-Definition: union Unionname Name = {Wen‘_1};/

o Wert: der Wert einer der Varianten N

e Platzbedartf: sizeof (union Unionname) = MA1X sizeof (Type i)
| -

e Grafische Darstellung: Name

Variante 1 = Wert 1

Prof. Dr. H. Drachenfels Systemprogrammierung 2'52
Hochschule Konstanz

Erläuterung
Notiz
In der union-Variablen kann entweder ein Wert der Variante_1 oder ein Wert der Variante_2 oder ... gespeichert werden. Die Variable belegt so viel Speicher, wie die größte Variante benötigt.

Hinweis
Notiz
Einen union-Typ gibt es in Java nicht. Er wird dort nicht gebraucht, weil es das viel mächtigere Konzept der Ober-/Unterklassen und Polymorphie gibt.

C Benutzerdefinierte Typen: union (2)

e Variantenauswahl-Operatoren (Punkt und Pfeil):

Name . Variante 2
Zeigername—>Variante 2

e anonyme Varianten:

enum int or _string {type_int, type string};

struct struct with _union

{
enum int or_string u_type;
union
(" hier kein Unionname
int i;
char *s;
};
};

hier kein Name (ab C11)

struct struct with_union x;

X.Uu type = type int;
X.i = 1;

X.u_type = type_string;
X.s = "Hallo";

Prof. Dr. H. Drachenfels Systemprogrammierung

Hochschule Konstanz

2-53

Erläuterung
Notiz
Das union-Konzept hebt im Prinzip die Typsicherheit von Variablen auf, weil eine union-Variable Werte verschiedener Typen aufnehmen kann und man der Variablen nicht ansieht, welcher Typ gerade gespeichert ist. Um dieses Problem zu umgehen, verwendet man union nur eingebettet in struct und ergänzt per enum eine Typinformation. Die union braucht dann keinen Namen.

Hinweis
Notiz
Sie finden das Beispiel auf dieser Folie als unionvar.c auf der Webseite.

Erläuterung
Notiz
Im Prinzip ist dies ein primitiver Ersatz für Klassenvererbung. struct_with_union ist die quasi eine abstrakte Oberklasse und in der union sind alle ihre Unterklassen aufgezählt. Der enum-Wert erlaubt eine instanceof-Abfrage wie in Java.

Erläuterung
Notiz
Beim lesenden Zugriff auf x muss immer erst u_type abgefragt werden, damit die richtige der beiden Varianten i oder s verwendet wird.

C Benutzerdefinierte Typen: typedef

Eine typedef-Deklaration definiert einen Aliasnamen fur einen Typ.
o Deklaration: typedef Typname Aliasname ;

e Variablen-Definition: Typname Name; beide Definitionen
sind gleichwertig

Aliasname Name;

e besonders nutzlich bei enum-, struct und union-Typen:
struct date

{
... date ist Aliasname flir struct date
}; / (gleicher Bezeichner fir struct und Alias

ist erlaubt und lbliche Konvention)

typedef struct date date;
date d = {1, "September", 2000} ; // statt struct date d...

e Beispiel aus der C-Bibliothek: size t (u.a. Ergebnistyp des sizeof-Operators)

Size tist ein Aliasname flr einen ganzzahligen Typ ohne Vorzeichen
(je nach Plattform z.B. unsigned long oder unsigned long long)

Prof. Dr. H. Drachenfels Systemprogrammierung 2'54
Hochschule Konstanz

Erläuterung
Notiz
Aliasnamen für Typen gibt es in Java nicht. Sie werden dort auch nicht gebraucht, weil die Typnamen einfacher sind und die Grundtypen plattformunabhängige fest definierte Eigenschaften haben.

C Benutzerdefinierte Typen: Vergleich mit Java

Bei den benutzerdefinierten Typen grof3e Unterschiede zwischen C und Java:

e enum-[ypen sind sehr viel primitiver realisiert als in Java
in C eigentlich nur eine nette Schreibweise fiir ganzzahlige Konstanten

e struct-Typen sind eine primitive Vorstufe der Java-Klassen

nur 6ffentliche Instanzvariablen

keine Methoden und Konstruktoren

keine Vererbung

auch Wert-Variablen méglich (in Java nur Speicherreservierung mit new)

e union-Typen gibt es in Java nicht

in Java wegen Vererbung und Polymorphie (berfliissig

Prof. Dr. H. Drachenfels Systemprogrammierung
Hochschule Konstanz

2-55

C Benutzerdefinierte Typen: Empfehlungen

e enum-TYypen sind nutzlich fur die Codierung nicht-numerischer Information.

Verarbeitung oft mit switch-Anweisungen

e struct-Typen sind das zentrale Konzept fur benutzerdefinierte Typen

verkettete Strukturen sind oft ein guter Ersatz fiir Arrays

e union-Typen gefahrden die Typsicherheit

vorzugsweise innerhalb eines struct-Typs als unbenannte Variante
zusammen mit einer Typ-Komponente verwenden

e typedef-Aliasnamen sind eine nutzliche Schreibvereinfachung

kbénnen Programme &nderungsfreundlicher und plattformunabhéngiger machen

Prof. Dr. H. Drachenfels Systemprogrammierung
Hochschule Konstanz

2-56

Erläuterung
Notiz
Der Zahlbereich der Grundtypen ist in C plattformabhängig. Der Typ long kann etwa 4 oder 8 Byte haben oder auf exotischen Plattformen noch etwas anderes. Das ist eine gefährliche Fehlerquelle in Programmen, die plattformübergreifend verwendetet werden sollen. Solche Programm sollten strikt mit Aliasnamen aus der Bibliothek programmiert werden: int32_t, int64_t, uint32_t, intmax_t usw. Diese Aliasnamen werden dann beim Übersetzen je nach Plattform automatisch auf die passenden Grundtypen abgebildet.

C Daten: Index

#define 2-9

Adresse 2-12,2-13
Adressoperator 2-13
Alignment 2-13,2-48
Array 2-14,2-27 bis 2-32
Array von Arrays 2-38
Array von Zeigern 2-41
calloc 2-29

char 2-5,2-14,2-18,2-21
const 2-13,2-21

double 2-3,2-14,2-17,2-21
enum 2-14,2-46,2-47,2-54,2-55
float 2-3,2-14,2-17

free 2-25,2-29
Indexoperator 2-28
Inhaltsoperator 2-23,2-28
int 2-1,2-14 bis 2-16,2-21
Literal 2-1 bis 2-11

long 2-15,2-17

malloc 2-25

Pointer 2-22

short 2-15

signed 2-18

sizeof 2-13

size t 2-53

strcat 2-35

strcmp 2-35

strcpy 2-35

strlen 2-35

struct 2-14,2-48 bis 2-50,2-54,2-55
symbolische Konstante 2-9
typedef 2-53,2-55

union 2-14,2-51,2-52,2-54,2-55
unsigned 2-15,2-18

Variable 2-12,2-13

void 2-14,2-19

Zeiger 2-14,2-22 bis 2-26
Zeigerarithmetik 2-28

Prof. Dr. H. Drachenfels
Hochschule Konstanz

Systemprogrammierung

2-57

