

Prof. Dr. H. Drachenfels Version 25
Hochschule Konstanz 13.2.2025

Systemprogrammierung

Teil 2: C Daten
Literale, Variablen, Typen

Prof. Dr. H. Drachenfels Systemprogrammierung 2-1

Hochschule Konstanz

C Literale: Ganze Zahlen

Schreibweisen für ganze Zahlen (Integers):

 dezimal 1 23 456 7890

 oktal 01 023 045670

 hexadezimal 0x1 0x23 0x456 0x789a 0xbcdef0

Typ des Literals ist je nach Schreibweise der jeweils kleinste passende Typ:

 dezimal

 oktal oder
hexadezimal

 mit Suffix L z.B. 12345L mindestens long int

 mit Suffix LL z.B. 12345LL mindestens long long int (erst ab C99)

 mit Suffix U z.B. 12345U mit Zusatz unsigned

Nicht vergessen: der Compiler wandelt alle Schreibweisen in Binärzahlen!

int, unsigned int, long int, unsigned long int,

long long int, unsigned long long int

int, long int, long long int

Hinweis
Notiz
Neu gegenüber Java sind die vorzeichenlosen ganzen Zahlen und die etwas andere Ermittlung der Datentypen der Literale.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-2

Hochschule Konstanz

Beispielprogramm ganzzahlige Literale

 Quellcode

#include <stdio.h>

int main(void)
{
 printf("%x\n", 12);

 printf("%d\n", 012);

 printf("%o\n", 0x12);

 printf("%u\n", 34U);

 printf("%ld\n", 56L);

 printf("%lld\n", 78LL);

 return 0;
}

Konsolenausgabe
des Programms:

c
10
22
34
56
78

l ist Längenanpassung für long

ll ist Längenanpassung für long long

%x ist hexadezimales Format
%d ist dezimales Format
%o ist oktales Format
%u ist dezimales Format für Zahlen ohne Vorzeichen

\n ist Zeilenwechsel

Hinweis
Notiz
Auf der Webseite der Lehrveranstaltung finden Sie eine kommentierte Version des Programms. Übersetzen und starten Sie das Programm mit:

gcc intliteral.c -o intliteral
./intliteral

Vergleichen Sie das Programm mit IntLiteral.java aus dem ersten Semester.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-3

Hochschule Konstanz

C Literale: Gleitkomma-Zahlen

Schreibweisen für Gleitkomma-Zahlen (Floating Point Numbers):

 nur dezimal 1. .23 0.456 78.9 .789e2 789e-1

.789e2 steht für 0,789  102

Typ des Literals abhängig vom Suffix:

 ohne Suffix

 mit Suffix L

z.B. 1.2345L

 mit Suffix F

z.B. 1.2345F

Nicht vergessen: Gleitkomma-Zahlen sind ungenau!

Auch bei Gleitkomma-Literalen wandelt der Compiler alle Schreibweisen in ein Binärformat
(je nach Zielhardware z.B. IEEE 754)

long double

float

double

Hinweis
Notiz
Neu gegenüber Java ist der Datentyp long double.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-4

Hochschule Konstanz

Beispielprogramm Gleitkomma-Literale

 Quellcode:

#include <stdio.h>

int main(void)
{
 printf("%g\n", (1e-30 + 1e30) - 1e30);

 printf("%g\n", 1e-30 + (1e30 - 1e30));

 printf("%f\n", 12.3456789);

 printf("%Lf\n", 1234567.89L);

 printf("%e\n", 12.3456789);

 printf("%Le\n", 1234567.89L);

 return 0;
}

%g ist Fest- oder Gleitkommaformat nach Bedarf
%f ist Festkommaformat
%e ist Gleitkommaformat
L ist Längenanpassung für long double

Konsolenausgabe
des Programms:

0
1e-30
12.345679
1234567.890000
1.234568e+01
1.234568e+06

Ausgabe bei %f und %e
standardmäßig mit
6 Nachkommastellen

Hinweis
Notiz
Vergleichen Sie das Programm mit DoubleLiteral.java aus dem ersten Semester.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-5

Hochschule Konstanz

C Literale: Einzelzeichen (1)

Schreibweisen für Einzelzeichen (Characters):

 in Einfach-Hochkommas

'a' 'A' '1' '.' ' ' Buchstaben, Ziffern, Satzzeichen, Leerstelle, ...

'\0' das NULL-Zeichen (Code-Nummer 0)

'\ooo' Codenummer oktal (1 bis 3 Oktalziffern o)

'\xhh' Codenummer hexadezimal (mindestens eine Hex-Ziffer h)

'\c' Ersatzdarstellung für Steuerzeichen (c ist a, b, f, n, r oder t)

'\'' das Einfach-Hochkomma

'\"' das Doppel-Hochkomma

'\\' der Backslash

Typ des Literals ist int (in C++ char)

Der Compiler wandelt alle Schreibweisen
in binäre Zeichencode-Nummern
(je nach Plattform z.B. ASCII).

Prof. Dr. H. Drachenfels Systemprogrammierung 2-6

Hochschule Konstanz

C Literale: Einzelzeichen (2)

 Bedeutung der Ersatzdarstellungen für Steuerzeichen:

'\a' Alarm

'\b' Rückschritt (Backspace)

'\f' Seitenvorschub (Formfeed)

'\n' Zeilenende (Newline)

'\r' Wagenrücklauf (Carriage-Return)

'\t' Horizontal-Tabulator

'\v' Vertikal-Tabulator

Nicht vergessen: der Compiler wandelt alle Schreibweisen
in binäre Zeichencode-Nummern (je nach Plattform z.B. ASCII)

Prof. Dr. H. Drachenfels Systemprogrammierung 2-7

Hochschule Konstanz

C Literale: Zeichenketten

Schreibweise für Zeichenketten (Strings):

 in Doppel-Hochkommas

"Hallo"

"" leerer String

 nur durch Zwischenraum (Whitespace) getrennte Zeichenketten fasst der Compiler
zu einer Zeichenkette zusammen:

"Hal" "lo" das gleiche wie "Hallo"

Typ des Literals ist char[] (in C++ const char[])

zwischen den Doppelhochkommas sind
alle Schreibweisen für Einzelzeichen erlaubt,
wobei die Einfach-Hochkommas entfallen,
z.B. "Hallo\n"

Hinweis
Notiz
Die Konkatenation (das Aneinanderhängen) von String-Literalen schreibt man in C ohne Operator +.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-8

Hochschule Konstanz

Beispielprogramm Zeichen-Literale

 Quellcode:

#include <stdio.h>

int main(void)

{
 printf("%s\n", "Hallo");

 printf("%s\n", "Hal" "lo");

 printf("Hallo\n");

 printf("%c%c%c%c%c\n", 'H', 'a', 'l', 'l', 'o');

 return 0;
}

Konsolenausgabe
des Programms:

Hallo
Hallo
Hallo

Hallo

%s ist Zeichenkettenausgabe
%c ist Einzelzeichenausgabe

Prof. Dr. H. Drachenfels Systemprogrammierung 2-9

Hochschule Konstanz

C Literale: Symbolische Konstanten

Der C-Präprozessor erlaubt es, symbolische Namen für Literale zu vergeben.

 Definition einer symbolischen Konstanten:

#define Name Literal

Präprozessor-Anweisungen sind Zeilen, die mit # beginnen

der Name sollte nur aus Großbuchstaben bestehen
(und eventuell Ziffern und Unterstriche, allerdings nicht als erstes Zeichen)

 Benutzung einer symbolischen Konstanten:

nach der Definition kann der Name anstelle des Literals geschrieben werden

der Name wird beim Übersetzen vom Präprozessor durch das Literal ersetzt

 Beispiel:

#define PI 3.14159265358979323846

Hinweis
Notiz
Symbolische Namen gibt es in Java nicht. Sie werden in C verwendet, um "magic numbers" einen Namen zu geben. In Java mussten für diesen Zweck Konstanten definiert werden (Sie erinnern sich an checkstyle?).

Prof. Dr. H. Drachenfels Systemprogrammierung 2-10

Hochschule Konstanz

C Literale: Vergleich mit Java

Schreibweise der Literale ist in C und Java weitgehend gleich

Wichtige Unterschiede:

 in C gibt es ganze Zahlen ohne Vorzeichen

 in C ist der Zeichencode plattformabhängig (nicht fest UTF-16)

 in C Verkettung von String-Literalen ohne +

 in C keine Literale true und false

aber seit C99 über die Standardbibliothek symbolische Namen

 in C gibt es symbolische Namen für Literale

Prof. Dr. H. Drachenfels Systemprogrammierung 2-11

Hochschule Konstanz

C Literale: Empfehlungen

Zahlen-Literale:

 echte Zahlen immer dezimal schreiben

 Bitmuster immer oktal oder noch besser hexadezimal schreiben

Zeichen-Literale:

 die oktale und hexadezimale Angabe von Code-Nummern (ausser '\0') vermeiden

Es drohen sonst Überraschungen auf Rechnern mit verschiedenen Zeichencodes.

symbolische Konstanten:

 Literale in der Regel nur zum Initialisieren von Variablen verwenden,
ansonsten symbolische Konstanten bevorzugen

Kommt ein bestimmtes Literal an mehreren Stellen im Programm vor, ist nicht erkennbar,
ob zwischen diesen Stellen ein logischer Zusammenhang besteht

Prof. Dr. H. Drachenfels Systemprogrammierung 2-12

Hochschule Konstanz

C Variablen: Eigenschaften

Variablen dienen dazu, Werte im Hauptspeicher abzulegen und anzusprechen.

 eine Variable hat einen Namen:

Besteht aus Buchstaben, Ziffern und Unterstrichen.

Darf nicht mit einer Ziffer beginnen und darf kein C Schlüsselwort sein.

 eine Variable hat einen Typ:

Legt fest, welche Art von Werten die Variable aufnehmen kann (z.B. nur ganze Zahlen).

Legt fest, welche Operationen erlaubt sind (z.B. Addition usw.).

 eine Variable hat einen Wert:

Steht in binärer Zahlendarstellung im Hauptspeicher.

 eine Variable hat eine Adresse:

Die Anfangsadresse des Werts im Hauptspeicher.

 eine Variable hat einen Platzbedarf:

Anzahl Bytes, die der Wert im Hauptspeicher belegt. Hängt vom Typ und der Plattform ab.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-13

Hochschule Konstanz

C Variablen: Syntax

 Variablen-Definition legt Typ und Name fest:

Erst nach ihrer Definition ist eine Variable benutzbar Typ Name;

Definition lokaler Variablen bei ANSI-C, C90, C95 nur am Anfang eines {}-Blocks

 Wert:

definierter Anfangswert nur mit Initialisierung Typ Name = Wert;

Wertänderung per Zuweisung Name = Wert;

bei Konstanten Initialisierungspflicht und keine Zuweisung const Typ Name = Wert;

 Adresse:

der Adressoperator liefert die Adresse einer Variablen &Name

i.d.R. müssen Variablen eine durch sizeof (Typ) teilbare Adresse haben (Alignment)

 Platzbedarf:

der sizeof-Operator liefert den Platzbedarf einer Variablen sizeof Name

bzw. den Platzbedarf eines Typs in Anzahl Byte. sizeof (Typ)

ein Byte hat normalerweise 8 Bit, darf nach C-Standard aber auch mehr als 8 Bit haben

Hinweis
Notiz
Variablendefinitionen schreibt man in C so wie in Java, nur muss man statt final bei Java const bei C schreiben.

In C kann man die Speicheradresse und den Platzbedarf in Byte einer Variablen abfragen. Das geht in Java nicht. Der Platzbedarf ist in Java auch uninteressant, weil er von der Sprache für jeden Grundtyp fest vorgegeben und damit nicht vom Rechner abhängig ist.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-14

Hochschule Konstanz

C Datentypen: Übersicht

Grundtypen (elementare Datentypen)

 Arithmetische Typen

Ganzzahlige Typen: char, int, ...

Gleitkommatypen: float, double, ...

Logischer Typ: _Bool (erst ab C99, Aliasname bool aus <stdbool.h> bevorzugen)

 Anonymer Typ: void

Abgeleitete Typen

 Zeiger: *

 Arrays: []

Benutzerdefinierte Typen

 Aufzählungen: enum

 Strukturen: struct, union

Prof. Dr. H. Drachenfels Systemprogrammierung 2-15

Hochschule Konstanz

C Grundtypen: int

 Variablen-Definition: int zahl = 123;
short int zahl = 123;
long int zahl = 123L;
long long int zahl = 123LL;

unsigned int bytefolge = 0xffffffffU;
unsigned short int bytefolge = 0xffffU;
... // usw. mit long und long long

Kurzschreibweise: hinter short, long, unsigned kann int weggelassen werden

 Wert: ganze Zahl mit Vorzeichen, mit unsigned Bitmuster (ganze Zahl ohne Vorzeichen)

 Platzbedarf: unterschiedlich je nach Rechner bzw. Compiler

sizeof (short)  sizeof (int)  sizeof (long)  sizeof (long long)
auf den üblichen Plattformen mit 1 Byte gleich 8 Bit gilt außerdem:
2  sizeof (short) und 4  sizeof (long) und 8  sizeof (long long)

typisch: short 2 Byte, int 4 Byte, long und long long 8 Byte (LP64-Rechner)
Zusatz unsigned ist ohne Einfluss auf den Platzbedarf

Prof. Dr. H. Drachenfels Systemprogrammierung 2-16

Hochschule Konstanz

Beispielprogramm int-Variablen

 Quellcode:

#include <stdio.h>

int main(void)
{
 int n = 0;
 int m = 1;

 // print variable values
 printf("n = %d\n", n);
 printf("m = %d\n", m);

 // print variable addresses
 printf("&n = %p\n", (void*) &n);
 printf("&m = %p\n", (void*) &m);

 // print type and variable sizes
 printf("sizeof (int) = %zu\n", sizeof (int));

 printf("sizeof n = %zu\n", sizeof n);

 return 0;
}

Konsolenausgabe
des Programms:

n = 0
m = 1
&n = 0x7fff65240c9c
&m = 0x7fff65240c98
sizeof (int) = 4
sizeof n = 4

z ist Längenanpassung für sizeof-Werte (ab C99)

Hinweis
Notiz
Auf der Webseite der Lehrveranstaltung finden Sie eine kommentierte Version des Programms.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-17

Hochschule Konstanz

C Grundtypen: float und double

 Variablen-Definition: float zahl = 3.14F;

double zahl = 3.14;

long double zahl = 3.14L;

 Wert:

bei float einfach genaue Gleitkommazahlen (single precision)

bei double doppelt genaue Gleitkommazahlen (double precision)

bei long double erweitert genaue Gleitkommazahlen (extended precision)

 Platzbedarf je nach Rechner bzw. Compiler:

sizeof (float)  sizeof (double)  sizeof (long double)

typisch: 4 Byte für float

 8 Byte für double

16 Byte für long double

Prof. Dr. H. Drachenfels Systemprogrammierung 2-18

Hochschule Konstanz

C Grundtypen: char

 Variablen-Definition: char zeichen = 'a';

signed char byte = –1;

unsigned char byte = 0xff;

 Wert:

bei char Einzelzeichen im Standard-Zeichensatz (normalerweise ASCII)

bei signed char ganze Zahl mit Vorzeichen

bei unsigned char Bitmuster (ganze Zahlen ohne Vorzeichen)

 Platzbedarf ist 1 Byte:

1  sizeof (char)

1  sizeof (signed char)  sizeof (unsigned char)

Prof. Dr. H. Drachenfels Systemprogrammierung 2-19

Hochschule Konstanz

C Grundtypen: _Bool bzw. bool

 Variablen-Definition: _Bool ja = 1;

bool ja = true; // mit Aliasnamen aus <stdbool.h>

In C++ funktioniert nur bool, der Typ _Bool ist dort unbekannt
deshalb in C den Aliasnamen bevorzugen

 Wert:

Entweder die Zahl 1 (Aliasname true) oder die Zahl 0 (Aliasnamen false)

 Platzbedarf ist im Sprachstandard offengelassen

Prof. Dr. H. Drachenfels Systemprogrammierung 2-20

Hochschule Konstanz

C Grundtypen: void

 Variablen-Definition:

entfällt — es gibt keine Variablen vom Typ void

 Wert:

entfällt

 Platzbedarf:

entfällt — sizeof-Operator auf void nicht anwendbar

Verwendung des Typs void:

 zur Definition abgeleiteter Typen

void* Zeiger auf "irgendwas" (allgemeinster Zeigertyp)

 bei Funktions-Definitionen

void f(void); Funktion ohne Rückgabewert und ohne Parameter

Prof. Dr. H. Drachenfels Systemprogrammierung 2-21

Hochschule Konstanz

C Grundtypen: Vergleich mit Java

Grundtypen und Schreibweise der Variablendefinition sind in C und Java sehr ähnlich

Wichtige Unterschiede:

 in C gibt es zwar seit C99 einen Typ _Bool (bzw. bool),

Ergebnistyp der Vergleichsoperatoren ist aber weiterhin int

 in C gibt es ganze Zahlen ohne Vorzeichen

 in C lassen sich Platzbedarf und Speicheradresse von Variablen mit Operatoren
sizeof bzw. & ermitteln

 in C sind Platzbedarf und damit Wertebereiche der Zahltypen plattformabhängig

Prof. Dr. H. Drachenfels Systemprogrammierung 2-22

Hochschule Konstanz

C Grundtypen: Empfehlungen

 in der Regel die Grundtypen char, int, double verwenden, die übrigen

Varianten nur mit zwingendem Grund

Als oft bessere Alternative zu den ganzzahligen Grundtypen gibt es in der
Standardbibliothek Typnamen mit garantierten Zahlbereichen int32_t, int64_t usw.,
die der Compiler plattformabhängig auf die Grundtypen abbildet.

 Zusatz const verwenden, wenn eine Variable ihren Wert nach der Initialisierung

nicht mehr ändern soll:

const double pi = 3.14159265358979323846;

 Achtung - die Mischung unterschiedlich großer Zahltypen sowie von Zahltypen
mit und ohne Vorzeichen kann zu überraschenden Ergebnissen führen:

 double x = 8.5 + 1 / 2; // setzt x auf 8.5 statt 9

unsigned a = 1;

int b = -2;

if (a + b > 0) ... // Summe ist 4 294 967 295 statt -1

Hinweis
Notiz
Die Version mit symbolischem Namen PI von Folie 2-9 ist besserer C-Stil.

Hinweis
Notiz
Die Zahl 429496295 stimmt natürlich nur für Rechner, auf denen unsigned int einen Platzbedarf von 4 Byte hat.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-23

Hochschule Konstanz

C Abgeleitete Typen: Zeiger (1)

Zu jedem Typ kann ein Zeigertyp (Pointertyp) abgeleitet werden, indem man

in der Variablen-Definition einen Stern  vor den Variablen-Namen schreibt.

 Variablen-Definition: Typ Name = Wert;

Typ Zeigername_1 = &Name;

Typ Zeigername_2 = &Zeigername_1;

 Wert:
Die Adresse eines Speicherbereichs (Wert 0 bedeutet, der Zeiger zeigt nirgendwohin)

 Platzbedarf je nach Rechner bzw. Compiler:

sizeof (int)  sizeof (Typ ) typisch: 8 Byte

 Grafische Darstellung:

Zeigername_2 Zeigername_1 Name

& Zeigername_1 & Name Wert

Pfeile stehen für Adresswerte

Kästchen stehen für
Speicherbereiche

Hinweis
Notiz
Schauen Sie sich dazu das Beispielprogramm auf Folie 2-27 an, das Sie auch als pointervar.c auf der Webseite finden.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-24

Hochschule Konstanz

C Abgeleitete Typen: Zeiger (2)

 Zeiger auf konstanten Wert:

const Typ Name = Wert;

Typ Zeigername = &Name; // Fehler

const Typ Zeigername = &Name;

 konstanter Zeiger:

Typ Name = Wert;

Typ  const Zeigername = &Name;

 konstanter Zeiger auf konstanten Wert:

const Typ  const Zeigername = &Name;

 Inhaltsoperator  macht vom Zeiger adressierten Speicherbereich zugreifbar:

 Zeigername Achtung: Programm-Absturz, wenn der Zeiger den Wert 0 hat

Inhaltsoperator ist Gegenstück zum Adressoperator:

 &Name ist das gleiche wie Name

Der Wert einer Konstanten kann
auch auf dem Umweg über Zeiger
nicht geändert werden.

Ein konstanter Zeiger zeigt
während des ganzen Programmlaufs
auf denselben Speicherbereich.

Hinweis
Notiz
Zu dieser Folie finden Sie Beispielprogramme constpointer.c und iptrptr.c auf der Webseite.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-25

Hochschule Konstanz

C Abgeleitete Typen: Zeiger (3)

void-Pointer

 Variablen-Definition: Typ Name = Wert;

void void_pointer = &Name;

 Wert:
Adresse eines Speicherbereichs beliebigen Typs (aber Inhalt nicht zugreifbar)

 Platzbedarf:
wie andere Zeiger auch

 Typecast-Operator (T) wandelt einen void-Pointer in einen konkreten Pointer:

Typ typ_pointer = (Typ ) void_pointer;

Der explizite Downcast (Typ*) darf bei einem void-Pointer auch weggelassen werden.
Der Compiler fügt ihn dann implizit ein.

Achtung: Zeigt der void-Pointer nicht auf einen Speicherbereich des Zieltyps,
kommt es zu Laufzeitfehlern durch Fehlinterpretation des Speicherinhalts.

Hinweis
Notiz
Zu dieser Folie finden Sie ein Beispielprogamm voidpointer.c auf der Webseite.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-26

Hochschule Konstanz

C Abgeleitete Typen: Zeiger (4)

Verwendung von Zeigern z.B. bei dynamischer Spreicherverwaltung:

 die Funktion malloc reserviert Speicher für Werte eines Typs und liefert die
Adresse des Speicherbereichs:

Typ Zeigername = (Typ*) malloc(sizeof (Typ));
if (Zeigername == NULL)
{

 ... // Fehlerbehandlung

}

Achtung: malloc reserviert nur Speicher, initialisiert ihn aber nicht

 mit der Funktion free kann (und sollte!) per malloc reservierter Speicher
irgendwann wieder freigegeben werden:

 free(Zeigername);

Anzahl benötigte Bytes

malloc hat Rückgabetyp void*

malloc liefert die ungültige Adresse 0 (in C als NULL geschrieben),
wenn die angeforderte Menge Speicher nicht verfügbar ist.

#include <stdlib.h> erforderlich,
damit malloc und free bekannt sind

Hinweis
Notiz
Zu dieser Folie finden Sie ein Beispielprogramm nameadresse.c auf der Webseite.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-27

Hochschule Konstanz

Beispielprogramm Zeiger-Variable

 Quellcode:

#include <stdio.h>

int main(void)
{
 int n = 3082;
 int *p = &n;

 // print pointer value
 printf("p = %p\n", (void*) p);

 // print pointer address
 printf("&p = %p\n", (void*) &p);

 // print pointer size
 printf("sizeof p = %zu\n", sizeof p);

 // print dereferenced pointer value
 printf("*p = %d\n", *p);

 return 0;
}

Konsolenausgabe
des Programms:

p = 0x7fffcea7d8ec
&p = 0x7fffcea7d8e0
sizeof p = 8
*p = 3082

Hinweis
Notiz
Das Beispielprogramm finden Sie auch als pointervar.c auf der Webseite.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-28

Hochschule Konstanz

C Abgeleitete Typen: Arrays (1)

Zu jedem Typ kann ein Arraytyp abgeleitet werden, indem man in der Variablen-
Definition eine Arraygröße in Klammern [] angibt.

 Variablen-Definition: Typ Arrayname[Arraygröße] = {Wert_1, Wert_2, ...};

Die Arraygröße muss ein ganzzahliges Literal sein (oder eine symbolischer Name dafür).
Die Arraygröße kann entfallen, wenn eine Initialisierung angegeben ist.

 Wert: Folge von Werten gleichen Typs

 (Zugriff nur elementweise mit Indexoperator)

 Platzbedarf: sizeof Arrayname  Arraygröße  sizeof (Typ)

 Grafische Darstellung: Arrayname[]

[0] = Wert_1

[1] = Wert_2

 :

[Arraygröße - 1] = Wert_N

Anmerkung
Notiz
Das Array enthält in C anders als in Java keine Variable length. Weil der Speicherplatz für das Array per Variablendefinition reserviert wird, muss außerdem die Arraygröße bereits zur Übersetzungszeit feststehen, also ein Literal sein.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-29

Hochschule Konstanz

C Abgeleitete Typen: Arrays (2)

 Indexoperator [] macht die Array-Elemente zugreifbar:

Arrayname[Index]

Der Index muss ganzzahlig sein und zwischen 0 und Arraygröße - 1 liegen.
Indices außerhalb dieses Bereichs führen zu undefinierten Laufzeitfehlern!

der Arrayname ohne [] ist Kurzschreibweise für die Adresse des ersten Arrayelements:

Arrayname ist das gleiche wie &Arrayname[0]

Der Arrayname ist also keine Name für den Speicherbereich des Arrays,
sondern ein Name für die Anfangsadresse des Arrays!

 der Indexoperator ist Kurzschreibweise für Inhaltsoperator und Zeigerarithmetik:

Typ Zeigername = ...

Zeigername[Index] ist das gleiche wie (Zeigername + Index)

Zeigerarithmetik arbeitet mit der Einheit sizeof (Typ):

Zeigername + Index bedeutet Adresse + Index  sizeof (Typ)

Erläuterung
Notiz
Weil im Array die Anzahl der Elemente nicht gespeichert ist, kann der Index beim Zugriff nicht automatisch geprüft werden. Es ist ein gefürchteter Fehler in C-Programmen, dass mit falschen Indices wild im Hauptspeicher herumgelesen und -geschreiben wird.

Anmerkung
Notiz
Dass mit Adressen gerechnet werden kann, ist ein zentrales Konzept von C. Man braucht das z.B. auch, wenn man eine Speicherverwaltung programmiert. In Java geht so etwas nicht.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-30

Hochschule Konstanz

C Abgeleitete Typen: Arrays (3)

Arrays und dynamischer Spreicherverwaltung:

 die Funktion calloc reserviert Speicher für ein Array von Werten eines Typs und
liefert die Adresse des Speicherbereichs:

Typ Zeigername = (Typ*) calloc(Arraygröße, sizeof (Typ));
if (Zeigername == NULL)
{

 ... // Fehlerbehandlung

}

 calloc initialisiert den reservierten Speicher mit 0

wird die Initialisierung nicht gebraucht, kann malloc verwendet werden:
Typ Zeigername = (Typ*) malloc(Arraygröße * sizeof (Typ));

 Speicher auch bei calloc mit free wieder freigegeben:

free(Zeigername);

Anmerkung
Notiz
Es gibt in C keinen Unterschied zwischen einem Zeiger auf einen einzelnen Wert und einem Zeiger auf ein Array von Werten.

Erläuterung
Notiz
calloc liefert die Adresse 0 (symbolischer Name NULL), wenn nicht genug Speicher für das Array vorhanden ist. Um Programmabstürze wegen Zugriff auf die illegale Adresse 0 zu verhindern, muss der Rückgabewert deshalb immer geprüft werden.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-31

Hochschule Konstanz

Beispielprogramm Array-Variable

 Quellcode:

#include <stdio.h>

int main(void)
{
 int a[] = {3421, 3442, 3635, 3814};
 const int n = (int)(sizeof a / sizeof (int));

 // print array values and addresses
 printf("&a = %p, &a + 1 = %p\n", (void*) &a, (void*) (&a + 1));
 printf("a = %p, a + 1 = %p\n", (void*) a, (void*) (a + 1));

 for (int i = 0; i < n; ++i)
 {
 printf("%d: %p %d\n", i, (void*) &a[i], a[i]);
 }

 // print array size
 printf("sizeof a = %zu\n", sizeof a);

 return 0;
}

Was gibt das Programm auf der Konsole aus?

Hinweis
Notiz
Das Beispielprogramm finden Sie auch als arrayvar.c auf der Webseite, ergänzt um ein Speicherbild.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-32

Hochschule Konstanz

Beispielprogramm Array-Zeiger (1)

 Quellcode:

#include <stdio.h>
#include <stdlib.h> // calloc, malloc, free, ...
#include <stddef.h> // NULL, size_t, ...

int main(void)
{
 const int n = 4;
 int *a = (int*) calloc((size_t) n, sizeof (int));
 if (a == NULL)
 {
 printf("Speicherreservierung fehlgeschlagen!\n");
 return 1;
 }

 a[0] = 3421;
 a[1] = 3442;
 a[2] = 3635;
 a[3] = 3814;

oder ohne Initialisierung mit 0:
int *a = (int*) malloc(n * sizeof (int));

Hinweis
Notiz
Das Beispielprogramm finden Sie auch als arraypointer.c auf der Webseite.
Es ist das gleiche Programm wie arrayvar.c, nur liegt das Array hier auf dem Heap statt auf dem Stack und wird über eine Zeigervariable verwendet, statt über eine Arrayvariable. Deshalb muss die Arraygröße hier auch nicht unbedingt zur Übersetzungszeit feststehen.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-33

Hochschule Konstanz

Beispielprogramm Array-Zeiger (2)

 Fortsetzung Quellcode:

 ...

 // print array values and addresses
 printf("&a = %p\n", (void*) &a);
 printf("a = %p\n", (void*) a);

 for (int i = 0; i < n; ++i)
 {
 printf("%d: %p %d\n", i, (void*) &a[i], a[i]);
 }

 // print array size
 printf("sizeof a = %zu\n", sizeof a); // pointer size
 printf("%d * sizeof *a = %zu\n", n, n * sizeof *a);

 free(a);

 return 0;

}

Prof. Dr. H. Drachenfels Systemprogrammierung 2-34

Hochschule Konstanz

C Abgeleitete Typen: String (1)

Ein String ist ein Array von Einzelzeichen mit '\0' als letztem Zeichen.
Strings werden über Zeiger-Variablen benutzt.

 Variablen-Definition: const char s = "Hallo";

 Wert: Anfangsadresse eines Strings (d.h. die Adresse seines ersten Zeichens)

 Platzbedarf: sizeof "Hallo"  6 (Anzahl Zeichen incl. '\0')

 sizeof s  sizeof (char)

 Grafische Darstellung:

oder einfacher:

s [0] = 'H'

 [1] = 'a'

 [2] = 'l'

 [3] = 'l'

 [4] = 'o'

 [5] = '\0'

s
 "Hallo"

Zeichen '\0'
dient in C als
Endemarkierung
von Strings

const, weil
String-Literal
nicht änderbar!

Erläuterung
Notiz
Es gibt in C anders als in Java keinen benutzerdefinierten Typ String in der Bibliothek. Man muss sich mit Arrays von Zeichen behelfen. Und weil in Arrays nicht vermerkt ist, wie viele Elemente sie haben, verwendet man den Zeichncode 0, um das Stringende zu markieren.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-35

Hochschule Konstanz

C Abgeleitete Typen: String (2)

String-Literale sind als Array-Initialisierer verwendbar

 Variablen-Definition: char s[] = "Hallo";

Kurzschreibweise für:
char s[] = {'H', 'a', 'l', 'l', 'o', '\0'};

 Wert: Folge der Zeichen (Kopie des String-Literals einschließlich '\0')

 Platzbedarf: sizeof s  6 (Anzahl Zeichen einschl. '\0')

 Grafische Darstellung: s[]
[0] = 'H'

[1] = 'a'

[2] = 'l'

[3] = 'l'

[4] = 'o'

[5] = '\0'

Prof. Dr. H. Drachenfels Systemprogrammierung 2-36

Hochschule Konstanz

C Abgeleitete Typen: String (3)

 Manipulation von C-Strings mit Bibliotheks-Funktionen:

char strcpy(char s1, const char s2);

kopiert den String s2 in den Speicherbereich s1 und liefert s1 als Rückgabewert

char strcat(char s1, const char s2);

hängt den String s2 an den String s1 an und liefert s1 als Rückgabewert

int strcmp(const char s1, const char s2);

Vergleicht die Strings s1 und s2 und liefert 0, wenn die Strings gleich sind,
eine Zahl größer 0 bei s1 > s2 bzw. eine Zahl kleiner 0 bei s1 < s2

size_t strlen(const char s);

liefert die Länge des Strings s ohne '\0' als Wert vom Typ size_t
 size_t steht für einen ganzzahligen Typ ohne Vorzeichen (i.d.R. unsigned long)

... // noch einige weitere str-Funktionen

Erläuterung
Notiz
Es gibt in der C-Bibliothek zwar keinen Typ String, aber es gibt Funktionen, die mit Arrays von Zeichen umgehen. Die Funktionen bekommen immer die Adresse des ersten Zeichens der Zeichenkette (= Anfangsadresse des Arrays) und erwarten, dass in dem Array ein String-Endezeichen '\0' enthalten ist. Fehlt das Zeichen, gehen die Funktionen im Hauptspeicher spazieren, bis sie irgendwo eine zufällige 0 finden oder abstürzen.

Anmerkung
Notiz
Das Verhalten kennen Sie von der Methode compareTo der Java-Klasse String.

Erläuterung
Notiz
Der String s2 wird nur gelesen. Deshalb ist der Zeiger s2 ein Zeiger auf konstantes Zeichen.
Achtung: strcpy reserviert keinen Speicher für die Kopie. Es muss vor dem Aufruf ein ausreichend großes Array für die Kopie reserviert werden. Die Adresse dieses Arrays wird als s1 übergeben.

Erläuterung
Notiz
Bei strcat muss das Array s1 bereits ein Stringende '\0' enthalten. Ab diesem Zeichen wird der String s2 in das Array s1 hineinkopiert. Das Array s1 muss so groß sein, dass ab dem ursprünglichen '\0'-Zeichen noch ausreichend Platz für den String s2 inklusive Stringende ist.

Erläuterung
Notiz
Die Abfrage der Stringlänge ist in C relativ teuer, denn es muss mit einer Schleife nach dem '\0'-Zeichen im Array s gesucht werden.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-37

Hochschule Konstanz

Beispielprogramm String-Variablen (1)

 Quellcode:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(void)
{
 char a[] = "halli";
 const char *s = "hallo";
 char *t = NULL;

 // compare, copy and concatenate strings
 if (strcmp(a, s) < 0)
 {
 t = (char*) malloc(sizeof a + strlen(s));
 if (t == NULL) ... // error handling

 strcat(strcpy(t, a), s); // or: strcpy(t, a); strcat(t, s);
 }
 ...

strcpy und strcat
allokieren keinen Speicher

deshalb zuerst mit malloc
genug Speicher reservieren

Was gibt das Programm auf der Konsole aus?

damit die strxxx-Funktionen bekannt sind

Hinweis
Notiz
Das Programm finden Sie auch als stringvar.c auf der Webseite, dort natürlich mit vollständiger Fehlerbehandlung.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-38

Hochschule Konstanz

Beispielprogramm String-Variablen (2)

 Fortsetzung Quellcode:

 ...

 // print string values and addresses
 printf("a = %p %s\ns = %p %s\nt = %p %s\n",
 (void*) a, a, (void*) s, s, (void*) t, t);

 printf("sizeof a = %zu\n", sizeof a); // 6
 printf("sizeof s = %zu\n", sizeof s); // 4 bzw. 8
 printf("sizeof t = %zu\n", sizeof t); // 4 bzw. 8

 printf("strlen(a) = %zu\n", strlen(a)); // 5
 printf("strlen(s) = %zu\n", strlen(s)); // 5
 printf("strlen(t) = %zu\n", strlen(t)); // 10

 s = a; // copies the address, not the string
 // a = s; // syntax error

 free(t);

 return 0;
}

Prof. Dr. H. Drachenfels Systemprogrammierung 2-39

Hochschule Konstanz

C Abgeleitete Typen: Array von Arrays

Mehrdimensionales Array am Beispiel einer 2x3-Matrix

 Variablen-Definition: int matrix[][3] = {{10, 11, 12}, {20, 21, 22}};

 Wert: zeilenweise Folge der Matrix-Elemente

 (Zugriff nur elementweise mit Indizierungs-Operatoren)

 Platzbedarf: sizeof matrix  2 * 3 * sizeof (int)

 Indizierung: matrix[i][j]  (*(matrix + i) + j)

 Grafische Darstellung:

1. Zeile

2. Zeile

matrix[][]

 [0] [0] = 10

[1] = 11

[2] = 12

 [1] [0] = 20

[1] = 21

[2] = 22

Recheneinheit
sizeof (int)

Recheneinheit
sizeof (int[3])

Hinweis
Notiz
Sehen Sie sich dazu auch das Programm matrixvar.c auf der Webseite an.
Das Konzept der ineinander verschachtelten Arrays gibt es so in Java nicht, weil Arrays in Java Referenztypen sind, Arrays also auf dem Heap allokiert werden müssen und nur über Referenzen (= Zeiger in C) zugreifbar sind.

Erläuterung
Notiz
matrix ist ein Array mit 2 Elementen. Jedes dieser beiden Element ist wiederum eine Array von 3 ganzen Zahlen (rot hervorgehoben).

Prof. Dr. H. Drachenfels Systemprogrammierung 2-40

Hochschule Konstanz

Beispielprogramm Matrix-Zeiger (1)

 Quellcode:

#include <stdio.h>
#include <stdlib.h>

#define M 3 // number of columns

int main(void)
{
 // allocate and initialize memory for 2x3 matrix
 const int n = 2; // number of lines
 int (*matrix)[M] = (int(*)[M]) malloc(n * sizeof (int[M]));
 if (matrix == NULL) ... // error handling

 matrix[0][0] = 10;
 matrix[0][1] = 11;
 matrix[0][2] = 12;
 matrix[1][0] = 20;
 matrix[1][1] = 21;
 matrix[1][2] = 22;

 ...

Spaltenanzahl muss bereits zur
Übersetzungszeit feststehen!

 [0] [0] = 10
[1] = 11

[2] = 12

 [1] [0] = 20
[1] = 21

[2] = 22

matrix

Hinweis
Notiz
Das Programm finden Sie auch als matrixpointer.c auf der Webseite, dort natürlich mir vollständiger Fehlerbehandlung.

Anmerkung
Notiz
Die Matrix aus matrixvar.c wird hier auf dem Heap statt auf dem Stack angelegt. Der Typ des Zeigers matrix und die zugehörige Typanpassung sehen schlimmer aus als sie sind. Die Adresse eines Arrays ist die Adresse des ersten Arrayelements und das erste Arrayelement ist halt ein Array mit M int-Werten.

Erläuterung
Notiz
Die Spaltenzahl geht in die Recheneinheit beim Arrayzugriff ein (siehe Folie 2-39) und muss deshalb zur Übersetzungszeit feststehen. Das macht diese Art von Matrizen sehr unflexibel. Eine flexiblere Lösung finden Sie ab Folie 2-42.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-41

Hochschule Konstanz

Beispielprogramm Matrix-Zeiger (2)

 Fortsetzung Quellcode:
 ...
 // print matrix addresses and values
 printf("&matrix = %p\n", (void*) &matrix);
 printf("matrix = %p\n", (void*) matrix);
 for (int i = 0; i < n; ++i)
 {
 printf("[%d] %p: %p\n", i, (void*) &matrix[i], (void*) matrix[i]);
 for (int j = 0; j < M; ++j)
 {
 printf(" [%d] %p: %d\n", j, (void*) &matrix[i][j], matrix[i][j]);
 }
 }

 // print matrix size
 printf("sizeof matrix = %zu\n", sizeof matrix);
 printf("%d * sizeof *matrix = %zu\n", n, n * sizeof *matrix);

 free(matrix);
 return 0;
}

Aufgabe
Notiz
Lassen Sie das Programm laufen und erstellen Sie anhand der ausgegebenen Adressen ein Speicherbild.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-42

Hochschule Konstanz

C Abgeleitete Typen: Array von Zeigern

Array von Zeigern am Beispiel einer 2x3-Matrix

 Variablen-Definition: int line_0[] = {10, 11, 12};

int line_1[] = {20, 21, 22};

int matrix[] = {line_0, line_1};

 Wert: Folge von Zeilen-Adressen

 Platzbedarf: sizeof matrix  2  sizeof (int)

 Indizierung: matrix[i][j]  ((matrix + i) + j)

 Grafische Darstellung: line_0[]

matrix[] [0] = 10

[0] = line_0 [1] = 11

[1] = line_1 [2] = 12

 line_1[]

 [0] = 20

 [1] = 21

 [2] = 22

Recheneinheit
sizeof (int)

Recheneinheit
sizeof (int*)

Anmerkung
Notiz
Diese Art der Speicherung einer 2x3- Matrix in drei Speicherbereichen kenne Sie von Java.

Anmerkung
Notiz
Im Array matrix stehen jetzt die Adressen der Zeilen und nicht mehr die Zeilen selbst.

Erläuterung
Notiz
Anders als auf Folie 2-39 geht hier die Spaltenanzahl der Matrix nicht mehr in die Recheneinheit ein.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-43

Hochschule Konstanz

Beispielprogramm Matrix-Doppelzeiger (1)

 Quellcode:

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 // allocate and initialize memory for 2x3-matrix
 const int n = 2; // number of lines
 const int m = 3; // number of columns
 int **matrix = (int**) malloc(n * sizeof (int*));
 if (matrix == NULL) ... // error handling

 for (int i = 0; i < n; ++i)
 {
 matrix[i] = (int*) malloc(m * sizeof (int));
 if (matrix[i] == NULL) ... // error handling

 }

 ...

sowohl Zeilen- als auch Spaltenanzahl
brauchen erst zur Laufzeit festzustehen

Erläuterung
Notiz
Dieses Programm finden Sie auch als matrixpointerpointer.c auf der Webseite.

Anmerkung
Notiz
Der Typ der Variablen matrix ist hier einfacher als in matrixpointer.c. Sie brauchen einfach so viele Sterne, wie die Matrix Dimensionen hat.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-44

Hochschule Konstanz

Beispielprogramm Matrix-Doppelzeiger (2)

 Fortsetzung Quellcode:

 ...

 matrix[0][0] = 10;
 ...
 matrix[1][2] = 22;

 // print matrix addresses and values

 ...

 // free matrix memory
 for (int i = 0; i < n; ++i)
 {
 free(matrix[i]);

 }

 free(matrix);

 return 0;
}

wie Array von Arrays (Folie 2-40)

wie Array von Arrays (Folie 2-41),
aber Variable m statt symbolische
Konstante M

Aufgabe
Notiz
Erstellen Sie analog zu Folie 2-40 auch hier ein Speicherbild.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-45

Hochschule Konstanz

C Abgeleitete Typen: Vergleich mit Java

Bei abgeleiteten Typen kaum Gemeinsamkeiten zwischen C und Java:

 C Zeiger bieten sehr viel mehr Möglichkeiten als Java Referenzen

in Java nur Referenzen auf Objekte im Heap

in C Zeiger auf jeden beliebigen Speicherbereich, auch auf dem Stack

 C kennt keinen echten Array-Typ

der Indexoperator ist nur eine Kurzschreibweise für Adressarithmetik
und kann auf jede beliebige Adresse angewendet werden

die Arraylänge wird nicht im Array hinterlegt,
deshalb beim Arrayzugriff keine automatische Überwachung der Indexgrenzen

in Java Arrays nur im Heap, in C auch auf dem Stack

Arrays von Arrays gibt es in Java nicht

 C kennt keinen echten String-Typ

nur Arrays von Zeichen mit ungültigem Zeichen '\0' als Endemarkierung

Prof. Dr. H. Drachenfels Systemprogrammierung 2-46

Hochschule Konstanz

C Abgeleitete Typen: Empfehlungen

 Zeiger-Typen sind ein zentrales Konzept von C

 Array-Typen sind verkappte Verwandte der Zeiger

der Name einer Array-Variablen ist kein Name für einen Speicherbereich,
sondern ein Name für die Adresse eines Speicherbereichs

an Stelle von Array-Variablen besser Zeiger auf mit calloc bzw. malloc
dynamisch reservierten Speicher verwenden (free nicht vergessen!)

an Stelle der Arrays von Arrays besser Arrays von Zeigern verwenden

 Strings sind Arrays von Einzelzeichen

Speicherreservierung per Array-Variable (vermeiden) oder dynamisch per malloc (besser)

beim Speicherplatzbedarf das abschließende '\0'-Zeichen nicht vergessen!

Prof. Dr. H. Drachenfels Systemprogrammierung 2-47

Hochschule Konstanz

C Benutzerdefinierte Typen: enum

Eine Aufzählung (Enumeration) definiert Namen für int-Literale.

 Typ-Deklaration: enum Enumname
 {

 Enumerator_1 = Wert_1,
 Enumerator_2 = Wert_2,
 ...
 Enumerator_N = Wert_N
 };

 Variablen-Definition: enum Enumname Name = Enumerator;

 Wert: einer der Enumerator-Werte

Enumerator-Werte können überall verwendet werden,
wo int-Werte verwendet werden können.

 Platzbedarf: sizeof (enum Enumname)  sizeof (int)

Die Angabe der
Enumerator-Werte
ist optional.

Default-Wert für den
ersten Enumerator ist 0,
für die anderen der
Vorgängerwert plus 1.

Vorsicht:
die Namen der
Enumeratoren
sind nicht lokal
zur Typdeklaration!

Anmerkung
Notiz
Das enum-Konzept ist sehr viel primitiver als in Java.

Anmerkung
Notiz
Das Keyword enum gehört bei C mit zum Typnamen.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-48

Hochschule Konstanz

Beispielprogramm enum-Variable

 Quellcode:

#include <stdio.h>

enum month {jan = 1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec};

int main(void)
{
 // enum month m = 3; // funktioniert bei C, aber nicht bei C++
 enum month m = mar;

 // print variable value
 printf("m = %d\n", m);

 // print variable address
 printf("&m = %p\n", (void*) &m);

 // print variable size
 printf("sizeof m = %zu\n", sizeof m);

 return 0;
}

Konsolenausgabe
des Programms:

m = 3
&m = 0x7fffeacafc6c
sizeof m = 4

Hinweis
Notiz
Dass Programm finden Sie als enumvar.c auf der Webseite.

Anmerkung
Notiz
Standardmäßig würde jan den Wert 0 bekommen, feb den Wert 1 usw. Wenn bei jan der Wert 1 vorgegeben wird, erhält feb den Wert 2 usw. Zur Laufzeit des Programms gibt es nur noch die Zahlenwerte. Deshalb wird die Variable aMonth unten mit %d ausgegeben und es erscheint die 3 auf auf dem Bildschirm und nicht der Name mar.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-49

Hochschule Konstanz

C Benutzerdefinierte Typen: struct (1)

Eine Struktur fasst Werte beliebiger Typen zusammen.

 Typ-Deklaration: struct Strukturname
 {
 Typ_1 Komponente_1;
 ...

 Typ_N Komponente_N;
 };

 Variablen-Definition: struct Strukturname Name = {Wert_1, ..., Wert_N};

 Wert: Folge der Komponenten-Werte.

 Platzbedarf: sizeof (Typ_i)  sizeof (struct Strukturname)

 Grafische Darstellung:

i = 1

N



Name
Komponente_1 = Wert_1

:
Komponente_N = Wert_N

wegen Alignment der Komponenten

Anmerkung
Notiz
struct ist in C die primitive Vorstufe zu class in Java. Eine struct ist quasi eine Klasse mit lauter öffentlichen Instanzvariablen und ohne Methoden, insbesondere auch ohne Konstruktor.

Anmerkung
Notiz
Achten Sie auf das Semikolon am Ende der struct-Deklaration. Es darf nicht fehlen.
Das Keyword struct gehört wie bei der enum mit zum Typnamen.

Anmerkung
Notiz
Diese Initialisierung analog zum Array gibt es so in Java nicht. Bei Java-Klassen funktioniert die Initialisierung nur per Konstruktor.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-50

Hochschule Konstanz

C Benutzerdefinierte Typen: struct (2)

 Komponentenauswahl-Operatoren (Punkt und Pfeil):

Name.Komponente_1

Zeigername–>Komponente_1

 Adresse einer Komponente:

& Name . Komponente_1

& Zeigername–>Komponente_1

 Verkettete Strukturen enthalten einen Zeiger auf den eigenen Strukturtyp:

struct int_list
 {

 struct int_list next; // Verkettung
 int n;
 };

struct int_list last = {NULL, 10};
 struct int_list first = {&last, 20};

first

next =

n = 20

last

next = NULL

n = 10

Pfeil ist Kurzschreibweise für
(Zeigername).Komponente_1

Adresse der ersten Komponente
ist Adresse der Struktur insgesamt

Anmerkung
Notiz
In C kann man eine verkettete Liste auch mit Variablen auf dem Stack anlegen. Ist aber mehr ein Gag, als dass es nützlich ist.

Anmerkung
Notiz
Die Entsprechung zu Zeigername->Komponente in C ist in Java Objektreferenz.Komponente. Den Punkt-Operator von C gibt es in Java nicht, weil Klassen in Java strikt Referenz(=Zeiger)-Typen sind. Aus dem Punkt-Operator in Java wird also in C der Pfeil-Operator (= minus größer).

Prof. Dr. H. Drachenfels Systemprogrammierung 2-51

Hochschule Konstanz

Beispielprogramm struct-Variable

 Quellcode:

#include <stdio.h>

struct date
{
 int day;
 const char *month;
 int year;
};

...

...

int main(void)
{
 struct date d = {1, "September", 2000};

 // print variable value
 printf("%d. %s %d\n", d.day, d.month, d.year);

 // print variable address
 printf("&d = %p\n", (void*) &d);
 printf("&d.day = %p\n", (void*) &d.day);
 printf("&d.month = %p\n", (void*) &d.month);
 printf("&d.year = %p\n", (void*) &d.year);

 // print variable size
 printf("sizeof d = %zu\n", sizeof d);

 return 0;
}

Hinweis
Notiz
Das Programm finden Sie als structvar.c auf der Webseite.

Anmerkung
Notiz
Das Datum liegt als lokale Variable auf dem Stack. Bei Java geht das nicht.

Anmerkung
Notiz
Die Java-Entsprechung zum struct-Typs wäre

public final class Date {
 public int day;
 public String month;
 public int year;
}

Prof. Dr. H. Drachenfels Systemprogrammierung 2-52

Hochschule Konstanz

C Benutzerdefinierte Typen: union (1)

Eine Variante ist eine Struktur, bei der alle Komponenten dieselbe Adresse haben.

 Typ-Deklaration: union Unionname
 {
 Typ_1 Variante_1;
 ...

 Typ_N Variante_N;
 };

 Variablen-Definition: union Unionname Name = {Wert_1};

 Wert: der Wert einer der Varianten

 Platzbedarf: sizeof (union Unionname)  MAX sizeof (Type_i)

 Grafische Darstellung:

i = 1

N

zu einer Zeit kann
nur eine der Varianten
gespeichert sein

Name
Variante_1 = Wert_1

nur die erste Variante
kann initialisiert werden

Erläuterung
Notiz
In der union-Variablen kann entweder ein Wert der Variante_1 oder ein Wert der Variante_2 oder ... gespeichert werden. Die Variable belegt so viel Speicher, wie die größte Variante benötigt.

Hinweis
Notiz
Einen union-Typ gibt es in Java nicht. Er wird dort nicht gebraucht, weil es das viel mächtigere Konzept der Ober-/Unterklassen und Polymorphie gibt.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-53

Hochschule Konstanz

C Benutzerdefinierte Typen: union (2)

 Variantenauswahl-Operatoren (Punkt und Pfeil):

Name.Variante_2

Zeigername–>Variante_2

 anonyme Varianten:

enum int_or_string {type_int, type_string};

struct struct_with_union
 {

 enum int_or_string u_type;

 union
 {

 int i;

 char s;
 };

};

hier kein Unionname

struct struct_with_union x;

x.u_type = type_int;

x.i = 1;

x.u_type = type_string;

x.s = "Hallo";

hier kein Name (ab C11)

Erläuterung
Notiz
Das union-Konzept hebt im Prinzip die Typsicherheit von Variablen auf, weil eine union-Variable Werte verschiedener Typen aufnehmen kann und man der Variablen nicht ansieht, welcher Typ gerade gespeichert ist. Um dieses Problem zu umgehen, verwendet man union nur eingebettet in struct und ergänzt per enum eine Typinformation. Die union braucht dann keinen Namen.

Hinweis
Notiz
Sie finden das Beispiel auf dieser Folie als unionvar.c auf der Webseite.

Erläuterung
Notiz
Im Prinzip ist dies ein primitiver Ersatz für Klassenvererbung. struct_with_union ist die quasi eine abstrakte Oberklasse und in der union sind alle ihre Unterklassen aufgezählt. Der enum-Wert erlaubt eine instanceof-Abfrage wie in Java.

Erläuterung
Notiz
Beim lesenden Zugriff auf x muss immer erst u_type abgefragt werden, damit die richtige der beiden Varianten i oder s verwendet wird.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-54

Hochschule Konstanz

C Benutzerdefinierte Typen: typedef

Eine typedef-Deklaration definiert einen Aliasnamen für einen Typ.

 Deklaration: typedef Typname Aliasname;

 Variablen-Definition: Typname Name;

Aliasname Name;

 besonders nützlich bei enum-, struct und union-Typen:

struct date
{
 ...

};

typedef struct date date;

date d = {1, "September", 2000}; // statt struct date d ...

 Beispiel aus der C-Bibliothek: size_t (u.a. Ergebnistyp des sizeof-Operators)

size_t ist ein Aliasname für einen ganzzahligen Typ ohne Vorzeichen
(je nach Plattform z.B. unsigned long oder unsigned long long)

beide Definitionen
sind gleichwertig

date ist Aliasname für struct date
(gleicher Bezeichner für struct und Alias
 ist erlaubt und übliche Konvention)

Erläuterung
Notiz
Aliasnamen für Typen gibt es in Java nicht. Sie werden dort auch nicht gebraucht, weil die Typnamen einfacher sind und die Grundtypen plattformunabhängige fest definierte Eigenschaften haben.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-55

Hochschule Konstanz

C Benutzerdefinierte Typen: Vergleich mit Java

Bei den benutzerdefinierten Typen große Unterschiede zwischen C und Java:

 enum-Typen sind sehr viel primitiver realisiert als in Java

in C eigentlich nur eine nette Schreibweise für ganzzahlige Konstanten

 struct-Typen sind eine primitive Vorstufe der Java-Klassen

nur öffentliche Instanzvariablen

keine Methoden und Konstruktoren

keine Vererbung

auch Wert-Variablen möglich (in Java nur Speicherreservierung mit new)

 union-Typen gibt es in Java nicht

in Java wegen Vererbung und Polymorphie überflüssig

Prof. Dr. H. Drachenfels Systemprogrammierung 2-56

Hochschule Konstanz

C Benutzerdefinierte Typen: Empfehlungen

 enum-Typen sind nützlich für die Codierung nicht-numerischer Information.

Verarbeitung oft mit switch-Anweisungen

 struct-Typen sind das zentrale Konzept für benutzerdefinierte Typen

verkettete Strukturen sind oft ein guter Ersatz für Arrays

 union-Typen gefährden die Typsicherheit

vorzugsweise innerhalb eines struct-Typs als unbenannte Variante
zusammen mit einer Typ-Komponente verwenden

 typedef-Aliasnamen sind eine nützliche Schreibvereinfachung

können Programme änderungsfreundlicher und plattformunabhängiger machen

Erläuterung
Notiz
Der Zahlbereich der Grundtypen ist in C plattformabhängig. Der Typ long kann etwa 4 oder 8 Byte haben oder auf exotischen Plattformen noch etwas anderes. Das ist eine gefährliche Fehlerquelle in Programmen, die plattformübergreifend verwendetet werden sollen. Solche Programm sollten strikt mit Aliasnamen aus der Bibliothek programmiert werden: int32_t, int64_t, uint32_t, intmax_t usw. Diese Aliasnamen werden dann beim Übersetzen je nach Plattform automatisch auf die passenden Grundtypen abgebildet.

Prof. Dr. H. Drachenfels Systemprogrammierung 2-57

Hochschule Konstanz

C Daten: Index

#define 2-9

Adresse 2-12,2-13
Adressoperator 2-13
Alignment 2-13,2-48
Array 2-14,2-27 bis 2-32
Array von Arrays 2-38
Array von Zeigern 2-41
calloc 2-29
char 2-5,2-14,2-18,2-21

const 2-13,2-21

double 2-3,2-14,2-17,2-21

enum 2-14,2-46,2-47,2-54,2-55

float 2-3,2-14,2-17

free 2-25,2-29
Indexoperator 2-28
Inhaltsoperator 2-23,2-28

int 2-1,2-14 bis 2-16,2-21

Literal 2-1 bis 2-11
long 2-15,2-17

malloc 2-25
Pointer 2-22

short 2-15

signed 2-18

sizeof 2-13

size_t 2-53
strcat 2-35
strcmp 2-35
strcpy 2-35
strlen 2-35

struct 2-14,2-48 bis 2-50,2-54,2-55

symbolische Konstante 2-9
typedef 2-53,2-55

union 2-14,2-51,2-52,2-54,2-55

unsigned 2-15,2-18

Variable 2-12,2-13
void 2-14,2-19

Zeiger 2-14,2-22 bis 2-26
Zeigerarithmetik 2-28

