Using Quadtrees for Realtime Pathfinding in
Indoor Environments

Julian Hirt, Dominik Gauggel, Jens Hensler, Michael Blaich, and Oliver Bittel

University of Applied Sciences Konstanz, Germany
Laboratory for Mobile Robots
Brauneggerstr. 55 D-78462 Konstanz
{jhirt, gauggel, jhensler,mblaich,bittel}@htwg-konstanz.de
http://www.robotik.in.htwg-konstanz.de/

Abstract. During the last few years mobile robots got more and more
important to solve different tasks in outdoor and indoor environments. To
solve these tasks one very essential issue is to get from one point A to an-
other point B as fast as possible. To find the least expensive route to the
goal the pathfinding process needs a full state space information about
the environment. With this information we can use optimally efficient
algorithms like A* to find the route, but this might be very expensive on
memory usage and time response. therefore we need to use other data
structures to represent the whole information about the environment.
This paper shows how the usage of quadtrees improves performance in
terms of computation speed, memory requirements and path length.

1 Introduction

The Eurobot Challenge [1] is an international open mobile robotics contest which
is taking place every year. The task which the amateur teams have to handle
in 2010s challenge is to build a robot which collects virtual food on a 2m x
3m board. The robot has 90 seconds to collect as much food as possible while
another robot does the same on the same board. All the robots have to do so
completely autonomous. therefore we needed an algorithm which finds the best
path on the board between two points.

Pathfinding is a fundamental problem for mobile robots. No mobile robot
could work on almost any task without moving to another point in the envi-
ronment. therefore different algorithms exists which find good solutions to get
from one point A to another point B. This problem has been defined as the
problem finding a path linking two vertices of a graph [2]. There are currently
different algorithms to solve the pathfinding problem like the Wavefront or A*
algorithms. One of the most common solutions is to implement the A* search
algorithm [3]. This algorithm has been first described in 1968 and has been used
in many different ways. A* is optimally efficient for a certain heuristic. Yet, in
practice, pathfinding using A* might have huge problem with memory and time



2 Using Quadtrees for Realtime Pathfinding in Indoor Environments

requirements. This affects a mobile robot especially when routes have to be cal-
culated very frequently.

The navigation process for mobile robots can be separated into two levels -
global and local planning. The local planning is responsible for avoiding obstacles
[4], reacting to sensory data and driving towards a subgoal. This paper focuses
on combining the local and global navigation by using one map for both types.

The literature gives many different approaches to overcome the limitations
of the A* search algorithm. Frequent advices are changing the heuristic, like Eu-
clidean Distance or Manhattan Distance, caching parts of calculated routes or
especially changing the search space representation. The most promising aspect
is to change the underlying representation of the environment which is usually
a grid [5]. The complexity of the pathfinding process expands with the size of
the environment and their accuracy. For a higher accuracy more cells, which
represents a certain area, are needed. By discretizing the world, the computa-
tional complexity of pathplanning can be controlled by adjusting the cell sizes.
By enlarging the cells more space, which might not contain any obstacles or
impassable regions, gets lost for the mobile robot. What we need is a data struc-
ture which represents the environment as accurate as possible with the least
amount of nodes. So data structures with uniform cell sizes are not practical
for this situation. Efficiency in map representation can be obtained by the use
of quadtrees. In this paper we discuss our approach to solve the complexity of
the pathfinding process using the A* search algorithm by using quadtrees to
represent the environment of a mobile robot. We present our results of a path
planner used for the Eurobot contest.

2 Map Representation

The discretization of a world offers the possibility to control the complexity
of pathfinding algorithms as well as a flexible representation of regions which
contains obstacles or just impassable regions. The simplest representation of a
2D world is a regular grid of squares. They support random-access lookup for
any coordinates of a point in a map. To represent a world in a grid accurately
the size of cells have to be as small as possible. On the one hand we need this
accuracy to guarantee the quality of the solution path, but on the other hand
the number of cells boost the complexity of memory and time requirements.

2.1 Regular Grid

Using a regular grid means to divide the entire map into uniform sized squares.
Every square has four or eight neighbors, by adding the diagonal squares as well.
This means if a region consists of a certain number of squares but shares the same
information, it is still represented by the amount of squares. This represents the
world inefficiently because it makes the search process very expensive. Moreover,
a regular grid allows only eight angles which results in sudden direction changes.



Using Quadtrees for Realtime Pathfinding in Indoor Environments 3

It might be possible to straighten a path through a clear area but there is no
guarantee that this smooth path is the optimal path. How a map can be presented
in a regular grid is demonstrated in figure 1.

Fig. 1. A regular grid for a map which contains two obstacles. It consists of 144 uniform
cells.

2.2 Quadtree

To reduce the amount of squares to represent a world, we use a quadtree, which
is a different data structure to describe the map. Compared to a regular grid a
quadtree has no uniform sized cells. It subdivides the whole map into four equally
sized regions. If one of these new regions contains an obstacle it is subdivided
into four other regions as well. A region is recursively subdivided until a region
does not contain any obstacle or reaches a certain minimum size. Quadtrees
allow to represent a large clear area with one single cell. Instead of the regular
grid it describes a world efficiently but at the cost of quality. Paths generated
by quadtrees are suboptimal because they are constrained to use the centers of
the cells as shown in figure 2.



4 Using Quadtrees for Realtime Pathfinding in Indoor Environments

Fig. 2. A quadtree for a map which contains two obstacles. It consists of 26 cells.

3 Pathfinding in a Quadtree

In our first approach we implemented a regular A* search algorithm. With a
resolution of lem per pixel we represent our board by a regular grid with 60000
cells. Using this regular grid with an A* algorithm takes 0.75 seconds to calculate
a path from one corner to the opposite corner. During a match of 90 seconds we
have to drive to around 30 goals. Hence, 0.75s * 30 takes too much time to just
calculate the paths. Especially because the board is very dynamically. Obstacles
on the board can move and particularly the other robot might be a problem.
Our robot is driving with up to 1m/s. At this speed it is too dangerous to drive
0.75s while calculating a new path. therefore we implemented a quadtree in our
second solution to solve this problem.

To use a quadtree in our pathfinding process, we have to generate a quadtree
out of the regular grid every time we need to run the A* algorithm. It subdivides
the world into subregions until a region does not contain any other obstacles.
This reduced our amount of nodes enormously from 60000 down to 990. An
example for a calculated path between two corners is shown in 3. therefore we
tested the system as a Player [6] driver on our robot. Each of the green squares



Using Quadtrees for Realtime Pathfinding in Indoor Environments 5

represents one node in our quadtree. The violet lines show all squares which were
visited by the A* search algorithm. The actual path which was found by the A*
is the red line in figure 3. In order to use the quadtree for the local navigation
as well, we need to update our grid every time the map changes. Thus we have
to regenerate the quadtree to get a valid path for new goals.

3.1 Path Relaxation

As you can see the violet and red lines are from one center of a square to another
center. This might give us a suboptimal path which we optimized by using the
Split and Merge algorithm [7]. For the merge part of this algorithm we have to
have a look at the centers of three following squares (s1,s2,s3) which are used
in our path. If dist(s1,s3) is smaller than dist(s1/s2)+dist(s2/s3) we can merge
them if there is no obstacle on the way from s1/s3. This smoothens our path
and gives us a better path. This optimized path is shown in figure 3 as the cyan
line.

Fig. 3. Quadtree for calculated path between corners.

4 Experimental results

For the following results we used an Intel mainboard with an Atom 330 processor
(2x1.6GHz) and 2Gb memory. Instead of just running the A* search algorithm



6 Using Quadtrees for Realtime Pathfinding in Indoor Environments

on a regular grid, we need three different steps using a quadtree. The breakup
of the computation times is shown in table 1. The first step is to generate the
actual quadtree, which takes 97.5% of the process time. To find a path with
an A* algorithm needs only 2% which is about 0.0004s. This shows us the very
enormous improvement compared to a regular grid which needed 0.75s. To sim-
plify the resulting path takes another 0.0001s which is only 0.5% of the whole
process time. Compared to the regular grid the quadtree needs only 2.73% of
the time what we need to calculate the same path on a regular grid although we
have to do two more steps.

Part Time used %
Generate Quadtree 0.02s 97.5 %
A* 0.0004s 2.0 %
Split And Merge 0.0001s 0.5 %

Table 1. Breakdown of computation times using a quadtree.

Type of Representation Time used %
Regular Grid 0.75s 100 %
Quadtree 0.0205s 2.73 %

Table 2. Comparison of the computation speed between A* on a regular grid and a
quadtree.

Type of Representation Amount of nodes |%
Regular Grid 60000 100 %
Quadtree 990 1.65 %

Table 3. Comparison of the memory requirements between A* on a regular grid and
a quadtree.

5 Conclusion and future work

We have implemented a method for a pathfinding process on a 2m x 3m board
for a mobile robot. Our solutions combines the optimally efficient A* algorithm
with the quadtree. This gives us the possibility to find an almost optimal path



Using Quadtrees for Realtime Pathfinding in Indoor Environments 7

between two points in much shorter time than an A* in combination with a
regular grid. The quadtree data structure optimizes the representation of our
map by partitioning the map into non uniform sized cells. Although this might
not result in an optimal path, the savings in time and memory requirements are
way more significant. Even the time to generate a new quadtree does not affect
that.

Actually, we might be able to improve the efficiency of our algorithm in our
future work. It is not necessary to generate the whole new quadtree after the
map changed. It is possible to generate just the regions which were changed.
This might give us another huge improvement in the computation speed.
Another point would be to have a look at the framed quadtree [8]. We might
be able to replace our Split and Merge algorithm by implementing a framed
quadtree. With this technique we might be able to smoothen our resulting path
even more.

References

1. Sciences, E.P.: 02/27/2010. http://www.eurobot.org (2010)

2. Niewiadomski, R., Amaral, J., Holte, R.: A performance study of data layout tech-
niques for improving data locality in refinement-based pathfinding. The ACM Jour-
nal of Experimental Algorithmics (2004) 1-28

3. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics
(1968) 100-107

4. Kunchev, V., Jain, L., Ivancevic, V., Finn, A.: Path planning and obstacle avoid-
ance for autonomous mobile robots: A review. Lecture Notes in Computer Science,
Springer Verlag (2006)

5. Yap, P.: Grid-based path-finding. Lecture Notes in Computer Science, Springer
Verlag (2002)

6. Collett, T.H.J., MacDonald, B.A., Gerkey, B.: Player 2.0: Toward a practical robot
programming framework. In: Australasian Conference on Robotics and Automation,
Sydney (2005)

7. Thorpe, C.E.: Path relaxation: Path planning for a mobile robot. AAAI-84 Pro-
ceedings. (1984)

8. Yahja, A., Stentz, A., Singh, S., Brumitt, B.L.: Framed-quadtree path planning for
mobile robots operating in sparse environments. In: IEEE Conference on Robotics
and Automation (ICRA), Leuven, Belgium. (1998)



