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Abstract— This paper introduces autonomous sorting of mov-
ing coins via a robot as a multi-level task that supports the
principled study of robotics fundamentals including kinematics,
dynamics, perception, motion planning, controls, and optimiza-
tion based around a widely obtainable, standardized, low-cost
object (a coin). The paper also presents a demonstrated solution
to this in the form of the CHARM (Coin Handling Arm for
Robotics Mastery) robot, which addresses the autonomous coin
sorting problem using an economical kit made from commodity
computing hardware and three Dynamixel servomotors. From
a learning perspective, this problem facilitates interdisciplinary
practice across subject and grade levels with an algorithmic
foundation that is central to modern robotics. Evidence sup-
porting this approach is illustrated from case studies of student
projects and, in particular, the CHARM robot. Beyond practice
alone, by presenting a challenging (but manageable) research
problem, we found that the coin sorting task teaches robotics
in a principled way. Further, algorithmic complexity tiers the
problem to academic levels. While motivated by robotics educa-
tion, the (optimal) coin sorting problem may also be seen as an
archetype problem for manipulation/motion-planning research.
Thus, this also promotes a research foundation supporting later
research opportunities.

I. INTRODUCTION

Not only is robotics an increasingly prevalent and an im-
portant part of everyday life that captivates the imagination,
but it is an inherently fascinating subject. From US FIRST to
lunar rovers to new graduate programs in robotics, interest in
the subject has increased both popularly and academically.
This, in turn, has renewed interest in introductory robotics
courses, particularly at the mezzanine level.

From a learning perspective such courses offer an op-
portunity to introduce systems engineering concepts and to
integrate knowledge across multiple disciplines and topics.
From a teaching perspective, these courses attract highly
motived and engaged students due to the general enthusiasm
for the subject. While such excitement is helpful, the applied
nature and general expectation of robotics often implies
interest in new material and “modern” results. Compared
to the significant attention paid to curriculum and learning
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Fig. 1. The CHARM robot autonomously sorts coins randomly placed
on its turnable. The robot involves several algorithmic principles including
object recognition, kinematics/control, and motion planning in dynamic
environments

development within particular subdisciplines, the design and
emphasis for (introductory) robotics courses as a gestalt has
received less attention [1], [2]. In part, this is attributable to
the interdisciplinary and expanding nature of robotics, which
has grown from articulated serial kinematics chains to mobile
systems with integrated sensing and control. Both the breadth
of material and the (relatively) short course periods suggest
the need for a careful structuring of such courses [3].

Robotics laboratories spans the gamut from courses that
use robotics to support course topics to the entire art of
robotics. Thus, many robotics kits are focused on teaching
closely related subjects such as programming [4], dynamics
and controls [5], [6], and mechatronics [7] more so than
to the principles of robotics. Hence there is a need for
laboratory designs with a focus on algorithmic principles that
enables students to navigate robotics research results and to
apply these methods. We delineated the algorithmic areas in
robotics using the Robotics and Automation Society’s pro-
gram structure as a guide. From this we identified algorithmic
areas as motion planning, perception, kinematics, mapping,
machine learning, control, and systems.

The problem of autonomously sorting moving coins (see
Fig. 1) addresses the above impetus in a step-wise manner
that allows teams of students to study these principles at
increasing levels of complexity so as to match their level
of learning and engagement [8], [9]. While coin sorting
mechanisms abound, the sub-tasks involved present several
challenges including vision [10] and control [11], especially
for autonomous operations. More generally, the coin sorting
task has subproblems that involve each of the aforementioned
algorithmic areas — end-effector position placement, velocity
control (Jacobeans), object recognition, obstacle avoidance,
system identification, autonomous operation, and underactu-
ated (saturated) controls.



In this paper we also introduce a candidate system in
the form of the CHARM (Coin Handling Arm for Robotics
Mastery) robot (pictured in Fig. 1). It is a robotic platform
with a camera, robot arm and a workstation that allows
students to explore different topics of robotics and mecha-
tronics engineering such as computer vision, motion planning
and mechanics from elementary to advanced. An example
with novel motion planning, perception and kinematics is
demonstrated to highlight its educational capabilities.

The remainder of this paper is structured as follows. In
Sec. II, we detail the autonomous dynamic coin sorting
problem and show that it is, from an algorithmic perspective,
at least P-space hard. The design of the CHARM robot
and how it addresses these algorithmic aspects is detailed
in Sec. III. A discussion of this from algorithmic robotics
education perspective is in Sec. I'V.

II. THE COIN SORTING PROBLEM

The basic coin sorting problem is designed for mezzanine
(i.e., upper undergraduate and beginning graduate) students.
It is about moving coins to an appropriate bin, in the sense
that all coins in the same bin must be of the same type. We
add a twist to the problem to make it more interesting: the
coins are placed on a rotating table (to which there can also
be other objects/obstacles placed around it). Let us assume
we have n coins of k different types. Suppose each coin is
placed on top of a turning table that rotates with an angular
velocity (which is typically, but not necessarily, constant) and
suppose k empty bins are placed right outside of the turning
table (see Fig. 2). The goal is to move each coin from its
initial position to one of the bins, such that all coins inside
a bin belong to the same type. The problem ends when no
more coins are on the rotating table. The problem is solved
when it ends with all bins having the same type of coins.
To solve this problem, students were given three low-cost
motors and a camera.

This coin sorting problem spurs study in at least four
robotics areas:

1) Hardware design. At the very least, students must
be able to design and build a simple 3-DOF arm that
can push a coin. In addition, the basic coin sorting
problem teaches the trade-off between hardware design
and algorithmic difficulty. For instance, to solve the
problem, one can build an arbitrary shaker, which is
easy to built. However, such a shaker would make the
process error prone and stochastic, especially when the
shaker is controlled by imprecise, saturated motors (as
is sometimes the case with low-cost motors).

2) Perception. The system must be able to identify, dif-
ferentiate, and tracks multiple moving objects. While
coins might be a standard object, variations in light-
ing and coin wear/quality additionally highlight (and
teach) the challenges in developing robust sensing
techniques. Since the types of coins can be increased
easily, the coin sorting problem also teaches the chal-
lenges in scaling various vision and/or object classifi-
cation techniques.

3) Motion Planning. The motion planning component of
the coin sorting problem can be defined more generally
as follows. Given n closed and planar objects on
a 2D Euclidean plane, where all objects orbit with
the same constant angular velocity around a common
barycenter. Let g; C R? be the goal region of object-i
for i € [1,n], and let each goal region acts as a sink, in
the sense no object can leave the region. Suppose the
initial position of each object is known and is within a
finite distance from the barycenter. Then, we want to
find a continuous path that moves each object-i from
its initial position to its goal region g; (i € [1,n])
without colliding with any other object. This problem
is not just complex, it is at least PSPACE hard, as the
problem of motion planning with movable obstacles
where the obstacles must end at a pre-specified location
— a PSPACE hard problem — is a special case of the
above problem [12].

4) Estimation. The use of low-cost motors require stu-
dents to be able to estimate and filter out errors when
controlling the robot. Furthermore, to perform well,
students must also estimate the angular speed of the
turning table. Although this estimation can be done
easily by placing markers on the turn table, the ability
to identify the need for such estimation and the use
of such markers are skills that could come handy in
developing more complicated robotics system.

The aforementioned list is not fixed. Depending on the
systems design, some problems may be more prominent than
others, and additional problems may occur. Furthermore,
aside from varying levels of difficulty in each sub-field, the
coin sorting problem also provides the opportunity to study
the interplay between various aforementioned components,
such as between perception and motion-planning. That is,
for example, certain camera (sensor) placements may reduce
occlusions (simplifying perception), but may not allow as
encompassing a view (complicating planning/control).

The coin sorting problem can be extended or simplified
easily to better cater to various student and/or learning
requirements. For instance, it could be simplified by having
a stationary table and direct sensing of the target and its
location (e.g., augmenting the coin/object with a magnet for
easier detection and/or to incorporate switches, encoders, or
inductive sensors under the table to simplify object localiza-
tion). Control performance can be simplified, for example,
by providing larger bins (relative the the target size).

Similarly, the problem may be adapted to be more chal-
lenging or rigorous by considering variations of (algorithmic)
complexity. For instance:

o Adding 2.5D obstacles that moves on the rotating table

— This adds significant difficulty in perception, planning,
and estimation.

« Introducing adversity to the system (e.g., an opponent
that competes for the coins) — This would allow for the
incorporation of game theory and/or Al strategies.

« Having a time optimal solution — This is still an open
research problem.



III. CHARM ROBOT

The CHARM (Coin Handling Arm for Robotics Mastery)
robot is a coin sorting system whose novel feature is its
ability to slide coins on a turntable without ever colliding
other coins on the table. It is a candidate solution to the
Coing Sorting problem.

Its design demonstrates the features of an algorithmic
approach to in robotics laboratories. CHARMs different
hardware parts are shown in Fig. 2. The robot uses a
camera mounted on the top overlooking the workspace.
The workspace includes a spinning table with a number of
different coins to be sorted. The spinning table features a
marker made of three circles red, blue and green respectively.
The robot arm is made of three Dynamixel servomotors
(Robotis, Seoul, Korea) and is mounted to the side. This
arm touches the table using an extension that allows the arm
to slide the coins.

The arm is controlled by software on a PC. The software
which is written in C++ can be divided to three main
modules:

1) Detection and Classification,

2) Motion planning, and

3) Kinematics.

The detection and classification module uses OpenCV to
process image frames obtained from the camera and iden-
tify and locate coins. The motion planning and kinematics
module uses the findings of detection module to plan the
trajectory necessary to slide the coin to its respective bin
without colliding with the rest of the coins.

A. Robot Arm Kinematics and Dynamics

The robot arm consists of three Dynamixel servos at each
joint giving an RRR arm. Kinematically, the robot arm is
positioned in the plane of turn table. The third joint then
allows the arm to touch the coins and slide them (touch
down motion). For this reason, the kinematics analysis of
planar motion and touch down motion can be carried out
separately. In the kinematics analysis the coordinates were
chosen such that x — y represent the turn table coordinate
and z the normal axis as shown in Fig. 3. From Fig. 4, the
x — y plane forward kinematics equations are equivalent to
that of an RR arm:
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The inverse kinematics equations are derived using
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Fig. 2. Overall system layout of the CHARM robot showing the coins and
turntable radius (r) relative to bins and the camera and arm locations
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Fig. 4. Side (touch down) view of the CHARM kinematics

The touch down motion is along the z axis (see Fig. 4).
This motion requires the third joint to rotate a specific angle
so that the tip of the arm touches the surface of the table.
As this joint bends the tip of the arm, the radial distance of
the tip is affected. This is shown in the following analysis:
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In addition to positioning the arm and reaching the coins,
velocity control was critical to the correct operation of the
robot, as it would need to be able to intercept the moving
targets (i.e., the coins on turning table). To implement the
velocity control of the robot arm a trajectory with time
stamps at each point is generated by kinematics module
and each point is sent as a position command to the servo.
This method allowed an implicit setting of the velocity while
minimizing the communication between PC and servos.



B. Dynamics of the Turn Table

The turn table consists of a disk on a continuous rotation
Plolu servo. The turn table’s speed can be controlled via
a GUI based program on PC. It is also possible to write
programs to control the speed of the turn table if necessary.
The turn table forms the main part of the workspace with
the option to put targets or objects on the surface and use
the arm to manipulate those object. It also features special
markers that allow the camera detect the position, distance
and orientation of reference frame of the workspace. More
details are given in the next section.

C. Perception

The detection system uses a Lifecam Studio (Microsoft,
Redmond, Washington) in collaboration with the OpenCV
toolkit. The camera is mounted above the arm facing the
rotating turntable; this gives an oblique view of the table
surface which helps to avoid erroneous detection of spherical
or cylindrical objects which can be mistaken for coins when
viewing the table from directly above.

The coin detection algorithm uses edge detection and
ellipse fitting to detect elliptical shaped objects on the table
surface. Firstly the image is undistorted using pre-calculated
camera calibration parameters, and then a Canny edge de-
tector is used to find all edges in the scene. These edges are
subsequently turned into OpenCV contours (i.e., vectorized
edges), and then broken into individual curve segments based
on the change in curvature of the contours [13].

Then an ellipse is fitted to each curve based on the points
in that curve and the fitting error is calculated, any ellipses
with high errors are discarded. The remaining ellipses are
then consolidated by searching for and removing duplicates
(i.e., ellipses with very similar parameters).

The next step is identifying the turntable, this is done via
concentric circles printed on the table. Circular markers were
chosen as they can be detected using the same technique as
finding coins. The list of ellipses is searched for concentric
ellipses with relative sizes that match that of the centre table
marker, once that is found the three directional markers are
then identified using a similar concentric search with the
addition of colour sampling at the centre of the ellipse. Once
the turntables position relative to the camera is established a
mask can be employed to ignore any detected ellipses outside
the tables surface as well as ignoring ellipses that have a skew
different to that of the table surface. Any remaining ellipses
must be coins (or coin shaped objects) on the table.

The detected coins are then classified based on colour
and size. Colour classification uses a histogram of the coins
pixels in the YCbCr colour space and compares this to a
training set histogram for both gold and silver coins. The
match error for gold and silver is calculated using the Chi-
Square method provided by OpenCV and recorded. The real
world size of the ellipse is calculated using the distance to
the table (calculated from the tables markers) and the focal
length of the camera. This size is then compared to every
actual Australian coin size and the error squared is recorded
for each. The ellipses position relative to the rotating table

is then calculated and stored with all the calculated error
values.

This entire process is repeated for an arbitrary number of
frames, when new ellipses are detected their table position is
compared to previous ellipse table position to see if it is the
same coin as previous detected, if it is then its error values
can be collated with previous matches to that coin to provide
more data for classification. In this way classification can be
improved by allowing more frames (i.e., more data) to be
collected.

When sufficient frames have been captured (we used 20)
classification of the detected coins takes place; first ellipses
that have been detected in less than half the captured frames
are discarded as they are unlikely to be actual coins, then the
value of the remain coins are determined by finding the coin
type with the minimum combined colour and size error. We
found size to be a more accurately distinguishable feature
and as a result weighted its error values 3 times higher
than colour errors. Also note that at this point ellipses with
minimum match errors above a certain threshold were also
discarded as the confidence of the match was simply too low.

Figure 5 shows the results of the coin detection and
classification.

TOTAL COIN VALUE: $12.20
( 2350 28100 2x200 1360c 1341 Gx$2 )

Table Speed: 2.2378 (avg: 2.0168)

Processing time: 0.773432

Fig. 5. Coin detection and classification

D. Motion Planning

The motion planning problem can be described as multi-
goal motion planning in a known dynamic environment.
Although the coins act as moving obstacles, their path and
velocity can be estimated from the video camera input.

The first part of the problem is deciding the sequence in
which coins are sorted. This is similar to the classic travelling
salesman problem, except the possible paths between each
coin and its respective bin vary over time. To solve this, a
greedy approach was used where paths are found each coin
to its bin, and one path (the shortest) is chosen. The future
positions for the remaining coins is then estimated, and the
process is repeated until all coins are sorted.

The second part problem is the path finding for getting a
coin to the bin. The algorithm adopted was a grid-based A*
search, with straight-line distance to the goal as the heuristic.
This was chosen over probabilistic roadmap methods as it
is less computationally intensive. The grid is 3-dimensional,
consisting of x and y coordinates as well as time. The search
tree begins at the coin’s starting position and an estimated
start time. A bidirectional search is not possible as the time
of arrival at the goal is unknown until the path is found.



As each point is explored, the time at the point is estimated
based on the path length divided by end-effector velocity.
This time is then used to estimate the obstacle positions. A
simulation result of the generated search tree is shown in
Fig. 6. The points explored during path finding are shown as
green dots, and the positions of the obstacles over time are
shown as red circles.

Once the paths have been found, the planner sends the
trajectory, which consists of time-stamped coordinates, to the
arm controller which performs the inverse kinematics.

Fig. 6. A sample motion planning trajectory

IV. DISCUSSION — TOWARDS ALGORITHMIC ROBOTICS
EDUCATION

As demonstrated by the CHARM robot, the coin sorting
task presents several integrated challenges. While it is quite
feasible to solve the problem using Lego kits (as was done
by other student teams), the use of a similar (in price
and number of degrees of freedom) kit based on three
Dynamixels was more flexible, but is more complicated to
develop. The course and project were assessed using course
feedback surveys. Compared to the previous year the course
was administered, the course showed a slight increase in how
well the materials helped them with the learning (from 75%
of students in agreement to 91% of students in agreement).
Overall course marks are also high (4.81/5, with 100%
of students rating the course as satisfactory, the strongest
response for a class in the Mechatronics program).

A. Robotics to Support Related Studies

As a capstone subject, robotics integrates knowledge
across multiple disciplines and topics. This highly positive
and attractive characteristic makes it well suited to studying
systems engineering. From a teaching perspective, robotics
courses attract highly motived and engaged students due to
the general enthusiasm for the subject.

Robots have been found effective in engaging and reinforc-
ing student learning not only in robotics classes but also as

a general learning tool to help students understand physical
and mathematical concepts such as geometry and kinematics
[7]. Therefore it has been an apparent choice for teaching
robotics and mechatronics. In doing so, many instructors
have used LEGO Mindstorm as the preferred robotics kit
due to simplicity, reusability and ease of prototyping [14].
These kits have allowed instructors teach the concepts of
direct and inverse kinematics and computation of simple
arm trajectories. However limitations imposed by LEGO
Mindstorm software and interface have also been reported.
These limitations and the weakness of labs in teaching
robotic algorithms such as vision and motion planning seem
to correlate. Rosenblatt et al. [15] have reported, in designing
lab assignments for a robotics course in Carnegie Mellon
University, they used parts of LEGO Mindstorm kit in
combination with their assorted sensors and controllers to
let students come up with more creative solutions. However
the labs do not provide a unified problem and therefore each
requires different setup.

Other robotic kits such as Pendubot have allowed students
implement theories in the labs on one setup, but due to the
nature of the robots the topics become limited to specific
areas such as control and systems [16]. On the other hand,
mobile robots such as e-puc robot, Roomba and many others
have tried to provide one platform for learning different
robotics concepts in signal processing, control and distributed
intelligent systems [4]. However, these applications do not
form a well structured robotics problem and most of them do
not support computer vision. Moreover, taking into account
the number of kits needed for a (large) class, the workspace
and expense may become limitations.

B. Algorithmic Robotics Curriculum

Robotics, in particular algorithmic robotics, is a rapidly
developing field. Therefore, an algorithmic robotics class
must teach students the fundamental concepts and necessary
skills to understand and apply results from the state-of-the-
art. A metric for such learning outcome would be students’
ability to understand the digest of a major robotics confer-
ence (e.g., IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS)). The curriculum structure would
be based on the major science themes as identified in the
area and technical committee divisions that are used as part
of the editorial process at major conferences with care to
separate the technical (“science”) areas (e.g., control, per-
ception, learning, and planning) and application (“system’)
domains (e.g., medical and life sciences, industrial robotics
and automation, field robotics, etc.).

To achieve the above goal, learning should be focused
on the ideas and underlying concepts behind the methods,
rather than the methods per se. For example in motion
planning, it is possible to use a bevy of methods to solve
the problem of moving object - moving obstacle problem,
including potential fields, rapidly exploring random tree
(RRT) methods, etc. However, instead of only exposing
students to such methods, we need to expose them to the
underlying principles and ideas, such that students not only



able to use these methods, but even more importantly, able
to use the methods appropriately, selecting the right method
for the right problem and understanding why the particular
method is appropriate.

C. Learning Goals

CHARM aims to provide a robotic platform that allows
undergraduate and postgraduate students explore different
concepts in engineering. This robot not only tries to ac-
commodate simple applications such as forward and inverse
kinematics but also tries to provide students with a platform
on which velocity control of robot arm is possible. This
enables students to conduct motion planning in dynamic
environment as opposed to environments with static targets
Computer vision utilities of the robot allow students to
practice perception, localization and velocity estimation of
targets on workspace. This opens up more possible areas for
students to explore.

The kinematic features of the robot arm along with com-
puter vision utility allow motion planning on up to a 7-
dimensional with moving targets on workspace. These strong
features of CHARM let students use this robot to explore
motion planning, vision and kinematics from elementary to
advanced. Therefore the most important goal in this project
is to provide students with a platform that does not involve
the limitations posed by other kits. The learning by doing
also allows for team projects allowing students from various
disciplines to work together and develop team work qualities
such as communication, collaboration and leadership.

V. CONCLUSION

The evolution of robotics and automation has resulted in
the growing significance of training and educating the future
engineers, researchers and technicians with a good grasp of
mechatronic systems. Many of the topics in this area can
be mastered through learning by doing. Robots are naturally
one of the main tools in teaching robotics and mechatronics
and they play an increasingly important role in education
from high school to postgraduate studies. Their application
does not stop at robotics education but also extends to other
areas such as mathematics and physics. For this reason
development of suitable robotic kits can prove to be very
useful for students interested in robotics.

In summary, the CHARM robot platform has been devel-
oped as an example of a flexible, yet systematic, learning
and research tool in the study of robotics concepts including
robot arm kinematics, motion planning, and computer vision.
The robot platform aims to alleviate the limitations in other
kits by providing velocity control in robot arm, computer
vision and testbed that allows for implementing motion
planning concepts in time varying environments with a very
good quality. Therefore we believe this robot platform will
serve as a more suitable learning tool for undergraduate and
postgraduate university students by allowing innovation and
learning by doing what is appropriate for university level
students.

In future work, the coin sorting problem can be extended
to consider the fully optimal time optimal solution for the
coin moving problem, or potentially the coin sorting problem
under sensor or actuator uncertainty.

REFERENCES

[1] J. Weinberg and X. Yu, “Robotics in education: Low-cost platforms for
teaching integrated systems,” Robotics Automation Magazine, IEEE,
vol. 10, no. 2, pp. 4 — 6, June 2003.

[2] Z. Dodds, L. Greenwald, A. Howard, S. Tejada, and J. Weinberg,
“Components, curriculum, and community: Robots and robotics in
undergraduate ai education,” Al magazine, vol. 27, no. 1, p. 11, 2006.

[3] S.P.N. Singh, R. Fitch, and S. Williams, “A research-driven approach
to undergraduate robotics education,” Computers in Education Jour-
nal, vol. 1, no. 4, pp. 21-27, 2010.

[4] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz,
S. Magnenat, J.-C. Zufferey, D. Floreano, and A. Martinoli, “The e-
puck, a robot designed for education in engineering,” in Proceedings
of the 9th conference on autonomous robot systems and competitions,
vol. 1, no. 1, 2009, pp. 59-65.

[5] M. W. Spong and D. J. Block, “The pendubot: A mechatronic system
for control research and education,” in Decision and Control, 1995.,
Proceedings of the 34th IEEE Conference on, vol. 1. IEEE, 1995,
pp. 555-556.

[6] W. E. Dixon, D. M. Dawson, B. T. Costic, and M. S. De Queiroz, “A
matlab-based control systems laboratory experience for undergraduate
students: toward standardization and shared resources,” Education,
IEEE Transactions on, vol. 45, no. 3, pp. 218-226, 2002.

[7]1 R. Mitnik, M. Nussbaum, and A. Soto, “An autonomous educational
mobile robot mediator,” Autonomous Robots, vol. 25, no. 4, pp. 367—
382, 2008.

[8] S. A. Ambrose, M. W. Bridges, M. DiPietro, M. C. Lovett, and M. K.
Norman, How learning works: Seven research-based principles for
smart teaching. John Wiley & Sons, 2010.

[9] S. Sheppard, K. Macatangay, A. Colby, and W. M. Sullivan, Educating
engineers: Designing for the future of the field. Jossey-Bass San
Francisco, CA, 2009, vol. 9.

[10] R. Huber, H. Ramoser, K. Mayer, H. Penz, and M. Rubik, “Classi-
fication of coins using an eigenspace approach,” Pattern Recognition
Letters, vol. 26, no. 1, pp. 61-75, 2005.

[11] M. Furst, G. Kronreif, C. Wogerer, M. Rubik, 1. Hollander, and
H. Penz, “Development of a mechatronic device for high-speed coin
sorting,” in Industrial Technology, 2003 IEEE International Confer-
ence on, vol. 1. IEEE, 2003, pp. 185-189.

[12] G. Wilfong, “Motion planning in the presence of movable
obstacles,” Annals of Mathematics and Artificial Intelligence,
vol. 3, no. 1, pp. 131-150, 1991. [Online]. Available: http:
//dx.doi.org/10.1007/BF01530890

[13] T. M. Nguyen, S. Ahuja, and Q. J. Wu, “A real-time ellipse detection
based on edge grouping,” in Systems, Man and Cybernetics, 2009.
SMC 2009. IEEE International Conference on. IEEE, 2009, pp.
3280-3286.

[14] S. Galvan, D. Botturi, A. Castellani, and P. Fiorini, “Innovative
robotics teaching using lego sets,” in Robotics and Automation, 2006.
ICRA 2006. Proceedings 2006 IEEE International Conference on.
IEEE, 2006, pp. 721-726.

[15] M. Rosenblatt and H. Choset, “Designing and implementing hands-
on robotics labs,” Intelligent Systems and Their Applications, IEEE,
vol. 15, no. 6, pp. 32-39, 2000.

[16] A. G. Alleyne, D. J. Block, S. P. Meyn, W. R. Perkins, and M. W.
Spong, “An interdisciplinary, interdepartmental control systems labo-
ratory,” Control Systems, IEEE, vol. 25, no. 1, pp. 50-55, 2005.

VI. APPENDIX 1: VIDEO ATTACHMENT

A video of the CHARM robot sorting coins has been
submitted as part of this paper. It is also online at: http:
//youtu.be/hH5_9t71PhQ.



