
DOI 10.1007/s00607-006-0211-1
Printed in The Netherlands

Computing 79, 353–363 (2007)

Analyzing a generalized Loop subdivision scheme

I. Ginkel and G. Umlauf, Kaiserslautern

Received December 21, 2005; revised April 18, 2006
Published online: March 7, 2007

© Springer-Verlag 2007

Abstract

In this paper a class of subdivision schemes generalizing the algorithm of Loop is presented. The stencils
have the same support as those from the algorithm of Loop, but allow a variety of weights. By varying
the weights a class of C1 regular subdivision schemes is obtained. This class includes the algorithm of

Loop and the midpoint schemes of order one and two for triangular nets. The proof of C1 regularity of
the limit surface for arbitrary triangular nets is provided for any choice of feasible weights.

The purpose of this generalization of the subdivision algorithm of Loop is to demonstrate the capa-
bilities of the applied analysis technique. Since this class includes schemes that do not generalize box
spline subdivision, the analysis of the characteristic map is done with a technique that does not need an
explicit piecewise polynomial representation. This technique is computationally simple and can be used
to analyze classes of subdivision schemes. It extends previously presented techniques based on geometric
criteria.

AMS Subject Classifications: 65D17, 65D18.

Keywords: Subdivision, loop, characteristic map.

1. Introduction

In the past subdivision schemes have often been developed as generalizations of
subdivision schemes for tensor-product B-spline or box spline representations [2],
[11]. Their popularity is partly due to the fact that the B-spline or box spline repre-
sentation of the characteristic map can be used to prove regularity and injectivity
[14], [19] and is therefore the key for the proof of C1 regularity of the limit surface.
For interpolatory schemes [6], [10] or schemes that focus on geometric properties,
no explicit representation of the basis functions is known. Different techniques have
been developed to handle such algorithms. These techniques are either based on
massive numerical computations and, hence, complicated to compute [21], [24] or
on visual inspection and, hence, may lead to mistakes.

In [20], a technique is introduced that allows analyzing the characteristic map even
if an explicit representation of the basis is not available. It requires that the first
divided difference schemes use strict convex combinations and that the first differ-
ence schemes for a given direction combines only differences from the same direction.
Then geometric criteria suffice to prove regularity and injectivity of the characteristic
map for any valence.
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The goal of this paper is to explore and extend the capability of this technique and
to define a class of subdivision algorithms that fulfills the conditions necessary for
the applicability of the technique. Since triangular representations are very popular
and since the stencils should be as small as possible, the stencils of the subdivi-
sion algorithm of Loop [11] are generalized. Of course, the subdivision algorithm
of Loop has been modified in many aspects, see, e.g. [7], [12], [13] [16], [23]. These
modifications are done to improve the shape of the limit surfaces. The modifications
presented in this paper are done to find out to what extend arbitrary weights can be
used to generate C1 regular limit surfaces. This generalization of the algorithm of
Loop is used to demonstrate that the presented analysis technique can be applied to
a whole class of subdivision algorithms containing a variety of different schemes.

In [7], modifications of the subdivision algorithm of Loop are presented without a
rigorous analysis that are similar to the modifications suggested in this paper. The
modifications done in this paper are more general and the complete and rigorous
analysis of this class of subdivision schemes is presented here.

In Sect. 2, the subdivision rules for quartic box splines over the three directional
grid are generalized and a feasible set of parameters is computed that leads to C1

surfaces that are not box spline surfaces. These rules are extended to triangular nets
with vertices of arbitrary valence in Sect. 3. Finally, in Sect. 4 the characteristic
map of the resulting subdivision algorithm is analyzed using a new and extended
technique that is based on geometric criteria.

2. Generalized box spline subdivision on regular triangular nets

The analysis of subdivision algorithms on regular triangular nets is well understood
and published with many examples, see, e.g. [3], [5], [22]. Although, many aspects of
the analysis in the regular setting presented in this section are covered by the above
references, this sections is included to make the paper complete and self-contained.

A regular triangular net C = [ci]i∈Z2 is given by a set of points ci which are neigh-
boring with respect to the directions e1 = [1, 0], e2 = [0, 1] and e3 = e1 + e2 as
shown in Fig. 1.

Fig. 1. The three directional grid



Analyzing a generalized Loop subdivision scheme 355

Application of the subdivision algorithm for quartic box splines to C0 := C gener-

ates a sequence of triangular nets Cl = [cl
i ]i∈Z2 , l ≥ 0. This sequence converges to

the quartic box splines surface defined by the control net C, see [1].

To generalize the subdivision algorithm for quartic box splines we take the corre-
sponding stencils and replace the weights with variables.

Since symmetric schemes are geometrically meaningful and make analysis easier,
we choose the weights as shown in Fig. 2. For affine invariance the weights of each
stencil must sum to 1 and for the convex hull property all weights must be positive.
This yields

a, b, c, d > 0, (1)

1 − 6a = b, (2)

d + c = 1/2. (3)

Denote by ∇kcl
i = cl

i − cl
i−ek

, k = 1, 2, 3. Sufficient conditions on a, b, c, d can be
formulated to guarantee the existence of difference schemes Sk, that map differences

∇kcl
i to differences ∇kcl+1

j , i, j ∈ Z
2. To compute a difference ∇kcl+1

2j (black arrow

in Fig. 3 (left)) only from differences ∇kcl
i (dashed arrows in Fig. 3 (left)), Sk must

satisfy a = d − a and −(c − b − a) = c − a or equivalently

d = 2a, (4)

c = a + 1/2b. (5)

The construction for ∇kcl+1
2j−e1

also yields (4) and (5). To compute a difference

∇kcl+1
2j+e2

(black arrow in Fig. 3 (right)) only from differences ∇kcl
i (dashed arrows

in Fig. 3 (right)), Sk must satisfy no additional condition, because the stencil is

symmetric. The same is true for ∇kcl+1
2j−e3

. Thus, S1 is represented by

b

a

a

aa

a

ad

c

d

c

Fig. 2. Generalized box spline subdivision masks
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Fig. 3. Construction of a difference ∇kcl+1
2j (left) and ∇kcl+1

2j+e2
(right)

∇1cl+1
2i+v = (1/2 − 3a) · ∇1cl

i+v + a · (∇1cl
i−v−e1

+ ∇1cl
i+e2

+ ∇1cl
i−e3

)

for v ∈ {0, −e1} and

∇1cl+1
2i+v = (1/2 − 4a) · ∇1cl

i+v + 2a · (∇1cl
i + ∇1cl

i−e1
)

for v ∈ {e2, −e3}

and analogous rules for S2 and S3. The weights of the difference schemes Sk, k =
1, 2, 3, sum to 1/2. They are strictly positive if a > 0, 1/2−3a > 0 and 1/2−4a > 0,
i.e.,

a ∈ (0, 1/8). (6)

Note that (2), (4) and (5) imply (3). Therefore, (1)–(5) fix the weights b, c, d and lead
to stencils similar to the ones proposed in [7]. Thus, for a subdivision scheme with
stencils as in Fig. 4 condition (6) guarantees convergence, affine invariance and the
convex hull property.

For C1 regularity second differences must be checked, since convergence of the
divided second differences is sufficient for C1 regularity [3], [5]. The construction of

∇2
k cl+1

j from ∇2
k cl

i is done analogously to the construction of ∇kcl+1
j above. It yields

for k = 1 the rules

Fig. 4. The stencils for generalized box spline subdivision
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∇2
1 cl+1

2i = a ·
(
∇2

1 cl
i−e3

+ ∇2
1 cl

i+e2
+ ∇2

1 cl
i + ∇2

1 cl
i−e1

)
,

∇2
1 cl+1

2i−e1
= (1/2 − 4a) · ∇2

1 cl
i ,

∇2
1 cl+1

2i+e2
= 2a

(
·∇2

1 cl
i−e1

+ ∇2
1 cl

i+e2

)
+ (1/2 − 8a) ·

(
∇1cl

i − ∇1cl
i+e2

)
,

∇2
1 cl+1

2i+e3
= 2a

(
·∇2

1 cl
i + ∇2

1 cl
i+e2

)
+ (1/2 − 8a) ·

(
∇1cl

i+e3
− ∇1cl

i

)

and analogous rules for k = 2, 3. The conditions for convergence of the second
divided differences are 2 · |4a| < 1, 2 · |1/2 − 4a| < 1 and 2 · (|4a| + |1/2 − 8a|) < 1.
These conditions are true for

a ∈ (0, 1/12). (7)

Therefore, using the stencils shown in Fig. 4 condition (7) guarantees C1-regularity
of the subdivision surface for regular triangular nets.

3. Analyzing the subdivision matrix

In order to expand the class of subdivision algorithms to triangular nets with ver-
tices of valence n �= 6 the stencil can be generalized as in Fig. 5. Note that in this
setting β = a has to be chosen for n = 6.

For the analysis of C1 regularity of the subdivision surface at extraordinary points
it is necessary to analyze the subdivision matrix [4]. For the algorithm of Loop
three rings of points around an irregular vertex define a complete surface ring. The
generalized stencils have the same support as the stencils of the algorithm of Loop.
Therefore, three rings of points around an irregular vertex also suffice for the gen-
eralized stencils, since the support of the nodal functions does not change [8].

With the usual labeling of the control points segment-wise from inner to outer rings
of control points the subdivision matrix A is block-circulant. Thus, A is similar to a

block-diagonal matrix Â = diag(Â0, . . . , Ân−1), which results from discrete Fourier

transformation. The blocks Âi , i = 0, . . . , n − 1, are given by

Fig. 5. Stencil for the generalized algorithm of Loop at a vertex of valence n
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Âi =




(1 − nβ)δi,0 nβδi,0

( 1
2 − 2a)δi,0 ( 1

2 − 2a) + 4aci

aδi,0 (1 − 6a) + 2aci a (1 + ωi)a

2aδi,0 (1 + ωi)( 1
2 − 2a) 0 2a

0 1
2 − 2a 1

2 − 2a (1 + ωi)2a 0 0 0

0 1
2 − 2a + 2aω−i 2a 1

2 − 2a 0 0 0

0 2a + ( 1
2 − 2a)ω−i 2aω−i 1

2 − 2a 0 0 0




,

where ω := exp(2π
√−1/n), ci := cos(2πi/n) and the Kronecker symbol δi,0.

From Âi the eigenvalues of A can be computed as

– the eigenvalue 1 from Â0,
– the eigenvalue µβ := 1/2 + 2a − nβ from Â0,

– the eigenvalues µi := 1/2 − 2a + 4aci from Âi , i = 1, . . . , n − 1,

– the n-fold eigenvalue 2a from Âi , i = 0, . . . , n − 1,

– the n-fold eigenvalue a from Âi , i = 0, . . . , n − 1,

– the (4n − 1)-fold eigenvalue 0 from Âi , i = 0, . . . , n − 1.

Since the largest eigenvalue of A is the single eigenvalue 1 with corresponding eigen-
vector [1 . . . 1]t the subdivision scheme is guaranteed to converge to a unique limit
point. Furthermore, it can be observed that µi = µn−i for i = 1, . . . , �n/2� and
µ1 > µi for i = 2, . . . , �n/2�. The sub-dominant eigenvalue has algebraic and
geometric multiplicity two and equals µ1 if

µ1 = 1/2 − 2a + 4ac1 > 1/8 and

µ1 = 1/2 − 2a + 4ac1 > 1/2 + 2a − nβ = µβ.

These conditions hold for n ≥ 3 if condition (7) and

β > 4a(1 − c1)/n (8)

are fulfilled.

Although not necessary for C1 regularity, a reasonable choice is β = 4a(1 − c2)/n

since this results in a triple subsub-dominant eigenvalue from Âi , i = 0, 2, n − 2.
This is a necessary condition for facilitating limit surfaces with arbitrary shape [9],
[15]. This also implies β = a for n = 6, the convex hull property and condition (8)
for n ≥ 3.

4. Analyzing the characteristic map

On conditions (7) and (8), regularity and injectivity of the characteristic map lead to
a C1 regular limit surface for almost all initial control nets [17]. The characteristic
map x is the planar spline ring defined by the net [v1, vn−1], where v1, vn−1 are the
eigenvectors of A for µ1, µn−1, respectively. For a symmetric scheme the character-
istic map consists of n rotationally symmetric segments xi , i = 0, . . . , n−1, and can
be normalized such that x0 is symmetric with respect to the 1-axis [14]. The labeling
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of the control points ci of the control net X of the segment x0 of the characteristic
map is given by

X =
c1
c2
c3

c4
c5
c6
c7

c8
c9
c10
c11
c12

c13
c14
c15
c16

.

Note that X is mirror symmetric with respect to the 1-axis. The points ci , i =
1, . . . , 16, can be computed using a computer algebra package such as Maple and
are given by

c1 =
[

2αβγ δ(−1 + 2c1)

βδs(1 + (2 − 8a)c1 + 8ac2)

]
, c4 =

[
αβδ(4 − 16a)c1

αβδs(4 − 16a)

]
,

c2 =
[

0
0

]
, c5 =

[
2αβγ δ

βγ δs

]
,

c8 =
[

2α(1 − 6a + 96a2 − 576a3 + (2 − 4a − 128a2 + 896a3)c1 + (8a + 32a2 − 512a3)c2 + 128a3c3)

s(3 − 26a + 112a2 − 128a3 + (2 + 12a − 128a2 + 256a3)c1 + (8a + 32a2 − 256a3)c2 + 128a3c3)

]
,

c9 =
[

2αδ(2 − 24a + 96a2 + (24a − 144a2)c1 + 16a2c2)

δs(2 − 24a + 96a2 + (24a − 144a2)c1 + 16a2c2)

]
, c10 =

[
αβδ(4 − 16a)

0

]
,

c13 =
[

2α(3 − 42a + 280a2 − 640a3 + (48a − 432a2 + 960a3)c1 + (80a2 − 320a3)c2)

s(3 − 42a + 280a2 − 640a3 + (48a − 432a2 + 960a3)c1 + (80a2 − 320a3)c2)

]
,

c14 =
[

2α(3 − 34a + 112a2 + 192a3 + (32a − 144a2 − 320a3)c1 + (32a2 + 64a3)c2)

s(1 − 14a + 96a2 − 256a3 + (16a − 144a2 + 320a3)c1 + (32a2 − 192a3)c2)

]
,

with s = sin(2π/n), α = 1/2+1/2c1 > 0, β = (1−6a +8ac1), γ = (1−8a +8ac1)

and δ = (1 − 4a + 8ac1).

The divided ∇k-differences of X converge towards directional derivatives of the char-
acteristic map with respect to ek for k = 1, 2, 3. The ∇k-differences of X lie within
pointed cones Bk, which are characterized by a set of vectors

Ic =
{∑

i

αivi : αi ≥ 0, vi ∈ I for all i

}

such that Bk ⊆ {lk, uk}c where lk and uk are ordered in a rotationally positive sense
and lmk and um

k denote the m-th coordinates of lk and uk for m = 1, 2, respectively.

Note that B1 and B3 are symmetric, i.e., l11 = u1
3, l21 = −u2

3 and u1
1 = l13, u2

1 = −l23,

and that B2 is symmetric, i.e., u2
2 = l12 and u2

2 = −l22. The cones provide a criterion
for the characteristic map to be regular and injective [20]:

Theorem 1: For a symmetric subdivision scheme the characteristic map is regular and
injective, if
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(1) the divided ∇1- and ∇3-difference schemes use only strict convex combinations,
(2) none of the ∇3-differences of X vanish and
(3) the cone B3 satisfies lm3 , um

3 ≥ 0 for m = 1, 2.

Condition 1 is implied by (7). Because no two points of X coincide, condition 2 is also
satisfied. Condition 3 is verified by checking the coordinates of all ∇3-differences
of X.

Denote by dm
µ,ν the m-th coordinate of the difference cµ − cν for m = 1, 2, which

can be written as trigonometric polynomial

dm
µ,ν = cm

µ,ν ·
3∑

i=0

pm,i
µ,ν(a) · ci

1, m = 1, 2. (9)

Here, cm
µ,ν are positive constants for all µ, ν, m and n ≥ 4 (see Appendix A). The

coefficients pm,i
µ,ν(a) are polynomials in a with real-valued coefficients depending on

µ and ν. Since pm,0
µ,ν (a) > 0 for all µ, ν (see Appendix A) and c1 ≥ 0 for n ≥ 4,

dm
µ,ν > 0 if

pm,0
µ,ν (a) +

∑

p
m,i
µ,ν (a)<0

pm,i
µ,ν(a) > 0. (10)

This argument can be directly applied to most of the differences. This becomes espe-
cially simple if there are no negative coefficients pm,i

µ,ν(a). Where the estimation by

(10) of a difference dm
µ,ν fails a more precise estimation must be used, e.g., the Bézier

representation of dm
µ,ν as a bi-variate polynomial in a and c1 (see Appendix A). This

yields Condition 3 for all relevant dm
µ,ν if a ≤ 1/12 except for d2

4,1 which implies the
condition

a ≤ 1/16c2
1. (11)

Thus, (7) and (11), i.e., a ∈ (0, 1/16c2
1] ⊂ (0, 1/12), are sufficient to guarantee the

conditions of Theorem 1.

For a ∈ (1/16c2
1, 1/12) Theorem 1 cannot be applied, because l23 < 0. The proof of

Theorem 1 in [20] uses only the fact that there exist two cones of directional differ-
ences that satisfy the conditions of the theorem. So, instead of using the cones B3
and its symmetric counterpart B1 the theorem remains true for the cones

B̃3 := αB3 + (1 − α)B2 ⊆ {αl3 + (1 − α)l2, αu3 + (1 − α)u2}c =: {̃l3, ũ3}c
and its symmetric counterpart B̃1 for α ≥ 0. In order for B̃3 to satisfy Condition

3 of Theorem 1 there must exist a α ≥ 0 such that ũm
3 ,̃ lm3 ≥ 0 for m = 1, 2. This is

induced by l12, l22, l13, u2
3 ≥ 0 and l23 < 0 and

l22u1
3 + l12l23 < 0. (12)
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Theorem 1′: For a symmetric subdivision scheme the characteristic map is regular
and injective, if

(1′) the divided ∇k-difference schemes use only strict convex combinations for k =
1, 2, 3,

(2) none of the ∇3-differences of X vanish and

(3′) the cones B2 and B3 satisfy l12, l22, l13, u2
3 ≥ 0 and l23 < 0 and (12).

Fora ∈ (1/16c2
1, 1/12) it remains to check condition 3 ′. where only lm2 ≥ 0, m = 1, 2,

and (12) are left to prove. Because B2 is symmetric and contains vectors not parallel

to e2 condition l12 > 0 is guaranteed. The remaining conditions l22 ≥ 0 and (12) can
be checked in the same way Condition 3 was checked (see Appendix A and B). In
summary, this proves the following theorem.

Theorem 2: The generalized algorithm of Loop for triangular nets with a ∈ (0, 1/12)

generates for almost all initial control nets regular surfaces with continuous normal
everywhere.

Besides C1 regularity some geometric properties can be observed.

Remark 3: Since the corresponding left eigenvectors for the eigenvalues µ1 and µn−1
do not depend on a, every scheme produces the same directions d1 and d2 spanning the
tangent plane.

Remark 4: The limit point depends on a, so the tangent planes of the generalized
Loop subdivision schemes at irregular vertices are parallel for a given initial control
nets. The stencil for calculating the limit value of an extraordinary point is the same as
the stencil for computing the value on the next level shown in Fig. 5 where β replaced
by (n + (1/2 − 2a)/β)−1.

Remark 5: The sub-dominant eigenvalues µ1, µn−1 and µβ depend on a and tend
towards 1/2 if a goes to 0. Therefore, polar artifacts are reduced by decreasing a [18].

Remark 6: For the choice of a and β as in Sect. 3 yielding a limit surface with
bounded Gauss curvature of arbitrary sign Theorem 2 guarantees C1-regularity only for
n = 4, . . . , 7.

5. Conclusion

In this paper, a generalization of the algorithm of Loop is presented. It allows to
chose a free parameter arbitrarily from the interval a ∈ (0, 1/12) which might be
used for optimization. This algorithm generates C1-regular limit surfaces for trian-
gular nets with irregular vertices of valence n ≥ 4 for all a ∈ (0, 1/12). In order to
prove this fact the known geometric smoothness criteria have been extended to a
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more general set of directional derivatives that are guaranteed to be linear indepen-
dent.

Appendix

A The differences dm
µ,ν

Here, the estimation technique described in Sect. 4 for first and second coordinates
of the differences is demonstrated. Using (10), the 22 differences d1

14,10, d1
13,9, d1

10,6,

d1
9,5, d1

6,3, d1
5,2, d2

16,12, d2
15,11, d2

14,10, d2
13,9, d2

11,7, d2
10,6, d2

9,5, d2
6,3, d2

5,2, d2
2,3, d2

5,6, d2
6,7,

d2
10,11, d2

11,12, d2
14,15, d2

15,16 can be shown to be positive if a ∈ (0, 1/12) and n ≥ 4.

For example, the difference

d2
13,9 = s((1 − 10a + 24a2) + (8a − 256a3)c1 + (−64a2 + 640a3)c2

1 + (−256a3)c3
1)

has coefficients p
1,i
11,16(a) which fulfill (10) for a ∈ (0, 1/12). The differences d1

16,12,

d1
15,11, d1

11,7, d1
4,1, d1

8,4, d2
8,4 need a more careful estimation, e.g., based on the Bézier

representation in a and c1:

d1
4,1 = (2 − 16a)B2

0 (c1) + 2B2
1 (c1) + (2 − 16a)B2

2 (c1).

These three differences are positive if a ∈ (0, 1/12) and n ≥ 4. There is now one
difference left that needs special attention

d2
4,1 = (1 − 16ac2

1)βδs.

This term is only positive if a ≤ 1/16c2
1 and further restricts the interval of valid

choices for a to a ∈ (0, 1/16] for arbitrary valences n. For valences n ≤ 12 the weight
a ∈ (0, 1/12) is permitted.

B Checking condition (12)

Appendix A shows that l23 = d2
4,1. Therefore, condition (12) has to be checked for all

∇2-differences with positive first coordinate and ∇3-differences with positive second
coordinate. These 50 checks can be done using the estimation techniques described
above, e.g. d2

11,12d1
6,3+d1

11,12d2
4,1 has over [1/2, 1]×[1/16, 1/12] the Bézier coefficients

(up to a positive scaling)



178848 169992 161856 154368 147456
156330 150282 144576 139200 134144
118692 115812 112784 109664 106496

65448 66501 66864 66672 66048
0 7128 13248 18624 23552




,

and yield that (12) is satisfied for all a ∈ (1/16c2
1, 1/12) and n ≥ 4.
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