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Abstract. Mesh optimization of 2D and 3D triangulations is used in
multiple applications extensively. For example, mesh optimization is cru-
cial in the context of adaptively discretizing geometry, typically repre-
senting the geometrical boundary conditions of a numerical simulation,
or adaptively discretizing the entire space over which various dependent
variables of a numerical simulation must be approximated. Together with
operations applied to the vertices the so-called edge or face swap oper-
ations are the building block of all optimization approaches. To speed
up the optimization or to avoid local minima of the function measur-
ing overall mesh quality these swaps are combined to generalized swap
operations with a less local impact on the triangulation.
Despite the fact that these swap operations change only the connectiv-
ity of a triangulation, it depends on the geometry of the triangulation
whether the generalized swap will generate inconsistently oriented or de-
generate simplices. Because these are undesirable for numerical reasons,
this paper is concerned with geometric criteria that guarantee the gen-
eralized swaps for a 3D triangulation to yield only valid, non-degenerate
triangulations.
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1 Introduction

Triangulations of points in 2D space for a mesh of triangles or points in 3D
space for a mesh of tetrahedraare crucially important for numerous applica-
tions encountered in scientific and engineering application, including numerical
simulation, shape approximation, or visualization. In scattered data approxi-
mation [8, 15, 20] 2D triangulations are used to define a piecewise linear coarse
approximation of a dense data set, assigning a “height value” for every ver-
tex. This technique can also be used for image compression [4, 5, 18, 21] and
video compression [17, 19]. For reverse engineering [1, 6, 9, 12], the 2-manifold
surface to be reconstructed is approximated by a 3D triangulation that contains
no tetrahedra. For mechanical engineering and physical simulations [14, 24], 3D
triangulations are used as meshes for finite element methods.
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For all of these applications the triangulation needs to be optimized with
respect to an application-dependent cost function measuring mesh quality based
on a multitude of proper mesh quality variables, including, for example, point
distribution, approximation error [7,18], triangle shape [10], dihedral angles [14],
etc. The optimization process is usually based on simple, local changes in the
triangulations such as repositioning of vertices [15], insertions and removal of
vertices [7, 11] and edge and face swaps [22]. While the first of these operations
change geometry and connectivity of the triangulation the swaps change only the
connectivity of a triangulation. To speed up the optimization or to avoid local
minima during mesh optimization multiple edge and face swaps are combined
to generalized swap operations that change the connectivity of more than three
tetrahedra of the triangulation [13,17,23,25], see Section 2.

However, it depends on the geometry of the triangulation if a generalized
swap will generate flipped or degenerate simplices. We present in this paper
geometric criteria that guarantee that a generalized swap operation in a 3D
triangulation will generate only valid, non-degenerate triangulations.

2 Related Work

In general, a swap operation replaces d-dimensional simplices of a triangulation
(d ≥ 1) by other simplices. It usually affects only a local area of the triangulation,
and changes the connectivity of the triangulation without changing the number
or position of the vertices.

Lawson [16] was was among the first scientists studying and publishing swap
operations systematically. He showed that d + 2 points in d dimensions, which
do not all lie in a hyper-plane, have either one unique triangulation T or two
possible triangulations T1 and T2. Which case happens depends on the vertex
positions, see Figure 1 for the 2D case. In the latter case, T1 and T2 differ only
in connectivity and the transformation from T1 to T2 is called swap operation
s1→2(T1) = T2. The opposite transformation is s2→1(T2) = T1. Because s1→2 ◦
s2→1 = s2→1 ◦ s1→2 = id, s1→2 and s2→1 are inverse operations.

a
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dddd
s1→2
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Fig. 1. Triangulations of four points in the 2D case.
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If T1 is a subset of a larger triangulation T , the swap operation can be applied
by replacing only the simplices of T1 with those of T2, and leaving all simplices
of T unchanged, i.e., T ′ = (T \ T1) ∪ T2. Note that the subset T1 has to be a
triangulation, i.e. it has to fill the convex hull of its vertices, and must be convex.

Additionally to these basic swaps, one can construct generalized swap oper-
ations that replace a set of simplices C of the triangulation by a different set of
simplices C ′. Thus, C and C ′ are not required to cover the convex hull of their
vertices. Since the generalized swaps are usually more powerful, they can lead
to a good triangulation with less swap operations, but are often less efficient.

One way to construct a generalized swap operation is to combine a sequence
of basic swap operations to a so-called composed swap operation. For the 2D
case Yu et al. [25] use a combination of two edge swap operations. If a simple
edge swap does not reduce the cost function, they swap the edge and one of its
adjacent edges. Thus, the affected faces do not need to form a convex polygon
for the composed swap operations. Using the composed swap operations can
improve the optimization results significantly.

Concerning the 3D case, the set of swap operations is larger and more varied
than in the 2D case. Again, we can categorize them into basic swap operations
and composed swap operations. According to Lawson [16], there are five different
settings of five points a, b, c, d and e in 3D space, only two of which have two dif-
ferent triangulations and therefore provide swap operations, see Figure 2. If three
points are collinear, or four points a, b, c, d are coplanar with d ∈ conv(a, b, c),
or e ∈ conv(a, b, c, d) there is only one possible triangulation, see Figures 2 I.,
III., and V. If exactly four points are coplanar and form a convex quadrilateral
q there are two possible triangulations with flipped diagonals of q, see Figure 2
II. Because the triangulation consists of two cells before and after the swap, the
swap is called a 2-2 swap. For the most general case in which all five points are
corners of conv(a, b, c, d, e) there are also two possible triangulations, see Figure
2 IV. Because this swap replaces three cells by two and vice versa, it is called a
3-2 swap or 2-3 swap, respectively.

When applied to a subset of a triangulation T , the 2-2 swap is only possible
if the two faces {a, b, d} and {b, c, d} are border faces of T . If they are interior
faces, the incident two cells also have to be swapped, see Figure 3. This leads to
the 4-4 swap, which replaces four cells with four other cells.

In 3D also a combination of basic swap operations can be more powerful. Joe
[13] systematically analyzed the possible settings. Every face of a triangulation
is assigned to nine different categories, describing their local setting and their
status of being transformable by a basic swap operation. He proposes a set of
composed swap operations to transform faces that are initially not transformable,
by first swapping adjacent faces. For every composed swap operation, he lists
the cells that are removed and created. From this list, he provides criteria in [13]
to compute the change of a cost function c resulting from each of the operations,
if c is the minimum of the costs of the individual cells.

Another class of composed swap operations is the class defined by the gen-
eralizations of the 3-2 and 2-3 swaps, see [3, 24].
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Fig. 2. The different settings of five points in the 3D case.

Generalized 3-2 swap (G32) A generalized 3-2 swap (G32) can be applied to
an edge e = {a, b} with n ≥ 3 incident cells C = {c1, . . . , cn}, with ci =
{a, b, vi, vi+1} and vn+1 ≡ v1, see Figure 4 (left). The loop (v1, . . . , vn) is
split into a set of n − 2 connected faces F = {f1, . . . , fn−2}. Note that the
choice of F is not unique. G32 replaces the edge e with the faces F , where the
n cells C are replaced by the 2(n−2) cells C ′ = {c′a,1, c

′
b,1, . . . , c

′
a,n−2, c

′
b,n−2}

with c′a,i = fi ∪ {a} and c′b,i = fi ∪ {b}.

Generalized 2-3 swap (G23) We say a face f = {v1, v2, v3} is sandwiched be-
tween vertices a and b, if the two cells incident to f are c1 = {a, v1, v2, v3}
and c2 = {b, v1, v2, v3}. A generalized 2-3 swap (G23) is applied to a set
F = {f1, . . . , fn−2} of faces, which are sandwiched between two points a
and b, see Figure 4 (right). A new edge e = {a, b} is inserted into the tri-
angulation, and the border edges of F are connected to the new edge e to
form the new cells. Let C ′ = {c′a,1, c

′
b,1, . . . , c

′
a,n−2, c

′
b,n−2} be the set of cells

incident to the faces c′a,i = fi ∪{a} and c′b,i = fi ∪{b} of F , and (v1, . . . , vn)
be the loop of vertices defined by the border edges of F . G23 replaces the
faces of F by the edge e = σ{a,b}, and the 2(n − 2) cells of C ′ are replaced
by the n cells C = {c1, . . . , cn}, with ci = {a, b, vi, vi+1}, and vn+1 ≡ v1.
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Fig. 3. The 4-4 swap is used if the faces of the 2-2 swap are no border faces.

G23 is the inverse of G32. Since the choice of faces is not unique in either
direction, applying the one swap operation after the other leads to the start
triangulation only if for both swaps the same faces are chosen. Also note that
the 2-3 swap is a special case of G23, the 3-2 swap of G32, and the 4-4 swap a
special case of G23 and G32.

The execution of G32 and G23 can result in invalid triangulations. In Sec-
tions 4 and 5 we discuss necessary and sufficient geometric conditions to ensure
the validity of the resulting triangulation. Shewchuk [23] notes that these swaps
can be replaced by a series of 2-3 and 3-2 swaps, where the intermediate trian-
gulations are topologically correct, but may contain degenerate or inverted cells.
In Section 6 we show that there is always a sequence of 2-3, 3-2, and 4-4 swaps
to replace a G23 or G32 swap without degenerate or inverted cells.

3 Notation

In order to define the generalized swap operation in terms of connectivity changes
and associated geometric conditions, we first adjust our notation properly.

A 3D triangulation T = (V, E ,F , C) (tetrahedrization) consists of a set of
vertices V, edges E ⊂ V2, faces F ⊂ V3 (triangles), and cells C ⊂ V4 (tetrahedra).
Thus, an edge is a pair of vertices, a face a triple of vertices, and a cell a quadruple
of vertices. All these entities are ordered such that T is an oriented simplicial
3-complex, where the edges of adjacent faces and the faces of adjacent cells
are order reversely. In this case, we call T a valid triangulation. We will use
set operations to define new faces and cells, i.e., for v1 ∈ V, e = (v2, v3) ∈ E ,
f = (v2, v3, v4) ∈ F and c ∈ C we define

e ∪ {v1} = (v1, v2, v3) ∈ F ,
f ∪ {v1} = (v1, v2, v3, v4) ∈ C

and

e ∈ f ⇐⇒ (v2, v3) is a sub-tuple of f,
f ∈ c ⇐⇒ (v2, v3, v4) is a sub-tuple of c.
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Fig. 4. The generalized 3-2 and 2-3 swaps.

While V, E , F , and C describe only the connectivity of the triangulation,
a geometric realization of T is defined by associating a point v ∈ R3 to every
vertex v ∈ V. The geometric realizations of an edge e ∈ V2, a face f ∈ V3, or a
cell c ∈ V4 are then defined as the convex hull of the geometric realizations of
their vertices, and are also denoted in boldface letters e, f , and c, respectively.
Furthermore, for a set M of edges, faces, or cells, we denote by M the union of the
geometric realizations of the elements of M . Throughout this paper, geometric
realizations of elements of a triangulation are denoted by boldface letters.

We say a valid triangulation T is consistently oriented, when the geometric
realizations of all cells have the same geometric orientation. The orientation of
a cell induces a notion of orientation on all of its contained k-sub-simplices for
k = 1, 2. A k-sub-simplex is called positively oriented if it is positively oriented
in the k-dimensional hyperplane bounding the enclosing (k + 1)-sub-simplex
with outward pointing normal. This means in particular, that all faces of a cell
are positively oriented with respect to the half-plane bounding the cell with a
normal pointing to the outside of the cell. If the vertices of a cell are not affinely
independent, it is called degenerate, and if a cell or any of its k-sub-simplices are
not positively oriented, we call it inconsistently oriented.

Border faces are faces of a triangulation T that are incident to only one
cell in T , all other faces are called inner faces. Analogously, border edges are
incident to only one inner face, all other edges are called inner edges The border
of a triangulation T is the set of all its border faces. If T is a valid, consistently
oriented triangulation, the geometric realization of its border is a 2-manifold.
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The boundary ∂S of a subset S of a manifold M are the points in S for
which every ε-ball in M contains points in M \ S. Note that the term border
is an attribute of the connectivity of a triangulation, whereas boundary is a
property of its geometric realization.

We need to provide some definitions concerning spherical projections, which
we will use to establish geometric conditions for allowable swap operations.

Definition 1. The spherical projection of a point p ∈ R3 onto the sphere Sq

with center q ∈ R3 and radius r is defined as

Πq(p) = q + r(p− q)/‖p− q‖2, p 6= q.

A projection of a set of points P ⊂ R3 \ {q} is the set of the projected points,

Πq(P ) = {Πq(p)|p ∈ P}.

Some properties of the spherical projection (without proof) are:

– If P is a line, Πq(P ) is either two antipodal points (for q ∈ P ), or a half
great circle (for q /∈ P ) of Sq.

– If P is a plane, Πq(P ) is either a great circle (for q ∈ P ), or an open half
sphere (for q /∈ P ) of Sq.

– If P = conv(p1,p2,p3) is a triangle and the plane defined by P does not con-
tain q, Πq(P ) is a spherical triangle, bounded by the projection of the edges
Πq(conv(p1,p2)), Πq(conv(p2,p3)), Πq(conv(p3,p1)), which are segments
of great circles of Sq.

4 Geometric Conditions for G32

For the geometric conditions to be satisfied for a G32-swap as defined in Sec-
tion 2 we have an edge e = (a, b) with n incident cells that is swapped. The
triangulation before and after the G32-swap is denoted by T and T ′.

Condition 1 The triangulation T = (V, E ,F , C) is valid, and all cells of T have
positive orientation.

Condition 2 The edge e is an inner edge of T , i.e., every face f incident to e
is incident to exactly two cells cf,1 6= cf,2.

Note that the last condition implies that e is not on the border of T . Furthermore,
these conditions induce an order of the faces incident to e.

Lemma 1. All faces containing e can be ordered to form a cyclic sequence
G = (g1, . . . , gn), i.e., the index i = 1, . . . , n of gi is understood modulo n.
Furthermore, the dihedral angles θi between gi and gi+1 (in the direction a to b)
are in the interval (0, π), and sum to 2π.
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Proof. Due to Condition 2, a face g = (a, b, v) incident to e is incident to two
cells cg,1, cg,2. Both have two faces incident to e, one of the two is g, the other
ones are g′1 and g′2, respectively. The successor of g is the face g′k of cell cg,k on
the positive side of g (in the direction a to b), k = 1, 2. The predecessor of g is the
other face. Due to Condition 2 this relation determines a cyclic successor-graph
without branches.

The dihedral angle θi between a face gi and its successor gi+1 is the dihedral
angle at e of the cell that contains both faces. Therefore, 0 < θ < π, because
otherwise the cell would be inverted or degenerate, contradicting Condition 1.

Since the sequence of faces is cyclic, it surrounds e. It can only cycle exactly
once around e, because otherwise cells between the faces would intersect in their
interior, which contradicts Condition 1. The sum of the dihedral angles between
the faces is therefore 2π. �

We denote the cell between gi and gi+1 as ci, and the third vertex of gi as
vi. Thus, Lemma 1 induces also a cyclic order on the cells C = (c1, . . . , cn) and
vertices V = (v1, . . . , vn) around e. Because G32 replaces the cells of C by other
cells, we call C the affected region, and the border faces of it are given by

∂C := {(a, v2, v1), (b, v1, v2), . . . , (a, v1, vn), (b, vn, v1)},

i.e., ∂C =
⋃

f∈∂C f . The line through a and b is denoted by

l = {a + λ(b− a)|λ ∈ R}. (1)

Lemma 2. There is a closed loop of edges B = {b1, . . . , bn} that winds around
l exactly once.

Proof. This follows from Lemma 1, where bi is the edge of ci opposite to e. �

For the sphere Sa around a contained in the convex hull of all cells containing
a we set taI = Πa(b) and denote by taO the antipodal point of taI . Let Ba = Πa(B)
the spherical projection of B onto Sa. Since Ba is a closed loop on Sa, it splits
Sa into two parts Sa

I and Sa
O, which are characterized by taI ∈ Sa

I and taO ∈ Sa
O,

see Figure 5. Analogously, Sb, tbI , tbO, Bb, Sb
I , and Sb

O are defined.

Definition 2. A partition of B is a set F = {f1, . . . , fm} of faces fi /∈ F , where

1. all vertices of fi belong to edges of B, i.e., fi ⊂ V ,
2. all edges of fi are either edges of B or inner edges I, and
3. (a) every edge of B is incident to exactly one face of F ,

(b) every edge of I is incident to exactly two faces of F .

Lemma 3. Every partition F of B has n− 3 inner edges and m = n− 2 faces.

Proof. As a consequence of Lemma 1 partitioning B is equivalent to a triangu-
lation of a simple polygon B′ in a plane perpendicular to l without introducing
new vertices. This polygon is the orthogonal projection of B along direction
l. Since every simple polygon with n vertices can be triangulated with n − 2
triangles (see [2]), i.e., n− 3 inner edges, the claim follows. �
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Fig. 5. Terms used in spherical projection with B in blue and Ba in green.

The partition F of B defines the cells that are created by the G32-swap. Every
face of the partition is connected to a and b to form two new cells. The set of new
cells is C ′ = {c′a,1, c

′
b,1, . . . , c

′
a,m, c

′
b,m} with c′a,j = fj ∪{a} and c′b,j = fj ∪{b} for

fj ∈ F . Note that for n > 3 the partitions and also the G32-swap is not unique.
It can happen that C ′ contains inconsistently oriented or degenerate cells.

Therefore, the G32-swap would result in an invalid triangulation and must not
be applied. Whether this is happens depends on e and B and also on the choice
of F . We call F a valid partition if all cells in C ′ are valid.

Depending on the geometry, there are three different cases. For every case
we present an example for n = 4, so that two different partitions exist: F1 =
{(v1, v2, v3), (v1, v3, v4)} and F2 = {(v1, v2, v4), (v2, v3, v4)}. For every example,
a = (0, 0, 1) and b = (0, 0,−1). Furthermore, the x and y coordinates of v1 to
v4 are (−0.3,−0.3), (0.7,−1.3), (1.7,−0.3), and (0.7, 0.7), respectively.

Every partition is valid For every partition F , all cells in C ′ are valid. For
our example, we choose the z coordinates to be z1 = z2 = z3 = z4 = 0. Both
partitions F1 and F2 are valid in this case. Note, that every partition is valid
as long as the affected region C is convex. which is only the case if (as in
this example) all vi are coplanar. But also for a non-convex affected region
all partitions can be valid.

Some partitions are invalid For some partitions, there are cells in C ′ that
are inverted or degenerate. But other partitions are valid. For a concrete
example, set the z coordinates to z1 = z2 = z3 = 0.8 and z4 = −0.8. Here,
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F1 is an invalid partition, because the cell (a,v1,v3,v4) is inverted, while
partition F2 is valid.

All partitions are invalid It can also happen that no valid partition exists
at all. In this case, G32 cannot be applied to e. An example for this case is
z1 = z3 = 0.8 and z2 = z4 = −0.8. Here, F1 is invalid because of the inverted
cell (b,v2,v4,v3), F2 is invalid because of the inverted cell (a,v1,v3,v4).

These examples show that we need another condition that ensures that F is
a valid partition. Under the assumption that Conditions 1 and 2 are satisfied,
we found four equivalent formulations 3.2., 3.1., 3.3., and 3.4. for the missing
condition. Will prove their equivalence later in Theorem 2. Before we describe
the missing condition in detail we need to define the supporting plane pl(t) of a
triangle t as the affine hull of its vertices.

Condition 3

3.1. All cells c′a,j and c′b,j have positive orientation.
3.2. Every fi has a on its positive side, and b on its negative side.
3.3. The spherical projection of the faces fi onto Sa is contained in Sa

I ∪Ba, and
the interior of the inner edges is projected into Sa

I (for Sb analogously),

Πp(fi) ⊂ Sp
I ∪Bp, for all i = 1, . . . , n, (2)

Πp(̊d) ⊂ Sp
I , for all d ∈ I,

for p ∈ {a,b}.
(3)

3.4. The interior of the inner edges is a subset of the interior of the affected
region, and the supporting planes of all faces fi intersects the line l in the
interior of e,

d̊ ⊂ C \ ∂C, for all d ∈ I, (4)
pl(fi) ∩ l ∈ e̊. (5)

Theorem 1. If Conditions 1, 2, and 3 are met, the triangulation T ′ = (V, E ′,
F ′, C′) with C′ = (C \ C) ∪ C ′ (and E ′ and F ′ accordingly) is valid.

Proof. Due to Conditions 1 and 3.1., all cells of C′ have positive orientation. To
prove that there are no holes in C ′, we check for border faces of the cells of C ′:

– The faces bi ∪ {p} for p ∈ {a, b} are border faces of both C and C ′.
– The faces fj are incident to c′a,j and c′b,j , i.e., fj is not on the border of C ′.
– For the faces f = d ∪ {p}, d ∈ I, p ∈ {a, b}, the edge d is incident to two f

aces fj and fk, i.e., f is incident to c′p,j and c′p,k. So, f is not on the border
of C ′.

Thus, there are no new border faces, i.e., there are no holes in C ′. �

Lemma 4. Condition 3.1. and Condition 3.2. are equivalent.

Proof. By definition, a is on the positive side of fi if and only if the cell c′a,i has
positive orientation. Furthermore, b is on the negative side of fi if and only if
the cell c′b,i has positive orientation. �
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Lemma 5. Conditions 3.1. and 3.2. imply Condition 3.3.

Proof. To prove (2) we first show that Πa(F) is a connected region on Sa that
is bounded by Ba. Then we show that taI ∈ Πa(F).

Due to Condition 3.1. a is not in F, since this would cause degenerate cells,
and Πa(F) is a connected region on Sa. For fi, fj ∈ F with common edge d ∈ I,
the spherical triangles Πa(fi) and Πa(fj) share the spherical edge Πa(d). Due to
Condition 3.1. the both cells c′a,i and c′a,j have positive orientation, so they are
on opposite sides of the plane P through d and a. Therefore, Πa(fi) and Πa(fj)
are also on opposite sides of Πa(d), see Figure 6. This implies that the interior
of all inner edges of I is not projected to the boundary of Πa(F). The same
holds true for all interior points of F. Thus, the boundary of Πa(F) consists of
projections of the border edges of B. Consequently, the interior of Πa(F) is not
intersected by Ba, so Πa(F) is either completely in Sa

I ∪Ba, or in Sa
O ∪Ba.

a
d

P

fi
fj

Fig. 6. The projections of fi and fj are on opposite sides of the projection of the
edge d.

Since B winds around l once, the l line intersects F in at least one face fi. Let
p = l ∩ fi. Because a is on the positive side of fi (Condition 3.2.), Πa(p) = taI .
Therefore, Πa(F) ⊂ Sa

I ∪Ba. Analogously, one can show Πb(F) ⊂ Sb
I ∪Bb.

Especially, the interior of Πa(̊d) does not intersect Ba, which implies (3). �

Lemma 6. Condition 3.3. implies Condition 3.4.

Proof. Let d ∈ I be an inner edge of F , and p ∈ d̊ be an interior point of
d. Due to Condition 3.3., pa = Πa(p) ∈ Sa

I . We split Sa
I into spherical trian-

gles by adding edges from Πa(vi) to taI . At least one of these triangles contains
pa. Let this triangle be t = (taI , Π

a(vl), Πa(vl+1)), see Figure 7. The bound-
ary Ba (green) is partitioned into spherical triangles (red lines), d is (v1,v4)
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(blue line) and p ∈ d̊. In this case, Πa(p) is within the spherical triangle
t = (taI , Π

a(v4), Πa(v5)).
The set of points that are projected into t is defined as the intersection of

the half spaces defined by the planes spanned by a and one of the edges of t, i.e.,
g1 = (a, b, vl), g2 = (a, vl+1, b), and g3 = (a, vl, vl+1), which contains the fourth
point {a, b, vl, vl+1} \ gi. The point p cannot be on the negative side of g1, g2 or
g3, as this would mean that its image is not in t. Also, it cannot be in the plane
defined by a and g3, as this would mean that it is projected to Ba.

With the same argument for Πb, we obtain the faces g4 = (b, vl, a), g5 =
(b, vl+1, a), and g6 = (b, vl+1, vl). Removing the redundant faces g4 ≡ g1 and
g5 ≡ g2, we can conclude that p is not on the negative side of g1 and g2, and
it is on the positive side of g3 and g6. These four faces define the cell ci. Thus,
p ∈ C, and p /∈ ∂C, proving (4).

We still have to prove (5). Assume there exists a face f in F with {q} =
pl(f) ∩ l 6∈ e̊ and, without loss of generality, λ ≤ 0. This face has at least one
interior edge d ∈ I and we chose an arbitrary point p ∈ d̊. Now, p is projected
to pa which lies outside of Sa

I . This contradicts (3) and, thus, proves (5). �

a
b

v1

v2

v3

v4

v5

taI

p

Fig. 7. Sa
I is divided into spherical tri-

angles (red lines), one of which con-
tains Πa(p).

a

b

vk−1

vk

vk+1

qq′

gk
d

Fig. 8. The intersection of the exten-
sion of segment vk to q with l is be-
tween a and b.

Lemma 7. If Conditions 1 and 2 are satisfied, Condition 3.4. implies Condition
3.2.

Proof. For n = 3 we have I = ∅ and F = {f1}. Since B circles around l, there
must be an intersection of l and f1. Due to Condition 3.4., this is between a and
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b, and because of the order of the vertices of f1 as induced by Lemma 1, a is on
the positive and b on the negative side of f1, and Condition 3.2. is satisfied.

We now consider n > 3. The partition F contains n− 2 faces, the border B
has n edges (see Lemma 3). If every face of F had at most one edge of B, there
would be at least two edges in B left. Since no face of F can have three edges of
B (otherwise B would have a sub-cycle of three edges), at least two faces of F
must have two edges of B. Let F̂ ⊂ F be the set of faces with two edges in B.

The line l intersects either one face of F in its interior, or it intersects an
inner edge of I and therefore two faces of F on their border.

In the case that l intersects an inner edge, and the adjacent faces of F are
the only two faces in F̂ , there can be no other faces in F , due to the following: if
two faces with each two edges in B and both sharing a common inner edge, their
edges in B already define a cycle. Since B does not contain any sub-cycles, there
can be no further edges in B. In this case we have n = 4. Since the intersection
of l with f1 and f2 is between a and b (Condition 3.4.), and because of the order
of the vertices of f1 and f2, a is on the positive side of f1 and f2, and b is on the
negative side. Thus, in this case Condition 3.2. is satisfied.

For the remaining case there is at least one face f in F̂ that has no in-
tersection with l, because otherwise Conditions 1 and 2 were violated. Let
f = (vk−1, vk, vk+1). Because f does not intersect l, θk−1 + θk < π. Thus,
the inner edge d = (vk−1, vk+1) cannot cross any other cell besides ck−1 and
ck. Due to Condition 3.4., d̊ ⊂ ck−1 ∪ ck. With gk = (a, b, vk), the intersection
d ∩ gk = {q}, with q in g̊k. When extending the line segment from vk to q, it
intersects the segment e in its interior in point q′, because of (5) (see Figure 8).
Since vk and q are points in f , the line through vk and q is also in the plane of f ,
and so is q′. From these considerations and the vertex order of f , it follows that
a is on the positive and b is on the negative side of f . Thus, f fulfills Condition
3.2..

Now we remove f from F , i.e., F becomes F \{f}, B becomes (B\{bk−1, bk)})
∪ {d}, and I becomes I \ {d}. This new edge cycle B still satisfies Conditions
1 and 2, but has one edge less. This procedure can be repeated until n = 3, or
n = 4 and l intersects both faces in F . �

Theorem 2. If Conditions 1 and 2 are satisfied, Conditions 3.2., 3.1., 3.3., and
3.4. are equivalent.

Proof. This follows directly from Lemmata 4, 5, 6, and 7. �

5 Geometric Conditions for G23

We use the same notation as in Section 4, i.e., F = {f1, . . . , fm} is a set of
faces sandwiched between a and b, such that F is a connected 2-manifold. The
edge set B = {b1, . . . , bn} are the border edges of F . The order of edges in B is
induced by the order of boundary edges in ∂F.

The triangulation before and after the G23-swap is denoted by T ′ and T .
We define the orientation of fi so that a is on the positive side of fi. The cells
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incident to these faces are C ′ = {c′a,1, c
′
b,1, . . . , c

′
a,m, c

′
b,m} with c′p,i = fi∪{p} for

i = 1, . . . ,m and p ∈ {a, b}. The new edge in T is e = (a, b).
Next we define the conditions for which G23 will result in a valid triangulation.

Condition 4 The triangulation T ′ = (V, E ′,F ′, C′) is valid, and all cells of T ′
have positive orientation.

Condition 5 The edges of B form exactly one simple cycle (v1, . . . , vn).

This condition ensures that the faces in F are connected via edges, that there
is only one connected component of faces, and that the faces form a bounded
2-manifold without holes. Examples of sets F that violating Condition 5 are
shown in Figures 9(a), 9(b), and 9(c).

Condition 6 All vertices incident to a face in F are on the border B.

Condition 6 the absence of interior vertices in F that are not part of B.
Those interior vertices would be removed by G23, but a swap may only modify
the connectivity, but not add, remove, or move vertices. Figure 9(d) shows an
example of a set F that violates Condition 6 due to an interior vertex.

f1

f2

f3

f4

(a) Violating Condi-
tion 5.

f1
f2

f3

f4

f5

f6
f7

f8f9

f10

f11

(b) Violating Con-
dition 5.

f1

f2

f3
f4

(c) Violating Condi-
tion 5.

f1

f2

f3
f4

f5

(d) Violating Con-
dition 6.

Fig. 9. Examples of sets F violating Conditions 5 or 6.

Lemma 8. If Condition 6 is satisfied, the number of vertices in B is n = m+2.

Proof. If Condition 6 is satisfied, F is a partition of B. Considering Lemma 3
we can conclude m = n− 2. Therefore, n = m+ 2. �

The G23-swap will now replace the cells C ′ by the cells C = {c1, . . . , cn} with

ci = (a, b, vi, vi+1)

and faces gi = (a, b, vi), where the index i is understood modulo n.

Condition 7 One of the equivalent following conditions holds:
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7.1. All cells ci have positive orientation.
7.2. The dihedral angle θi between the faces gi and gi+1 (in counterclockwise

direction, seen from a in direction b) is in (0, π).

Lemma 9. Condition 7.1. and Condition 7.2. are equivalent.

Proof. ci has positive orientation if and only if ci is consistently oriented or non-
degenerate. This is true if and only if the inner dihedral angle θi is in (0, π). �

Theorem 3. If Conditions 4, 5, 6, and 7 are met, the triangulation T = (V, E ,
F , C) with C = (C \ C ′) ∪ C (and E and F accordingly) is valid.

Proof. Due to Conditions 4 and 7.1., all cells of C have positive orientation. To
prove that there are no holes in C, we check for border faces of the cells of C:

– The faces bi ∪ {p} for p ∈ {a, b} are border faces of both C ′ and C.
– The faces gi are incident to ci−1 and ci, i.e., gi is not on the border of C.

Thus, there are no new border faces, i.e., there are no holes in C. �

6 Replacing Generalized Swaps by a Series of Basic
Swaps

In [23] Shewchuk showed that the “multi-face removal” (equivalent to G23) and
“edge removal” (equivalent to G32) can be replaced by a series of basic 2-3 and
3-2 swaps. The intermediate triangulations are topologically correct, but may
contain inconsistently oriented or degenerate tetrahedra.

We will show that there always exists a series of basic 2-3, 3-2, and 4-4
swaps to mimic the effect of a G23- and a G32-swap, where all intermediate
triangulations are valid. This result shows that the G23- and G32-swaps do not
add additional potential that is not already possible with 2-3, 3-2 and 4-4 swaps.
An optimization procedure like simulated annealing should theoretically be able
to find a near-optimal solution also without utilizing G23 and G32. In practice,
the convergence rate can be increased by implementing G23 and G32.

6.1 Replacing G32

Let e be an inner edge of triangulation T , B the set of border edges, and F a
valid partition of B, so that the Conditions 1, 2, and 3 for G32 are satisfied.

Theorem 4. The same effect as the G32 swap operation of e and partition F
can be obtained by a series of either

– n− 3 basic 2-3 swaps followed by a 3-2 swap, or
– n− 4 basic 2-3 swaps followed by a 4-4 swap, for n ≥ 4.
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Proof. We use the same arguments as in the proof of Lemma 7.
For n = 3, F consists of exactly one face f1, and the vertices of f1 circle

around e exactly once. Therefore, the conditions are satisfied to apply a 3-2
swap to e, so we can substitute G32 by a single 3-2 swap.

For n = 4, and the single inner edge d = (vi, vi+2) with i ∈ {1, 2} intersects
with e, the quadrilateral (vi,a,vi+2,b) is planar and convex, fulfilling the con-
ditions of a 4-4 swap. This 4-4 swap replaces e by d and the four cells of C with
the four cells of C ′. Thus, the G32 swap can be replaced by a single 4-4 swap.

If n = 4 and d and e do not intersect, or if n > 4, there is at least one
face in F with two edges in B that does not intersect e. Let this face be fj =
(vi−1, vi, vi+1). As in the proof for Lemma 7, the edge d = (vi−1, vi+1) intersects
the face gi in its interior, so the cells ci−1 and ci fulfill the condition for a 2-3 swap.
This swap removes ci−1 and ci from the triangulation, adds c′a,j and c′b,j and a
temporary new cell c = (a, b, vi−1, vi+1). The remaining cells (C \ {ci−1, ci}) ∪
{c} together with the reduced partition F \ {fj} and the reduced border (B \
{(vi−1, vi), (vi, vi+1)})∪{d} fulfill Conditions 1–3. So, G32 can be applied to the
reduced setting. By induction, the reduced setting can be processed with either
(n − 1) − 3 2-3 swaps, followed by a 3-2 swap, or with (n − 1) − 4 2-3 swaps,
followed by a 4-4 swap. Adding the 2-3 swap to remove fj , the claim follows. �

6.2 Replacing G23

Since the G23 operation is the inverse of the G32 operation for the same partition
F , G23 can be replaced by a series of basic swaps.

Theorem 5. The same effect as a G23 operation of a partition F sandwiched
between a and b can be obtained by a series of either

– a single 2-3 swap, followed by n− 3 3-2 swaps, or
– a single 4-4 swap, followed by n− 4 3-2 swaps.

Proof. While G23 replaces the cells C ′ by cells C, G32 does the inverse. G32 can
be substituted by a series of basic swap operations G32 = s1 ◦ s2 ◦ · · · ◦ sm, with
m being either n− 2 (sm being a 3-2 swap) or n− 3 (sm being a 4-4 swap), as
in Theorem 4. For the same choice of F , we have

G23 = G32
−1 = (s1 ◦ · · · ◦ sm)−1 = s−1

m ◦ · · · ◦ s−1
1 .

The inverse of a 3-2 swap is a 2-3 swap and vice versa, and the inverse of a 4-4
swap is a corresponding 4-4 swap. We start in G23 with s−1

m , which is either a
2-3 swap or a 4-4 swap. Then we proceed with either n−3 or n−4 3-2 swaps. �

7 Conclusions

We have presented different geometric conditions for generalized swap operations
a 3D triangulation. These conditions are proved to be equivalent, such that one



Generalized swap operation for tetrahedrizations 17

can use that particular condition in practice that is most appropriate given the
specific needs of an implementation. In a mesh optimization application these
swap operations are used to speed up the optimization process and to attenuate
”getting stuck” in local minima.

Furthermore, we have shown that the generalized swap operations can be
realized by simple 3-2, 2-3, and 4-4 swaps, which simplifies the implementation
significantly. This decomposition of the generalized swap guarantees at the same
time, that all intermediate triangulations are consistently oriented and do not
contain degenerate cells, causing numerical problems in certain applications.

Based on these conditions, our future research plans are focused on applica-
tions of 3D mesh optimizations, e.g., in video compressions or bio-medical and
bio-mechanical simulations.
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