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1 Introduction

Computing a good quality convex lower bound function for a given function is of great importance in global optimisation
when a branch and bound approach is used. Because of their simplicity and ease of computation, constant and affine lower
bound functions are especially useful. Constant bound functions are thoroughly used when interval computation techniques
are applied to global optimisation, cf. [6]. However, when using constant bound functions, all information about the shape of
the given function is lost. A compromise between convex envelopes, e.g. [1], which require in the general case a great deal of
computational effort, and constant lower bound functions are affine lower bound functions. In this paper we show how tight
affine lower bound functions for multivariate polynomials can be constructed by utilising the coefficients of the expansion of
the given polynomial into Bernstein polynomials. For further details, see [5].

2 Bernstein Expansion
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, ann-variate polynomial
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i, x ∈ I = [0, 1]n, can be represented asp(x) =
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xi(1 − x)l−i is theith

Bernstein polynomial of degreel, and the so-calledBernstein coefficientsbi are given bybi =
∑i

j=0

(i

j)
(l

j)
aj , 0 ≤ i ≤ l. For an

efficient computation of the Bernstein coefficients, see [9].
A fundamental property for our approach is theconvex hull property(conv denoting the convex hull)
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: 0 ≤ i ≤ l

}

. (1)

3 Affine Lower Bound Functions

There are numerous possible approaches to deriving a tight affine lower bound function from the Bernstein control pointsof a
given polynomial, the convex hull of which is formed in (1). Methods are introduced in [2], [3], [4] and compared in [4]. The
simplest method is to use constant bound functions obtainedby choosing the minimum Bernstein coefficient. Other methods
rely on a control point associated with the minimum Bernstein coefficient and a determination ofn other control points. These
are chosen in such a way that the linear interpolant of these points coincides with one of the lower facets of the convex hull of
the control points (cf. (1)) and therefore constitutes a lower bound function for the given polynomial. Such a bound function
can be obtained by the solution of a system of linear equations together with a sequence of back substitutions [3].

An alternative approach to the prior methods is to derive an affine approximation to thewhole setof control points (and
thereby the graph of the polynomial) over the boxI. Here we propose the use of the linear least squares approximation.
This yields an affine function which closely approximates the graph of the polynomial over the whole of the box. It must be
adjusted by a downward shift so that it passes under all the control points, yielding a valid lower bound function:

1. LetA be them × (n + 1) matrix whosei, jth element is defined asai,j = ij/lj, for 1 ≤ j ≤ n, ai,n+1 = 1. Let b be
the vector consisting of the correspondingm Bernstein coefficients. Then the coefficientsγ of the affine function can be
obtained by fitting it over the control points using the leastsquares method:AT Aγ = AT b, yielding the affine function
c∗(x) =

∑n
i=1 γixi + γn+1.

2. Compute the maximum positive discrepancy betweenc∗ and the control points, and perform a downward shift:δ+ =
max

{

c∗
(

i
l

)

− bi : 0 ≤ i ≤ l
}

. By construction,c, c(x) = c∗(x) − δ+, x ∈ I, is a valid affine lower bound function.
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Table 1 Results for randomly generated polynomials.

Method Constant bound functions Facet method Least squares method
n D k (D + 1)n time (s) δ time (s) δ time (s) δ

2 2 5 9 0.000002 1.420 0.000069 0.981 0.000006 0.698
2 6 10 49 0.000011 2.002 0.00031 1.677 0.000024 1.496
2 10 20 121 0.000044 2.852 0.00074 2.511 0.000070 2.435
4 2 20 81 0.000053 3.458 0.0012 2.797 0.000090 2.468
4 4 50 625 0.00055 5.682 0.0093 5.045 0.00079 4.870
6 2 20 729 0.00056 4.075 0.016 3.353 0.0010 3.131
8 2 50 6561 0.0090 6.941 0.24 6.291 0.018 6.300

10 2 50 59049 0.11 7.142 3.43 6.503 0.29 6.473
12 2 50 531441 1.32 7.377 > 1 minute 3.81 6.712

Theorem 3.1 The following error bound is valid:0 ≤ p(x) − c(x) ≤ maxi=0,...,l

(

bi − c
(

i
l

))

, x ∈ I.

4 Results with Randomly Generated Polynomials

The new method was tested with numerous polynomials inn variables with degreel = (D, . . . , D)T and compared to constant
bound functions and a previous method [3], termedfacet method. Coefficients were randomly generated in[−1, 1].

Table 1 lists the results for different values ofn, D, andk (the number of non-zero terms);(D + 1)n is the number of
Bernstein coefficients. In each case100 random polynomials were generated and the mean computationtime and errorδ are
given, whereδ is an upper bound on the discrepancy between the polynomial and its lower bound function overI, computed
as the right-hand side of the inequality in Theorem 3.1. The results were produced withC++ on a 2.4 GHz PC; for details on
the software used, see [7].

Compared to the previous method, the new method in general delivers tighter bound functions, and is one to two orders
of magnitude faster. Compared to constant bound functions,it provides much better bound functions, but is only slower by a
factor of 1.4 to 3. For a method for computing constant bound functions for sparse polynomials which avoids the exponential
complexity of the approach presented in this paper, the reader is referred to [8].

5 Rigorous Bound Functions

Due to rounding errors, inaccuracies may be introduced intothe calculation of the Bernstein coefficients and the corresponding
bound functions. As a result, the computed affine function may not stay below the given polynomial. We also wish to consider
the case of uncertain (interval) input data. The method presented in this paper is especially well suited to the computation
of the affine lower bound function in such a way that it can beguaranteedto stay below the given polynomial and is easily
adapted into a verified version using interval arithmetic (e.g. [6]); for a technical report on this software, see [7].

Given a polynomial with interval coefficients (which may result either from some uncertainties in the problem, or as
very small intervals of machine precision width, in order tocater for rounding errors), firstly compute the interval Bernstein
coefficients. Then compute the linear least squares approximation of the control points as before, except using themidpointsof
the interval Bernstein coefficients. Note that this step (the bulk of the computation) does not need to be performed rigorously,
and is implemented with normal floating point arithmetic. Lastly, compute the discrepancyδ+ and perform the downward
shift as before, but according to thelower boundsof the Bernstein coefficients.
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