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1 Introduction

Computing a good quality convex lower bound function for @egi function is of great importance in global optimisation
when a branch and bound approach is used. Because of theiiciynand ease of computation, constant and affine lower
bound functions are especially useful. Constant boundtimmg are thoroughly used when interval computation temhes
are applied to global optimisation, cf. [6]. However, whesing constant bound functions, all information about thepshof

the given function is lost. A compromise between convex Epes, e.g. [1], which require in the general case a grediodea
computational effort, and constant lower bound functiomsadfine lower bound functions. In this paper we show howttigh
affine lower bound functions for multivariate polynomiaéncbe constructed by utilising the coefficients of the exjmansf

the given polynomial into Bernstein polynomials. For fetlletails, see [5].

2 Bernstein Expansion

Comparisons and the arithmetic operators on multiindices (i1, ... ,i,)” are defined componentwise. Forc R" its
) ) ) l 51 ln n

multipowers arer’ := z}' ... zir. Using the compact notatioy := > ... >, (}) == I] (iz) ann-variate polynomial
i=0 i1=0  i,=0 n=1

l l
p,p(x) = 3 aa’, x € I = [0,1]", can be represented agr) = 3 b;B;(z), whereB;(z) = (})2(1 — 2)"~" is theith
=0 =0

Bernstein polynomial of degrdeand the so-calleBernstein coefficients are given by; = Zi ({)

i=0 (1)
efficient computation of the Bernstein coefficients, see [9] ’
A fundamental property for our approach is gwnvex hull propertyconv denoting the convex hull)

Uoin) 7oty oo {() o=ty 2

3 Affine Lower Bound Functions

aj, 0 <¢ <. Foran

There are numerous possible approaches to deriving a figie bower bound function from the Bernstein control poiata
given polynomial, the convex hull of which is formed in (1) eéhods are introduced in [2], [3], [4] and compared in [4]eTh
simplest method is to use constant bound functions obtdigethoosing the minimum Bernstein coefficient. Other method
rely on a control point associated with the minimum Bermsteiefficient and a determinationwfther control points. These
are chosen in such a way that the linear interpolant of thesgsgcoincides with one of the lower facets of the convex biul
the control points (cf. (1)) and therefore constitutes adolound function for the given polynomial. Such a bound fiomc
can be obtained by the solution of a system of linear equsitiogether with a sequence of back substitutions [3].

An alternative approach to the prior methods is to derivefineaapproximation to thevhole setof control points (and
thereby the graph of the polynomial) over the bbxHere we propose the use of the linear least squares appatam
This yields an affine function which closely approximates ¢ginaph of the polynomial over the whole of the box. It must be
adjusted by a downward shift so that it passes under all the@goints, yielding a valid lower bound function:

1. Let A be them x (n + 1) matrix whose, jth element is defined ag ; = i;/l;, for1 < j < n, a; ,+1 = 1. Letb be
the vector consisting of the correspondingBernstein coefficients. Then the coefficientsf the affine function can be
obtained by fitting it over the control points using the lestpiares methodd” Ay = A”'b, yielding the affine function
*(x) = 31y Vii + Yot

2. Compute the maximum positive discrepancy betweeand the control points, and perform a downward shift: =

max {c* () —b; : 0 < i < [}. By construction, c(z) = ¢*(z) — 6T, = € I, is a valid affine lower bound function.
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Table 1 Results for randomly generated polynomials.

[ Method | Constant bound function§  Facet method | Least squares methofi

n D k. (D+1)" | time(s) [ time (s) [} time (s) [}

2 2 5 9 | 0.000002 1.420 0.000069 0.981| 0.000006 0.698
2 6 10 49 | 0.000011 2.002 0.00031 1.677| 0.000024 1.496
2 10 20 121| 0.000044 2.852 0.00074 2.511| 0.000070 2.435
4 2 20 81 | 0.000053 3.458 0.0012 2.797| 0.000090 2.468
4 4 50 625 | 0.00055 5.682 0.0093 5.045| 0.00079 4.870
6 2 20 729 | 0.00056 4.075 0.016 3.353| 0.0010 3.131
8 2 50 6561 | 0.0090 6.941 0.24 6.291| 0.018 6.300
10 2 50 59049| 0.11 7.142 3.43 6.503 | 0.29 6.473
12 2 50 531441| 1.32 7.377 > 1 minute 3.81 6.712

Theorem 3.1 The following error bound is validd < p(z) — ¢(z) < max;—q,...; (b —c (%)), x € I.

4 Results with Randomly Generated Polynomials

The new method was tested with numerous polynomiaisiariables with degree= (D, ..., D)* and compared to constant
bound functions and a previous method [3], terrfeexkt methodCoefficients were randomly generated-l, 1].

Table 1 lists the results for different valuesswof D, andk (the number of non-zero terms)D + 1)™ is the number of
Bernstein coefficients. In each cad® random polynomials were generated and the mean computatierand errop are
given, where is an upper bound on the discrepancy between the polynomidtslower bound function over, computed
as the right-hand side of the inequality in Theorem 3.1. Hselts were produced with++ on a 2.4 GHz PC; for details on
the software used, see [7].

Compared to the previous method, the new method in generaédetighter bound functions, and is one to two orders
of magnitude faster. Compared to constant bound functibpsyvides much better bound functions, but is only sloweab
factor of 1.4 to 3. For a method for computing constant bourmdtfions for sparse polynomials which avoids the expoaénti
complexity of the approach presented in this paper, theardadeferred to [8].

5 Rigorous Bound Functions

Due to rounding errors, inaccuracies may be introducedirg@alculation of the Bernstein coefficients and the cpading
bound functions. As a result, the computed affine functiog n@ stay below the given polynomial. We also wish to conside
the case of uncertain (interval) input data. The methodemtes! in this paper is especially well suited to the computat
of the affine lower bound function in such a way that it cargbaranteedo stay below the given polynomial and is easily
adapted into a verified version using interval arithmetig.(§5]); for a technical report on this software, see [7].

Given a polynomial with interval coefficients (which may wéiseither from some uncertainties in the problem, or as
very small intervals of machine precision width, in ordectder for rounding errors), firstly compute the interval i&ein
coefficients. Then compute the linear least squares appediin of the control points as before, except usinghiigpointsof
the interval Bernstein coefficients. Note that this step {ihlk of the computation) does not need to be performedaiggly,
and is implemented with normal floating point arithmetic.stlg compute the discrepanédy” and perform the downward
shift as before, but according to tfever boundf the Bernstein coefficients.
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