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Abstract. In this paper, rectangular matrices whose minors of a given order have the same strict
sign are considered and sufficient conditions for their recognition are presented. The results are
extended to matrices whose minors of a given order have the same sign or are allowed to vanish.
A matrix A is called oscillatory if all its minors are nonnegative and there exists a positive integer
k such that Ak has all its minors positive. As a generalization, a new type of matrices, called
oscillatory of a specific order, is introduced and some of their properties are investigated.

1. Introduction

A matrix is called sign-regular of order k (denoted by SRk ) if all its minors of or-
der k are non-negative or all are non-positive. It is called strictly sign-regular of order
k (denoted by SSRk ) if it is sign-regular of order k , and all the minors of order k are
non-zero. In other words, all minors of order k are positive or all are negative.1 We use
εk ∈ {−1,1} to denote the common sign of minors of order k . SSRk matrices have
applications in continuous / discrete-time k -positive systems which have been recently
defined and analyzed in [2, 27]. In passing, we note that our results are part of a grow-
ing body of research on the applications of sign-regularity to the asymptotic analysis of
dynamical systems, e.g., [1, 3, 17, 19, 24, 26]. Former applications appeared, e.g., in
computer aided geometric design [21] and computer vision [18, Section 3.3].
After the first consideration of SRk matrices in [16], these matrices have been subject
of only a few studies, see, [20], where an elegant criterion for an n× k matrix, with
k < n , to be SSRk is provided, see Theorem 4 below. In [12], the linear programing
problem in which all minors of maximal order of the coefficient matrix have the same
sign is studied. The spectral properties of nonsingular matrices which are SSRk are
studied in [1]. Also, the results therein are extended to spectral properties of matrices
that are SSRk for several values of k , for example for all odd k . In the papers referred
to so far with the exception of [20], no practical criterion for a matrix to be [S ]SRk for
some k is given. In our paper we present such a sufficient condition and compare it

Mathematics subject classification (2010): 15B48,15A15..
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1We note that the terminology in this field is not uniform and some authors refer to such matrices as

sign-consistent of order k .
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with the one given in [20].
A matrix A ∈ Rn×m is termed (strictly) sign-regular (SSR, respectively,SR) if it is
(S )SRk for all k = 1, . . . ,min{n,m} . The most important examples of SR [SSR ] ma-
trices are the totally nonnegative (TN) [totally positive (TP)] matrices, that is, matri-
ces with all minors nonnegative [positive]. Such matrices have applications in numer-
ous fields including approximation theory, combinatorics, probability theory, computer
aided geometric design, differential and integral equations, and others [9, 11, 16, 22]. If
the sign condition applies only to the k -minors, we call the matrices totally nonnegative
of order k (T Nk ) [totally positive of order k (T Pk )], i.e., we consider [S]SRk matrices
with εk = 1. 2 T Nk matrices appear in the study of shape preserving properties of
curves [6].
If A ∈ Rn×n is T N , then A is called oscillatory if some power Ak of A is T P . The
groundwork for the theory of these matrices was laid by Gantmacher and Krein [11].
Specifically, they established a basic and simple criterion for any nonsingular T N ma-
trix to be oscillatory. Furthermore, they showed that if A ∈ Rn×n is oscillatory, then
An−1 must be T P . The exponent of an oscillatory matrix A , denoted by exp(A) , is
the least positive integer κ such that Aκ is T P . Oscillatory matrices whose exponent
is equal to n− 1 are completely characterized in [10] by using elementary bidiagonal
factorization and planar networks. In [28], this approach is used to derive an explicit ex-
pression for the exponent of several classes of oscillatory matrices and an upper bound
on the exponent for some classes. Bidiagonalization of general oscillatory matrices is
given in [7]. In our paper, we review some of the properties of oscillatory matrices,
present a new approach to these matrices through properties of a primitive matrix and
the compound matrix, introduce a new class of matrices called oscillatory of order k ,
and study some of their properties.
The reminder of this paper is organized as follows: In Section 2, we introduce the no-
tation used in our paper and present in Section 3 new sufficient conditions to determine
whether a matrix is [S ]SRk . Section 4 contains our result on the new class of matrices
called oscillatory of order k .

2. Notations

For integers k,n , we denote by Qk,n the set of all strictly increasing sequences
of k integers chosen from {1,2, . . . ,n} (with a mild abuse of notation, we will regard
these sequences also as sets). We use the set-theoretic symbols ∪ and \ to denote
somewhat not precisely but intuitively the union and the difference, respectively, of
two index sequences, where we consider the resulting sequences as strictly increasing
ordered. A measure of the gaps in an index sequence α = (α1,α2, . . . ,αk) is the dis-
persion of α , defined as d(α) := αk−α1−k+1. If d(α) = 0, we call α contiguous.
For a given matrix A ∈Rn×m , α ∈Qk,n,β ∈Qs,m , we denote by A[α,β ] the submatrix
of A lying in the rows indexed by α and columns indexed by β ; if k = s we denote
A(α,β ) := det(A[α,β ]) . We suppress the brackets associated with an index sequence

2We note that both abbreviations are often used for a different notion, namely, to denote matrices which
are T Ni or T Pi for all i = 1, . . . ,k .
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if we enumerate its entries explicitly. If we want to refer to the order k of a submatrix
or to a minor, we simply say that it is a k-submatrix or a k-minor, respectively. A
submatrix A[α|β ] or a minor A(α|β ) is called row contiguous if α is contiguous and
β is arbitrary, it is called column contiguous if α is arbitrary and β contiguous. If it is
both row and column contiguous, we simply say that it is contiguous.
For A ∈ Rn×n , the

(n
k

)
×
(n

k

)
matrix Ck(A) denotes the kth multiplicative compound

matrix which contains all the minors of order k of A ordered lexicographically. The
Sylvester-Franke Theorem provides a relation between the determinant of A and the de-
terminant of its compound as detCk(A) = det(A)(

n−1
k−1) , see, e.g., [25]. If all elements of

A ∈ Rn×n are positive (nonnegative), the matrix A is called positive (nonnegative). We
order the eigenvalues λi, i = 1, . . . ,n , of a matrix A ∈Rn×n as |λ1| ≥ |λ2| ≥ . . . ≥ |λn| .
The superscript T denotes transposition. We mean by bxc the greatest integer less than
or equal to x .

3. Recognition of square matrices that are strictly sign-regular of a given order

In this section, we introduce a sufficient condition for all minors of order k of
a matrix to have the same strict sign. First, we review some determinantal equalities
which will be used in this section.

A useful tool for exposing the relations between the minors of a matrix is the
following result.

LEMMA 1. Sylvester’s Determinant Identity, see, e.g., [22, p. 3] Let A ∈ Rn×m .
Pick p ∈ {1, . . . ,min{n,m}} , α ∈ Qp,n and β ∈ Qp,m . For each i ∈ {1, . . . ,n} \ {α}
and j ∈ {1, . . . ,m}\{β} , let

bi j := A(α ∪{i}|β ∪{ j}).

Then for any r≤min{n− p,m− p} the minors of order r of B := (bi j)∈R(n−p)×(m−p)

satisfy

B(i1, . . . , ir| j1, . . . , jr) =
[
A(α|β )

]r−1 A(α ∪{i1, . . . , ir}|β ∪{ j1, . . . , jr}).

The submatrix A[α|β ] is called the pivot block. From Sylvester’s Determinant Identity
we conclude the following determinant identity.

LEMMA 2. Let A ∈ Rn×m and i = (i1, . . . , ik) ∈ Qk,n with d(i) > 0 , and j =
( j1, . . . , jk) ∈ Qk,m . Suppose that there exist an integer t such that ih < t < ih+1 for
some h ∈ {1, . . . ,k− 1} . Then for any s ∈ {1, . . . ,h} , l ∈ {1, . . . ,k} , the following
determinant identity holds

A({i1, . . . , îs, . . . , ik−1}∪{t}|{ j1, . . . , ĵl , . . . , jk})A({i1, . . . , ik}|{ j1, . . . , jk}) =
A({i1, . . . , îs, . . . , ik}|{ j1, . . . , ĵl , . . . , jk})A({i1, . . . , ik−1}∪{t}|{ j1, . . . , jk}) +

A({i1, . . . , ik−1}|{ j1, . . . , ĵl , . . . , jk})A({i1, . . . , îs, . . . , ik}∪{t}|{ j1, . . . , jk}). (1)
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Here the hat notation indicates that the respective index has to be deleted.

Proof. Let C be the (k+1)× (k+1) matrix given by

C :=



ai1 j1 ai1 j2 . . . ai1 jk 0
...

...
...

...
...

aih j1 aih j2 . . . aih jk 0
at j1 at j2 . . . at jk 1

aih+1 j1 aih+1 j2 . . . aih+1 jk 0
...

...
...

... 0
aik−1 j1 aik−1 j2 . . . aik−1 jk 0
aik j1 aik j2 . . . aik jk 0


.

Now apply Sylvester’s Determinant Identity, where the pivot block of size (k−1)×(k−
1) is given by all but the sth and last rows and all but the lth and last columns.

LEMMA 3. Cauchy-Binet Formula, see, e.g., [9, Theorem 1.1.1]
Let A ∈ Rn×p and B ∈ Rp×m , and denote C := AB. Then for each pair of index

sequences α ∈ Qk,n and β ∈ Qk,m , where 1≤ k ≤min{n,m, p} , we have

C(α|β ) = ∑
γ∈Qk,p

A(α|γ)B(γ|β ). (2)

REMARK 1. It follows from Lemma 3 that the product of a nonsingular T N ma-
trix with a T P matrix is again a T P matrix.

The following theorem describes spectral properties of a nonsingular matrix that
is SSRk for some value k .

LEMMA 4. [1, Theorem 2] Suppose that A ∈ Rn×n is nonsingular and SSRk for
some value k , with k ∈ {1, . . . ,n− 1} . Then the eigenvalues of A have the following
properties.

(i) The product λ1λ2 . . .λk is real, and εkλ1λ2 . . .λk > 0 .

(ii) The following inequality holds |λk|> |λk+1| .

The next lemma shows that to verify strict sign-regularity it suffices to check the con-
tiguous minors.

LEMMA 5. [11, Chapter V, Corollary, p.261] Let A ∈ Rn×m . Then A is SSR with
signature ε = (ε1, . . . ,εn′ ), where n′ := min{n,m} , if

0 < εkA(α|β ), whenever α ∈ Qk,n, β ∈ Qk,m and d(α) = d(β ) = 0, k = 1, . . . ,n′.

If all the row contiguous and column contiguous k -minors have the same strict
sign, then the matrix may not be SSRk as the following example shows.

4



EXAMPLE 1. Let A ∈ R3×3 ,

A =

 1 2 −1
0.125 0.5 1
−1 0 1

 .
All the row and column contiguous 2-minors are positive but A(1,3|1,3) = 0.

In the following theorem we provide a sufficient condition for matrices to be SSRk .

THEOREM 1. Let A ∈ Rn×m and the following conditions hold.

(i) A[1, . . . ,n|1, . . .m−1] is SSRk−1 .

(ii) All row contiguous k -minors of A have the same (strict) sign.

Then A is SSRk .

Proof. Suppose that Conditions (i), (ii) hold. Assume without loss of generality
that the minors in Condition (ii) are negative. We will prove by induction on the dis-
persion of the row index sequence that all k -minors are negative. Clearly, the result
hold for any k-minor A(α|β ) with d(α) = 0 . Assume that the claim holds for all k -
minors with row dispersion less than r . Pick α = (i1, . . . , ik) ∈Qk,n with d(α) = r and
β = ( j1, . . . , jk)∈Qk,m . As the sequence α is not composed of consecutive integers, we
can add to this sequence an integer t between ih and ih+1 for some h ∈ {1, . . . ,k−1} .
Applying (1) with `= k to AT yields

A({i1, . . . , îs, . . . , ik−1}∪{t}|{ j1, . . . , jk−1})A({i1, . . . , ik}|{ j1, . . . , jk})
= A({i1, . . . , îs, . . . , ik}|{ j1, . . . , jk−1})A({i1, . . . , ik−1}∪{t}|{ j1, . . . , jk})
+ A({i1, . . . , ik−1}|{ j1, . . . , jk−1})A({i1, . . . , îs, . . . , ik}∪{t}|{ j1, . . . , jk}). (3)

It follows from condition (i) that the three (k− 1 )-minors in (3) all have all the same
strict sign. Now the dispersion of {i1, . . . , ik−1}∪ {t} and {i1, . . . , îs, . . . , ik}∪ {t} is
strictly less than r . Thus by the induction hypothesis, these minors are also negative.
This implies that A(i1, . . . , ik| j1, . . . , jk) is negative, which completes the proof.

Since A is SSRk if and only if AT is so, we may conclude the following corollary.

COROLLARY 1. Let A ∈ Rn×m such that the following conditions hold.

(i) A[1, . . .n−1|1, . . . ,m] is SSRk−1 .

(ii) All column contiguous k -minors of A have the same (strict) sign.

Then A is SSRk .

REMARK 2. The proof of Theorem 1 shows that in the application of (1) we can
choose ` as any integer in the range {1, . . . ,k} . Therefore, the statement of this theorem
remains in force if we replace A[1, . . . ,n|1, . . . ,m−1] in Condition (i) by any submatrix
which is obtained from A by deletion of one of its columns.
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The sufficient condition of Theorem 1 requires to check:

•
( n

k−1

)(m−1
k−1

)
minors of order k−1; and

• (n− k+1)
(m

k

)
row contiguous k -minors.

We extend Theorem 1 to recognize SRk matrices.

THEOREM 2. Let A ∈ Rn×m and assume that the following conditions hold.

(i) A is SRk−1 and each selection of k−1 rows of A is linearly independent.

(ii) For each contiguous α ∈ Qk,n , A[α|1, . . . ,m] is SRk with common sign εk and
has rank k .

Then A is SRk .

Proof. We follow the proof of Theorem 2.6 in [22]. For h ∈ (0,1) , the matrix
Qm := (h(i− j)2

)m
i, j=1 is T P. Define U := AQm . It follows from the Cauchy-Binet For-

mula (2) and the rank conditions that U fulfils the conditions of Theorem 1, and we
conclude that U is SSRk . By definition, limh→0 Qm = I and thus, U → A as h→ 0 .
Therefore, A is SRk which completes the proof.

REMARK 3. In Theorem 2, the rank condition and the condition on selection of
k−1 rows of A cannot be waived as the following example shows. Consider

A =


1 0 1
0 0 0
1 0 0
2 1 1

 ,
and k = 2. Then rank(A) = 3, A is SR1 and Condition (ii) is satisfied only for
A[3,4|1,2,3] . A is not SR2 as it has both positive and negative 2-minors (e.g., A(3,4|1,2)=
1 and A(1,4|2,3) =−1).

By multiplication of U from the left by the matrix Qn in the proof of Theorem 2, it
can be seen that the strictly sign-regular matrices of order k are dense in the class of
sign-regular matrices of order k .

THEOREM 3. Pick a matrix A ∈Rn×m that is SRk and of rank r , with k≤ r . For
any ε > 0 there exists a matrix B ∈ Rn×m that is SSRk such that ‖ A−B ‖≤ ε, where
‖ . ‖ denotes some matrix norm.

REMARK 4. By its importance in the theory of linear totally nonnegative differ-
ential systems, see, e.g., [26], we consider now the tridiagonal case. For a tridiag-
onal, entry-wise nonnegative matrix that is SRk with εk = 1 we only need to check
whether all its contiguous principal minors up to order k are nonnegative: Let A be
a tridiagonal matrix, i.e., ai j = 0, whenever |i− j| > 1. Then it is readily seen [9,
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p. 6] that A(i1, . . . , ik| j1, . . . , jk) = 0, whenever there exists an s ∈ {1, . . . ,k} such that
|is− js| > 1. Furthermore, if A[i1, . . . , ik| j1, . . . , jk] is any submatrix of A that satis-
fies |is− js| ≤ 1,s = 1, . . . ,k , then A(i1, . . . , ik| j1, . . . , jk) is a product of contiguous
principal minors and entries from the super- and/ or subdiagonals. Thus, if A is a tridi-
agonal, entry-wise nonnegative matrix, then all k -minors of A are nonnegative if all its
contiguous principal minors up to order k are nonnegative.

We now give another test for recognizing SSRk matrices. This is based on the following
result.

THEOREM 4. [20, Theorem 2.2] Let A ∈ Rn×k with n > k . Then the matrix A is
SSRk if and only if the following (n− k)k+1 minors have the same strict sign:

• A(s,s+1. . . . ,s+ k−1|1, . . . ,k) for any s ∈ {1, . . . ,n− k+1} ,

• A(1,2, . . . ,k−r, j, j+1, . . . , j+r−1|1, . . . ,k) for any r such that 1≤ r < k and
for any j such that k− r+2≤ j ≤ n− r+1 .

EXAMPLE 2. Consider the case n = 4 and k = 2. Then the (n− k)k + 1 = 5
minors that must have the same strict sign are

• A(1,2|1,2),A(2,3|1,2),A(3,4|1,2) ,

• A(1,3|1,2),A(1,4|1,2) .

As an immediate consequence of Theorem 4 we obtain the following corollary.

COROLLARY 2. Let A ∈ Rn×m . Then A is SSRk if and only if for all the n×
k submatrixes of A denoted by A′ with column indexes {d1,d2, . . . ,dk} ∈ Qk,m the
following (n− k)k+1 minors of A′ have the same strict sign

A′(s,s+1, . . . ,s+ k−1|d1,d2, . . . ,dk) for anys ∈ {1, . . . ,n− k+1},

and

A′(1,2, . . . ,k− r, j, j+1, . . . , j+ r−1|d1,d2, . . . ,dk),

for any r such that 1≤ r < k and for any j such that k− r+2≤ j ≤ n− r+1 .

By Corollary 2,
(m

k

)
((n−k)k+1) k -minors have to be checked to decide whether

an n×m matrix is SSRk . To facilitate the comparison with the amount of k -minors
required by Theorem 1, we consider now the case m= n and estimate the computational
cost for computing a (k−1)-minor as 1

k the cost of computing a k -minor (by Laplace
expansion, neglecting the multiplication by matrix entries). Then the criterion based on
Theorem 1 is superior to the one based on Corollary 2 if the following inequality holds(

n
k

)
(n− k+1)+

( n
k−1

)(n−1
k−1

)
k

≤
(

n
k

)
((n− k)k+1),
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which reduces after simplification to

(
n

k−1

)
≤ n(n− k)(k−1). (4)

It turns out that for n ≤ 9 inequality (4) is satisfied, see Table 1 for the comparison
for n ≤ 5. For larger n , each of both criteria can outperform the other one with the
tendency that for relatively large n the criterion based on Corollary 2 is superior to the
one based on Theorem 1.

Table 1: Comparison of the number of k -minors in an n×n matrix required by Theo-
rem 1 and Corollary 2

n k no. of k-minors required by
Theorem 1 Corollary 2

3 2 9 9
4 2 24 30
4 3 14 16
5 2 50 70
5 3 50 70
5 4 20 25

4. Generalization of oscillatory matrices

In this section, we introduce a new type of matrices, called oscillatory of a spe-
cific order, which are intermediate between the nonsingular T Nk and the T Pk matrices.
First, we review some properties of oscillatory matrices and present an alternative ap-
proach to these matrices through properties of a primitive matrix and the compound
matrix.

4.1. Properties of oscillatory matrices

PROPOSITION 1. [11, Chapter II]
Let A ∈ Rn×n be an oscillatory matrix. Then An−1 is T P, in particular, A is nonsin-
gular.

PROPOSITION 2. [11, p.102]

(i) The product of two n× n oscillatory matrices is also an oscillatory matrix with
exponent less than or equal to

⌊ n
2

⌋
.

(ii) The product of m n×n oscillatory matrices, with m≥ n−1 , is T P.

A necessary and sufficient condition for a T N matrix to be oscillatory is given by the
following lemma. We will call the lemma the Criterion of Gantmacher and Krein.
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LEMMA 6. [11, Chapter II, Theorem 10], [22, Theorem 5.2] For a T N matrix
A = (ai j) ∈ Rn×n to be an oscillatory matrix, it is necessary and sufficient that the
following two conditions hold:

(i) A is a nonsingular matrix,

(ii) ai,i+1 > 0 and ai+1,i > 0 , i = 1,2, . . . ,n−1 .

It is clear from the Criterion of Gantmacher and Krein that a nonsingular T N
matrix is oscillatory if it is irreducible.

4.2. Alternative approach to oscillatory matrices with application to discrete-time
linear-time varying systems

First, we recall from [5, 15] several definitions and results that will be used later
on.

DEFINITION 1. A nonnegative matrix A ∈ Rn×n is said to be primitive if it is
irreducible and has only one eigenvalue of maximum modulus.

The following theorem characterizes the primitivity of a matrix A .

LEMMA 7. A nonnegative matrix A is primitive if and only if Am is positive for
some m≥ 1 .

The least number m for which Am is positive holds is called the exponent of primitivty.
Bounds for m can be found in, e.g., [8, 14]. The following lemma provides a sufficient
condition for the primitivity of a matrix.

LEMMA 8. An irreducible nonnegative matrix with at least one positive entry on
its main diagonal is primitive.

Although an irreducible matrix may have a reducible power, all powers of a prim-
itive matrix are primitive.

LEMMA 9. Let A ∈ Rn×n be nonnegative and primitive. Then Ak is nonnegative
and primitive for all k = 1,2, . . . .

PROPOSITION 3. Let A ∈ Rn×n . Then A is oscillatory if and only if for all k =
1, . . . ,n the matrix Ck(A) is nonnegative and primitive.

Proof. Suppose that A is oscillatory and k ∈ {1, . . . ,n} . Then Ck(A) is nonnega-
tive. Let v be a natural number such that Av is T P. Then Ck(A)v =Ck(Av) is positive
and by Lemma 7 Ck(A) is primitive To prove the converse implication, suppose that for
all k = 1, . . . ,n the matrix Ck(A) is nonnegative and primitive. Since C1(A) = A, A is
irreducible. Furthermore, A is T N and nonsingular, hence A is oscillatory.
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As an application of oscillatory matrices in dynamical systems, the notion of an
oscillatory discrete-time system was introduced in [17] which is an important general-
ization of a totally positive discrete-time system, see, e.g., [1].

DEFINITION 2. [17] The discrete-time linear-time varying (LTV ) system

y(k+1) = A(k)y(k) (5)

with A :N∪{0} 7→Rn×n , is called an oscillatory discrete time system (ODT S) of order
p, if A(k) is oscillatory for all k∈N∪{0} , and every product of p matrices of the form

A(kp) . . .A(k2)A(k1), 0≤ k1 < .. . < kp,

is T P .

For example, if A(k) is T P for all k then (5) is an ODT S of order 1. Also, by Propo-
sition 2 (ii), (5) is always an ODT S of order n−1. To characterize an ODT S of order
p , 1 < p < n−1, the following question arises.
Suppose that we have ` matrices, each one oscillatory with exponent less than or equal
to p , 1 < p < n− 1. Is every product of p matrices out of these ` matrices T P? Of
course, the product will be an oscillatory matrix with exponent less than or equal to⌊ n

2

⌋
. Moreover, the following inequality holds if the matrices A1, . . . ,Ap commute

exp{A1 . . .Ap}= min{exp(A1), . . . ,exp(Ap)}. (6)

By Remark 1, if at least one of the p matrices is T P then their product is T P and
(6) always holds. A sufficient condition for Ck(A1 . . .Ap) being a positive matrix, for
k = 1, . . . ,n , is that there exist at least two matrices As,At with s, t ∈ {1, . . . , p},s < t ,
and As(β |1, . . . ,k) , At(1, . . . ,k|β )> 0 for all β ∈Qk,n,k ∈ {1, . . . ,n} . Because then all
the entries in the first column of Ck(As) and the first row of Ck(At) are positive, and it
follows that the matrix Ck(A1 . . .Ap) is a positive matrix.

By Theorem 1 and Corollary 1, this requires to calculate n(n+1)
2 column contigu-

ous minors of As and the same amount of column contiguous minors of At . A problem
related (via the compound matrix) to the above question concerns the primitivity of
a finite set of matrices. A set of m nonnegative matrices M = {A1,A2, . . . ,Am} is
primitive if Ai1Ai2 . . .Aik is positive for some indices i1, i2, . . . , ik . For more details, see
[4, 13, 23]. The length of the shortest of such products is called the exponent of M .
The difference to our problem is that in the definition of a primitive set repetitions of
the matrices are permitted and that the elements of the set M need not be primitive.

4.3. A generalization of oscillatory matrices

In this section, we introduce a new type of matrices that are oscillatory of a specific
order and investigate some of their properties.

DEFINITION 3. Pick k ∈ {1, . . . ,n} . The matrix A ∈Rn×n is called oscillatory of
order k , denoted by OSk , if it is nonsingular and totally nonnegative of order k , and
some power of it is totally positive of order k . The smallest such power will be called
the oscillatory exponent of order k .
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Clearly, if A is OSk for all k ∈ {1, . . . ,n} , then A is an oscillatory matrix.

EXAMPLE 3. Consider the matrix

A =

 1 −1 −1
1 2 −1

0.5 1 0

 .
A is nonsingular and T N2 , and

A2 =

−0.5 −4 0
2.5 2 −3
1.5 1.5 −1.5


is T P2 , so A is OS2 and its oscillatory exponent of order 2 is 2.

In Example 3, the oscillatory exponent is identical with the order. However, both can
differ by a large amount: If A is OSn , then the oscillatory exponent is 1. In the other
extreme, if A is OS1 and is tridiagonal, then the oscillatory exponent is at least n−1.

THEOREM 5. For k ∈ {1, . . . ,n} , the matrix A ∈ Rn×n is OSk if and only if the
matrix Ck(A) is a nonsingular nonnegative primitive matrix.

Proof. The proof parallels the one of Proposition 3. The equivalence of the non-
sigularity of A and Ck(A) is a consequence of the Sylvester-Franke Theorem.

The Criterion of Gantmacher and Krein gives a necessary and sufficient condition
for a T N matrix to be an oscillatory matrix. The following theorem provides a sufficient
condition for a T Nk matrix to be an OSk matrix.

THEOREM 6. Let A ∈ Rn×n be a T Nk matrix. Then A is an OSk matrix if the
following conditions hold:

(i) A is a nonsingular matrix.

(ii) A(1, . . . ,k|β )> 0 , A(β |1, . . . ,k)> 0 for all β ∈ Qk,n .

Proof. Let A ∈ Rn×n be nonsingular and T Nk . Then Ck(A) is a nonnegative and
nonsingular matrix. From Condition (ii), it follows that the entries in the first row and
first column of Ck(A) are all positive. Since the graph associated with Ck(A) is strongly
connected we conclude that Ck(A) is irreducible, see, [15, Theorem 6.2.24]. The entry
in the top left position is positive and by Lemma 8, Ck(A) is primitive. The statement
follows now from Theorem 5.

As a consequence of Theorem 6 and the Cauchy-Binet Formula (2), we obtain that
the product of two matrices which are OSk is again OSk . The matrix A in Example
1 fulfills the conditions of Theorem 6, and we conclude that A is OS2 . On the other
hand, the matrix A in Example 3 shows that the condition (ii) in this theorem is not
necessary because A(1,2|1,3) = 0.
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Invertible transformations on matrices that transform one class onto itself can be
quite useful. The next theorem gives three transformations that map an OSk matrix to
an OSk matrix, where the oscillatory exponent remains invariant.

PROPOSITION 4. Let A ∈ Rn×n be an OSk matrix, for some k ∈ {1, . . . ,n} , D
and E be diagonal matrices of order n with positive entries and the matrix T = (ti j) ,
with ti j = δi,n− j+1 for i, j = 1,2, . . .n, be the backward identity matrix of order n. Then
each of the following linear transformations maps OSk onto OSk :

(i) A 7→ AT ,

(ii) A 7→ TAT ,

(ii) A 7→ DAE .

Proof. By Theorem 5, it is sufficient to show that Ck(AT ) , Ck(TAT ) , and Ck(DAE)
are nonsingular nonnegative primitive matrices. Since Ck(AT ) = (Ck(A))T , the state-
ment (i) is obvious. To prove (ii), it is clear that Ck(TAT ) is nonnegative and nonsin-
gular. Let v be a natural number such that Av is T Pk , then Ck(TAT )v = Ck(TAvT ) is
positive, thus by Lemma 7, Ck(TAvT ) is a primitive matrix. To prove (iii), we note
that if A is T Nk , then DAE is T Nk , and if Av is T Pk , then by using the Cauchy-Binet
Formula (2) it follows that (DAE)v is T Pk , too.

In [1], the spectral properties of nonsingular matrices that are strictly sign-regular
for some order are investigated, see Lemma 4. In the following theorem we provide
spectral and other properties of OSk matrices.

THEOREM 7. Let A ∈Rn×n be OSk , for some k ∈ {1, . . . ,n} . Then the following
statements are true.

(i) Each natural power of A is also an OSk matrix.

(ii) If A has the oscillatory exponent of order k equal to v, then for any integer τ ≥ v
the matrix Aτ is T Pk .

(iii) The product λ1λ2 . . .λk is positive.

(iv) The inequality |λk|> |λk+1| holds.

Proof. Suppose that A is an OSk matrix for some k ∈ {1, . . . ,n} . Statement (i)
follows from Theorem 5 and Lemma 9. Statement (ii) follows from the application of
the Cauchy-Binet Formula (2). Suppose that the oscillatory exponent of order k of A is
γ . Then we have by (ii) Aγ and Aγ+1 are T Pk . By Lemma 4 the eigenvalues of these
matrices satisfy

(λ1λ2 . . .λk)
γ > 0

and
(λ1λ2 . . .λk)

γ+1 > 0

from which we obtain (iii). Similarly, statement (iv) can be proved.
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