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ABSTRACT: Many problems in structural mechanics are solvedusing the finite element method (FEM),
wherein a model for a mechanical system is constructed by discretising the structure into a finite set of structural
elements, connected at nodes, leading to a system of equations to be solved. In the case of linearised geometric
displacement equations and linear elastic material behaviour, a system of linear equations is obtained. There
may be uncertainty in some or all of the physical model parameters, caused for example by measurement and
fabrication imprecision, round-off errors, and various other kinds of inexact knowledge. Intervals can be used
to model such parameters when their values are known to lie within certain bounds. In this case, we obtain
a system of equations involving interval parameters. However, a naive solution of this system, using interval
arithmetic, will typically lead to a solution with result intervals that are hopelessly wide. Previous work has
dealt with models where the parameters for uncertain material values (e.g. the Young’s modulus and elements’
cross-sectional areas) are intervals. However a mechanical frame or truss structure will typically be constructed
so that the node positions, before loading, are only known toa tolerance of several millimetres. In this work, we
therefore consider not only uncertain material parametersbut also uncertain node locations and correspondingly
uncertain element lengths, as well as uncertain loading forces. In our approach, firstly guaranteed starting inter-
val enclosures for the node displacements which are relatively wide are computed. These solution intervals are
then iteratively tightenend by performing a monotonicity analysis of all the parameters coupled with a solver
for interval systems of linear equations. In this way it is possible to provide tight guaranteed enclosures for the
node displacements of the model. A simple truss model is presented by way of illustration.

1 INTRODUCTION

Many sources of uncertainty exist in models for the
analysis of structural mechanics problems, includ-
ing measurement imprecision, manufacturing imper-
fections, and round-off errors. An uncertain quantity
is often assumed to be unknown but bounded, i.e.
lower and upper bounds for the parameter can be pro-
vided (without assigning any probability distribution).
These quantities can therefore be represented by inter-
vals, and interval arithmetic, e.g. [1, 10], can be used
to track uncertainties throughout the whole computa-
tion, yielding an interval result which is guaranteed to
contain the exact result.

The finite element method (FEM) is a frequently
used numerical method in structural mechanics. How-
ever, its accuracy is affected by discretisation and
rounding errors and model and data uncertainty. The
source of parametric uncertainty (sometimes also
called data uncertainty) is the lack of precise data

needed for the analysis. In the FEM, parameters de-
scribing the geometry, material, and loads may be un-
certain. Parametric uncertainty may result from a lack
of knowledge (epistemic uncertaintyor reducible un-
certainty), e.g. loads are not exactly known, or an in-
herent variability (aleatory uncertaintyor irreducible
uncertainty) in the parameters, e.g. material parame-
ters are only known to vary within known bounds, cf.
[7].

In the case of a problem where some of the physi-
cal model parameters are uncertain, the application of
the FEM results in a system of linear equations with
numerous interval parameters which cannot be solved
conventionally – a naive implementation in interval
arithmetic typically delivers result intervals that are
excessively large. The interval arithmetic approach
has been variously adapted to handle parameter un-
certainty in the application of the FEM to problems
in structural mechanics, e.g. [3, 8, 9, 11, 14]. Most
of these papers consider the case of affine paramet-



ric dependency. Typically, more advanced models in-
volve polynomial or rational parameter dependencies,
in which case the coefficients of the systems of lin-
ear equations to be solved are polynomial or rational
functions of the parameters. In [5, 16] we present ap-
proaches to solve such systems, employing a general-
purpose fixed-point iteration using interval arithmetic
[12], an efficient method for bounding the range of a
multivariate polynomial over a given box based on the
expansion of this polynomial into Bernstein polyno-
mials [4, 15], and interval tightening methods. Most
of the problems treated in the cited works only ex-
hibit uncertainty in either the material values or the
loading forces. The problem that the lengths of the
bars of a truss system are uncertain, due to fabrica-
tion errors or thermal changes, is considered in [8].
However, in real-life problems, not only the lengths
are uncertain but also the positions of the nodes are
not exactly known. A statically-determinate problem
with uncertain node locations was successfully solved
in [16].

The approach presented here permits a structural
truss problem whereall of the physical model param-
eters are uncertain to be treated. Not only the mate-
rial values and applied loads, but also the positions of
the nodes are assumed to be inexact but bounded and
are represented by intervals. The interval solution en-
closures obtained for the node displacements can be
tightened by considering their monotonicity (where it
holds) with respect to each of the parameters.

This paper is organised as follows. The following
subsection consists of a brief introduction to inter-
val arithmetic. The main methodology is presented
in Section 2, detailing the construction of the interval
FEM, the algorithm for monotonicity analysis, and a
brief description of the solution of interval systems
of equations. A simple example model is presented in
detail in Section 3, with the results of the application
of the new method. We conclude with some sugges-
tions for continuation of this work.1

1.1 Interval Arithmetic

Let IR denote the set of the compact, nonempty real
intervals. The arithmetic operation◦ ∈ {+,−, ·, /} on
IR is defined in the following way. Ifa = [a, a], b =

1A preliminary version of this paper was presented at the
81st Annual Meeting of the International Association of Applied
Mathematics and Mechanics (GAMM) in Karlsruhe, Germany,
March 22–26, 2010.

[b, b] ∈ IR, then

a + b = [a + b, a + b],

a− b = [a− b, a− b],

a · b = [min{ab, ab, ab, ab},max{ab, ab, ab, ab}],

a / b = [min{a/b, a/b, a/b, a/b},

max{a/b, a/b, a/b, a/b}], if 0 /∈ b.

As a consequence of these definitions we obtain the
inclusion isotonicity of the interval arithmetic opera-
tions: If a1, b1 ∈ IR with a1 ⊆ a and b1 ⊆ b then it
holds that

a1 ◦ b1 ⊆ a ◦ b.

Note that some relations known to be true in the set
R, e.g. the distributive law, are not valid inIR. Here
we have the weaker subdistributive law

a · (b + c) ⊆ ab + ac for a, b, c ∈ IR.

By IR
n andIR

n×n we denote the set ofn-vectors
andn-by-n matrices with entries inIR, respectively.

Further details on arithmetic with intervals may be
found in [1, 10].

2 VERIFIED SOLUTION METHOD

2.1 Finite Element Assembly

The usual FEM [2, 17] proceeds by the assemblage
of a single large system of linear equations. For each
structural element in the problem (see Figure 1), an
element stiffness matrixis created, expressed in terms
of cos θ, sin θ, EA, andL, where

• θ is the angle between the two connected nodes;

• E is the Young’s modulus;

• A is the cross-sectional area of the element;

• L is the element’s length (the distance between
the two nodes).

Since the node locations are uncertain, the angles
of the various component elements of the structure
are also interval quantities. However, the angles and
the element lengths are only implicit interval param-
eters. Therefore, by means of the following substitu-
tions, we can rearrange each element matrix so that it
is expressed only in terms of the explicit interval pa-
rameters, viz.EA and the node coordinates,(xl, yl)
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Figure 1: A single element connecting two nodes in a FEM model

and(xr, yr):

cos θ =
xr − xl

L

sin θ =
yr − yl

L

L =
√

(xr − xl)2 + (yr − yl)2.

This yields the element stiffness matrixk as given in
Figure 2.

The global system stiffness matrixK is assembled
in the usual way, as the aggregation of all compo-
nent element stiffness matrices, yielding the system
of equations

Ku = F, (1)

whereu is the vector of node displacements to be de-
termined andF is the corresponding vector of loading
forces. An attempt to solve this system of equations in
the conventional fashion, i.e. by substituting each of
the variables and parameters by their literal values (in
this case, intervals instead of floating-point numbers)
can be made using a linear system solver (e.g. inter-
val Gaussian elimination [1, 10]), using interval arith-
metic where required. However, this typically results
in a solutionu whose component intervals are hope-
lessly wide. It is desired that these result intervals be
as tight as possible, whilst still being guaranteed to
contain the range of all possible solutions.

2.2 Solution of interval systems of equations

There are two general approaches to the solution of
the system of equations (1) which might be adopted:

• Computation of theparametric solution set:
Here,K andF are stored symbolically; their en-
tries are functions of the parameters. The para-
metric solution set, if computed without overes-
timation (which is typically not the case), is the

“true” solution set to the problem. An iterative
method of solution is detailed in [12] and is em-
ployed in [5, 16]. As an alternative, global op-
timisation may be performed, aimed at the min-
imisation and maximisation of the components
of u [6]. The objective functions are the com-
ponents and the model parameters are the vari-
ables. The intervals in which the model parame-
ters vary define the constraints for the variables.
The optimisation is performed independently on
each component. Therefore, one obtains an inter-
val vector containing the parametric solution set;
ideally, it is the tightest interval vector which en-
closes the parametric solution set. However, the
optimisation problem is in general nonconvex.
Therefore, this approach requires significant ef-
fort and is only suited for models with a small
number of parameters.

• Computation of theinterval solution set: Here,
K andF are stored with literal interval entries.
In this case, parameter dependencies are lost and
the interval solution set is thus a superset of the
parametric solution set, and is often considerably
wider. However, it is generally easier to com-
pute. Although the classical Gaussian elimina-
tion may fail if it is applied to interval matrices,
other methods exist which may yield the interval
solution set without overestimation, at least for
relatively small-sized systems. Here, we employ
a solver which proceeds orthant-by-orthant with
respect to the solution space and successively
computes the interval hull of the intersection of
the solution set with each orthant, by the solution
of a number of systems of equations correspond-
ing to the vertex values ofK andF . It is known
that the intersection of the interval solution set
with any given orthant is a convex polytope.

In this paper the latter approach is adopted, due to
its simplicity. Although the resultant solution for the
vector of node displacementsu is not sufficiently tight
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Figure 2: Element stiffness matrixk

to be an acceptable solution in its own right, it is of
sufficient quality to serve as a starting point for the
main part of the method which follows.

2.3 A monotonicity analysis

Consider the system of equations (1) to be solved,
where the entries ofK andF may depend upon one
or more of the parameters of the problem. Taking
the partial derivatives with respect to a single chosen
problem parameterp (which may be a material value,
loading force, or node co-ordinate) gives

K
∂u

∂p
+

∂K

∂p
u =

∂F

∂p
.

Rearranging this equation yields

K
∂u

∂p
=

(

∂F

∂p
− ∂K

∂p
u

)

. (2)

This can be viewed as a system of parametric linear
equations where∂u

∂p
is the unknown quantity. The par-

tial derivatives appearing in the right-hand side can
be computed explicitly. Given a suitably tight enclo-
sure for the node displacementsu, these systems can
be solved for the partial derivatives of the node dis-
placements with respect to each parameter, in turn. It
should be noted that since only an outer estimation for
u is employed, only an outer estimation for∂u

∂p
may

result. However we are not interested in the exact en-
closures for these partial derivatives; it suffices if we
can exclude zero and thereby prove monotonicity. In
most (but not quite all) cases it seems that the node
displacements of a structure do indeed behave mono-
tonically with respect to most or all of the model pa-
rameters.

2.4 Local monotonicity

In the previous subsection only the monotonicity ofu
with respect to each parameter over theentireparam-
eter domain is considered. Now suppose, e.g., that the
interval computed for a certain partial derivative∂ui

∂pj

contains zero, i.e.ui is not proven to be monotone
with respect topj over the whole parameter domain.
However, it might be that, e.g.,∂ui

∂pk
> 0 and ∂ui

∂pl
< 0,

wherej 6= k 6= l. If we wish to find the maximum
value thatui may attain, we can therefore restrictpk

to its maximum value andpl to its minimum value,

and consider the local monotoncity ofui with respect
to pj over this restricted parameter domain.

This process can be iterated until either local mono-
tonicity of all node displacements is proven with re-
spect to all parameters or there is no further improve-
ment.

2.5 Algorithm

The solution procedure consists of the steps detailed
below; a similar scheme was used in [13]. The afore-
mentioned orthant-by-orthant interval system solver
is used throughout to compute the interval hull of the
solution set of a system of linear interval equations.

1. Construct the system of interval equationsKu =
F . The widths of the intervals appearing in the
element stiffness matrices (see Figure 2) can be
minimised by optimisation of the interval arith-
metic calculations for these particular formulae.

2. Using the interval solver, compute an initial en-
closureu{0} for the node displacements.

3. Construct systems of interval equations for the
partial derivatives of the node displacements
with respect to each interval parameter (2), us-
ing the current enclosureu{i} in place ofu in the
right-hand side. Using the interval solver, com-
pute outer enclosures for the partial derivatives;
where zero is excluded, monotonicity is proven.

4. Attempt to minimise/maximise each solution
component in turn by restricting the parameter
domain for monotone parameters and thusly re-
constructing and solving the original system for
the restricted domains.

5. Iterate 3–4, using both successively tighter so-
lution enclosures and monotonicity information
obtained so far, until as many of the solution
components as possible are found to be mono-
tone over the restricted parameter domains.

3 A SIMPLE EXAMPLE

We consider the simple mechanical truss structure
comprising five nodes connected by seven elements
as depicted in Figure 3, where the elements are num-
bered in circles and the coordinates of the nodes are
also given. Two of the nodes, 1 and 2, are fixed;
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Figure 3: A simple mechanical truss model comprising five nodes and seven elements

Table 1: Interval parameters for the seven-element truss model.
Parameter Nominal Value Uncertainty
Young’s modulus∗ area EA 422100 kN ±21105 kN (±5%)

(x1, y1) (0,2) ±0.005 m
(x2, y2) (0,0) ±0.005 m

Node coordinates (x3, y3) (2,1) ±0.005 m
(x4, y4) (2,0) ±0.005 m
(x5, y5) (4,0) ±0.005 m
Fx3

, Fy3
0 kN, 0 kN ±0 kN

Loading forces Fx4
, Fx5

0 kN, 0 kN ±0 kN
Fy4

, Fy5
−50 kN, −50 kN ±1 kN

the other three are free-moving. A downward load-
ing force of50kN is separately applied to both nodes
4 and 5. This is adapted from the model in [16] by
the addition of an extra element, making it no longer
statically-determinate.

Upon loading, we wish to compute the displace-
ments of nodes 3–5, viz.u3, v3, u4, v4, u5, v5, and the
resultant normal forces in all six elements,S1, . . . , S6,
(see Conclusion). Each of these is an interval quan-
tity, since the uncertainty in the input data causes un-
certainty in the solution. We wish to compute inter-
vals which tightly contain the true ranges of values
for each of these variables.

3.1 Model parameters

The uncertain parameters of the model are as follows,
and are also given in Table 1:

• The positions of the five nodes of the truss (be-
fore loading) are subject to an uncertainty of
±0.005m in both thex- andy-directions. With
metres as the coordinate units, this corresponds
to a variation of±5mm. Correspondingly, the el-
ements are of uncertain length (depending upon
configuration, they may vary upto±10

√
2mm).

• The product of the elements’ cross-sectional area
with the Young’s modulus is subject to an un-
certainty of±5%. The nominal value is taken

as an IPE 160 steel element (A = 20.1cm2,
E = 2.1 ∗ 108kN/m2). This results inEA :=
[400995,443205]. Note that there is a single,
globalEA parameter.

• The two non-zero loading force components are
subject to an uncertainty of±1kN in the y-
direction.

3.2 Results

The monotonicity information which is computed as
the algorithm proceeds is displayed in Table 2. In
somewhat more than half of all cases, a solution com-
ponent is found to be monotone (over the whole pa-
rameter domain) with respect to a particular param-
eter. Several of the solution components are also lo-
cally monotone near the minimum or maximum.

The original system of equations (1) is then solved
again 12 times, each over a different restricted pa-
rameter domain, so as to compute the minimum and
maximum of each solution component in turn. Table
3 shows the results obtained from the interval solver,
before and after exploiting the monotonicity tests, and
a Monte Carlo simulation with106 runs, for compari-
son. Point problems chosen randomly from within the
parameter domain are used for the Monte Carlo simu-
lation and the interval hull of their solutions is taken.
It should be noted that the Monte Carlo result only



Table 2: Monotonicity information;+ or − indicates strictly increasing or decreasing over the wholeparameter domain;(+) or (−)
indicates strictly increasing or decreasing over a subset of the parameter domain where the maximum or minimum occurs.

Parameter: x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 Fy4
Fy5

EA
u3 − (+) (−) − (−) + + − −
v3 + + + − + + +
u4 + − (+) − + + +
v4 + + + − + − − − + + +
u5 + − + − + + +
v5 + (+) − + + − − + + + +

Table 3: Enclosures for the node displacements.
Outer Estimation Outer Estimation Inner Estimation
(Interval Solver) (Monotonicity) (Monte Carlo)

u3 [0.00018943,0.00055964] [0.00028110,0.00038895] [0.00030308,0.00036239]
v3 [−0.00183366,−0.00058841] [−0.00181882,−0.00059111] [−0.00103362,−0.00086732]
u4 [−0.00119331,−0.00037243] [−0.00097503,−0.00039357] [−0.00066723,−0.00055739]
v4 [−0.00190384,−0.00063106] [−0.00111894,−0.00082202] [−0.00108971,−0.00091329]
u5 [−0.00196654,−0.00071342] [−0.00150969,−0.00082110] [−0.00119584,−0.00098396]
v5 [−0.00869767,−0.00360912] [−0.00577767,−0.00454714] [−0.00556608,−0.00466507]

serves as aninner estimation of the true solution en-
closure.

Exploitation of the monotonicity information can
thus be seen to yield a significant tightening of the
displacement intervals.

4 CONCLUSION

A method for the verified solution of a finite element
model which may have uncertain (interval) parame-
ters for node locations, loading forces, and material
values has been proposed. The technique relies upon
the computation of the interval hulls of the solution
sets of systems of linear interval equations, coupled
with an analysis of the monotonicity of the solution
with respect to its parameters.

A similar procedure can be used for the computa-
tion of the normal forces of each structural element,
which will be detailed in a forthcoming publication.
In the future, we also wish to explore how effectively
the method may be applied to truss structures with a
greater number of elements and nodes.
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