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Abstract We give a short survey on methods for the enclosure of the solution set of
a system of linear equations where the coefficients of the matrix and the right hand
side depend on parameters varying within given intervals. Then we present a hybrid
method for finding such an enclosure in the case that the dependency is polynomial
or rational. A general-purpose parametric fixed-point iteration is combined with ef-
ficient tools for range enclosure based on the Bernstein expansion of multivariate
polynomials. We discuss applications of the general-purpose parametric method to
linear systems obtained by standard finite element analysisof mechanical structures
and illustrate the efficiency of the new parametric solver.

1 Introduction

In this chapter we consider linear systems

A(x) ·s = d(x), (1a)

where the coefficients of them×mmatrixA(x) and the vectord(x) are functions of
n parametersx1, . . . ,xn varying within given intervals[x1], . . . , [xn]
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ai j (x) = ai j (x1, . . . ,xn), di(x) = di(x1, . . . ,xn), i, j = 1, . . . ,m, (1b)

x ∈ [x] = ([x1], . . . , [xn])
⊤. (1c)

The set of solutions to (1a–1c), called theparametric solution set, is

Σ = Σ (A(x),d(x), [x]) := {s∈ R
m | A(x) ·s= d(x) for somex∈ [x]} . (2)

Engineering problems that involve such parametric linear systems may stem from
structural mechanics, e.g., [3, 4, 21, 26, 29, 38, 42], the design of electrical circuits
[5, 6], resistive networks [13], and robust Monte Carlo simulation [17], to name but a
few examples. The source of parametric uncertainty is oftenthe lack of precise data
which may result from a lack of knowledge due to, e.g., measurement imprecision
or manufacturing imperfections, or an inherent variability in the parameters, e.g.,
physical constants are only known to within certain bounds.

The parametric solution set can be described explicitly only in very simple cases.
Therefore, one attempts to find the smallest axis-aligned box in R

m containingΣ .
Since even this set can only be found easily in some special cases, it is more practical
to attempt to compute a tight outer approximation to this box.

The chapter is organized as follows. In Section 2 we introduce the basic defini-
tions and rules of interval arithmetic, which is a fundamental tool of our approach.
In this section we also compare the interval solution set with the parametric solution
set and give a short overview of methods for its enclosure. InSubsection 3.1 we
present a method for the enclosure of the parametric solution set, called thepara-
metric residual iteration method.This method needs tight bounds on the range of
multivariate functions. In the applications we will present later in this chapter the
coefficient functions (1b) are polynomials or rational functions. To find the range
of a multivariate polynomial, we recall in Subsection 3.2 a method which is based
on the expansion of a polynomial into Bernstein polynomials, termed theBernstein
form. Implementation issues concerning the combination of the parametric residual
iteration method with the Bernstein form are discussed in Subsection 3.3. We apply
the combined approach in Section 4 to some problems of structural mechanics and
draw some conclusions in Section 5.1

2 The Parametric Solution Set

2.1 Interval Arithmetic

Let IR denote the set of the compact, nonempty real intervals. The arithmetic oper-
ation◦ ∈ {+,−, ·,/} on IR is defined in the following way.

If a = [a,a],b = [b,b] ∈ IR, then

1 Preliminary results were presented at the 2nd International Conference on Uncertainty in Struc-
tural Dynamics, Sheffield, UK, June 15–17, 2009.
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a+b = [a+b,a+b],

a−b = [a−b,a−b],

a · b = [min{ab,ab,ab,ab},max{ab,ab,ab,ab}],

a/b = [min{a/b,a/b,a/b,a/b},

max{a/b,a/b,a/b,a/b}], if 0 /∈ b.

As a consequence of these definitions we obtain the inclusionisotonicity of the
interval arithmetic operations: Ifa1,b1 ∈ IR with a1 ⊆ a andb1 ⊆ b then it holds
that

a1◦b1 ⊆ a◦b.

Note that some relations known to be true in the setR, e.g., the distributive law, are
not valid inIR. Here we have the weaker subdistributive law

a · (b+c)⊆ a ·b+a ·c for a,b,c∈ IR.

The width of an intervala = [a,a] is defined as

ω(a) = a−a.

By IR
n andIR

n×n we denote the set ofn-vectors andn-by-nmatrices with entries
in IR, respectively. For a nonempty bounded setS ⊆ R

n, define its interval hull by
�S := [inf S , supS ] = ∩{[s] ∈ IR

n | S ⊆ [s]}.
Where the endpoints of an interval are stored as floating-point numbers, it is nec-

essary to useoutward roundingin all operations, viz. the infimum is rounded down
and the supremum is rounded up. In this way, interval operations deliver guaranteed
results even in the presence of rounding errors with floating-point arithmetic.

Further details on arithmetic with intervals may be found in[1, 22].

2.2 The Interval Solution Set vs. the Parametric Solution Set

A system of linear interval equations is a collection of systems

A ·s = d, A∈ [A], d ∈ [d], where[A] ∈ IR
m×m, [d] ∈ IR

m; (3)

its solution set
{s∈ R

m | ∃A∈ [A], ∃d ∈ [d] : A ·s= d} (4)

is called here theinterval solution set. There are many methods for the enclosure
of the interval solution set, cf. [1, 22]. With the parametric linear system (1a) a
system (3) is associated which is obtained when each entry in(1b) is replaced by an
enclosure for the range of the functionsai j anddi over[x]. In general, the resulting
interval system can be more easily solved than the parametric system. However, the
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dependencies between the parameters are lost and so the interval solution set is in
general much larger than the parametric solution set.

2.3 Prior Work on the Parametric Solution Set

One of the earliest papers on the solution of linear systems with nonlinear parameter
dependencies is [8], cf. [9]. Later works focus on the solution of systems of linear
equations whose coefficient matrices enjoy a special structure. Here the interval
solution set (4) is restricted in such a way that only matrices which have this special
structure are considered. The restricted solution set can also often be represented as
a parametric solution set (2), cf. [11] for examples and references. In the sequel we
survey some methods for the enclosure of the parametric solution set which have a
wider range of applicability.

A method which is applicable to parameter dependencies which can be repre-
sented as

A(x) =
n

∑
k=1

xkA
(k), d(x) =

n

∑
k=1

xkd
(k), A(k) ∈ R

m×m, d(k) ∈ R
m, k = 1, . . . ,n,

was recently given in [14]. This parameter dependency covers the (skew-) symmet-
ric, Toeplitz, and Hankel matrices and was also considered in [4].

In [13] parametric linear systems are considered where the uncertain parameters
xi enter the system (1a) in a rank-one manner. As an example, anyplanar resistive
network has the property that with resistances associated with the parametersxi the
resulting system of linear equations, corresponding to application of Kirchhoff’s
laws, has a rank-one structure. Such systems are solved in [5, 6] by application of
the Sherman-Morrison formula. For systems with a rank-one structure, results are
obtained in [13] which allow one to decide which parameters influence components
of the solution

s(x) = A(x)−1d(x)

in a monotone, convex, or concave manner. Such information greatly facilitates the
computation of an enclosure of the solution set (2).

Another direct method is presented in [15]. Here the coefficient functions of (1a)
are assumed only to be continuous. They are approximated by linear functions in
such a way that one obtains a superset of (2). An interval enclosure for this superset
is determined as an interval vector whose midpoint is obtained as the solution of a
certain system of linear equations. The vector which contains the (half-) widths of
the component intervals is computed as the solution of another system and therefore
must be positive, which is a restriction of the method.

In [36] a direct method is proposed for the case of linear parameter dependency
based on inclusion theorems of Neumaier [22]. However a prerequisite for this
method is that a matrix of coefficients generated from the inverse of the midpoint
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of the interval matrixA must be anH-matrix [22], a condition which seems to be
rarely satisfied for typical problems.

The method which presently seems to have the widest range of applicability is the
parametric linear solver developed by the second author (E.D. P.); see Subsection
3.1 for details.

3 Methodology

3.1 The Residual Iteration Method

In this section we consider a self-verified method for bounding the parametric so-
lution set. This is a general-purpose method since it does not assume any particular
structure among the parameter dependencies. The method originates in the inclusion
theory for nonparametric problems, which is discussed in many works (cf. [34] and
the literature cited therein). The basic idea of combining the Krawczyk-operator
[16] and the existence test by Moore [20] is further elaborated by S. Rump [33]
who proposes several improvements leading to inclusion theorems for the interval
solution (4). In [34, Theorem 4.8] S. Rump gives a straightforward generalization
to (1a) with affine-linear dependencies in the matrix and theright hand side. With
obvious modifications, the corresponding theorems can alsobe applied directly to
linear systems involving nonlinear dependencies between the parameters inA(x)
andd(x). This is demonstrated in [26, 29]. The following theorem is ageneral for-
mulation of the enclosure method for linear systems involving arbitrary parametric
dependencies.

Theorem 1.Consider a parametric linear system defined by (1a–1c). Let R∈R
m×m,

[y] ∈ IR
m, s̃∈ R

m be given and define[z] ∈ IR
m, [C] ∈ IR

m×m by

[z] := �{R(d(x)−A(x)s̃) | x∈ [x]},

[C] := �{I −R·A(x) | x∈ [x]},

where I denotes the identity matrix. Define[v] ∈ IR
m by means of the following

Gauss-Seidel iteration

1≤ i ≤ m : [vi ] := {[z]+ [C] · ([v1], ..., [vi−1], [yi ], . . . , [ym])⊤}i .

If [v] ⊆ [y] and [v]i 6= [y]i for i = 1, . . . ,n, then R and every matrix A(x) with x∈ [x]
are regular, and for every x∈ [x] the unique solution̂s = A−1(x)d(x) of (1a–1c)
satisfieŝs∈ s̃+[v].

In the examples we present in Section 4, we have chosenR≈ A(x̆)−1 and s̃≈
R−1d(x̆), where ˘x is the midpoint of[x].

The above theorem generalises [34, Theorem 4.8] by stipulating a sharp enclo-
sure ofC(x) := I −R·A(x) for x∈ [x], instead of using the interval extensionC([x]).
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A sharp enclosure of the iteration matrixC(x) for x ∈ [x] is also required by other
authors (who do not refer to [34]), e.g., [4], without addressing the issue of rounding
errors. Examples demonstrating the extended scope of application of the generalized
inclusion theorem can be found in [23, 24, 31]. It should be noted that the above the-
orem provides strong regularity (cf. [23]), which is a weaker but sufficient condition
for regularity of the parametric matrix.

When aiming to compute a self-verified enclosure of the solution to a paramet-
ric linear system by the above inclusion method, a fixed-point iteration scheme is
proven to be very useful. A detailed presentation of the computational algorithm can
be found in [26, 33].

In case of arbitrary nonlinear dependencies between the uncertain parameters,
computing[z] and[C] in Theorem 1 requires a sharp range enclosure of nonlinear
functions. This is a key problem in interval analysis and there exists a huge num-
ber of methods and techniques devoted to this problem, with no one method being
universal. In this work we restrict ourselves to linear systems where the elements
of A(x) and d(x) are rational functions of the uncertain parameters. In thiscase
the coefficients ofz(x) = R(d(x)−A(x)s̃) andC(x) are also rational functions of
x. The quality of the range enclosure ofz(x) will determine the sharpness of the
parametric solution set enclosure. In [26] the above inclusion theorem is combined
with a simple interval arithmetic technique providing inner and outer bounds for the
range of monotone rational functions. The arithmetic of generalised (proper and im-
proper) intervals is considered as an intermediate computational tool for eliminating
the dependency problem in range computation and for obtaining inner estimations
by outwardly rounded interval arithmetic. Since this methodology is not efficient in
the general case of non-monotone rational functions, in this work we combine the
parametric fixed-point iteration with range enclosing tools based on the Bernstein
expansion of multivariate polynomials.

3.2 Bernstein Enclosure of Polynomial Ranges

In this section we recall some properties of the Bernstein expansion which are fun-
damental to our approach, cf. [2, 10, 41] and the references therein.

Firstly, some notation is introduced. We define multiindices i = (i1, . . . , in)T as
vectors, where then components are nonnegative integers. The vector 0 denotes
the multiindex with all components equal to 0. Comparisons are used entrywise.
Also the arithmetic operators on multiindices are defined componentwise such that
i⊙ l := (i1⊙ l1, . . . , in⊙ ln)T , for ⊙ = +,−,×, and/ (with l > 0). For instance,i/l ,
0≤ i ≤ l , defines the Greville abscissae. Forx∈ R

n its monomials are

xi :=
n

∏
µ=1

x
iµ
µ . (5)

For then-fold sum we use the notation
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l

∑
i=0

:=
l1

∑
i1=0

. . .
ln

∑
in=0

. (6)

The generalised binomial coefficient is defined by

(
l
i

)
:=

n

∏
µ=1

(
lµ
iµ

)
. (7)

For reasons of familiarity, the Bernstein coefficients are denoted bybi ; this should
not be confused with components of the right hand side vectorb of (1a). Hereafter,
a reference to the latter will be made explicit.

3.2.1 The Bernstein Form

An n-variate polynomialp,

p(x) =
l

∑
i=0

aix
i , x = (x1, . . . ,xn), (8)

can be represented over

[x] := [x1,x1]× . . .× [xn,xn], (9)

x = (x1, . . . ,xn), x = (x1, . . . ,xn),

as

p(x) =
l

∑
i=0

biBi(x), (10)

whereBi is thei-th Bernstein polynomial of degree l= (l1, . . . , ln),

Bi(x) =

(
l
i

)
(x−x)i(x−x)l−i

(x−x)l , (11)

and the so-calledBernstein coefficients bi of the same degree are given by

bi =
i

∑
j=0

( i
j

)

(l
j

) (x−x) j
l

∑
κ= j

(
κ
j

)
xκ− jaκ , 0≤ i ≤ l . (12)

The essential property of the Bernstein expansion is therange enclosing property,
namely that the range ofp over [x] is contained within the interval spanned by the
minimum and maximum Bernstein coefficients:

min
i
{bi} ≤ p(x) ≤ max

i
{bi}, x∈ [x]. (13)
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It is also worth noting that the values attained by the polynomial at the vertices
of [x] are identical to the corresponding vertex Bernstein coefficients, for example
b0 = p(x) andbl = p(x). Thesharpness propertystates that the lower (resp. upper)
bound provided by the minimum (resp. maximum) Bernstein coefficient is sharp,
i.e. there is no underestimation (resp. overestimation), if and only if this coefficient
corresponds to a vertex of[x].

The traditional approach (see, for example, [10, 41]) requires that all of the Bern-
stein coefficients are computed, and their minimum and maximum is determined.
By use of an algorithm (cf. [10, 41]) which is similar to de Casteljau’s algorithm
(see, for example, [32]), this computation can be made efficient, with time complex-
ity O(nl̂n+1) and space complexity (equal to the number of Bernstein coefficients)
O((l̂ +1)n), wherel̂ = maxn

i=1 l i . This exponential complexity is a drawback of the
traditional approach, rendering it infeasible for polynomials with moderately many
(typically, 10 or more) variables.

In [37] a new method for the representation and computation of the Bernstein co-
efficients is presented, which is especially well suited to sparse polynomials. With
this method the computational complexity typically becomes nearly linear with re-
spect to the number of the terms in the polynomial, instead ofexponential with
respect to the number of variables. This improvement is obtained from the results
surveyed in the following subsections. For details and examples the reader is re-
ferred to [37].

3.2.2 Bernstein Coefficients of Monomials

Let q(x) = xr , x = (x1, . . . ,xn), for some 0≤ r ≤ l . Then the Bernstein coefficients
of q (of degreel ) over[x] (9) are given by

bi =
n

∏
m=1

b(m)
im , (14)

whereb(m)
im

is the imth Bernstein coefficient (of degreelm) of the univariate mono-
mial xrm over [xm,xm]. If the box [x] is restricted to a single orthant ofR

n then the
Bernstein coefficients ofq over [x] are monotone with respect to each variablex j ,
j = 1, . . . ,n.

With this property, for a single-orthant box, the minimum and maximum Bern-
stein coefficients must occur at a vertex of the array of Bernstein coefficients. This
also implies that the bounds provided by these coefficients are sharp; see the afore-
mentioned sharpness property. Finding the minimum and maximum Bernstein co-
efficients is therefore straightforward; it is not necessary to explicitly compute the
whole set of Bernstein coefficients. Computing the component univariate Bernstein
coefficients for a multivariate monomial has time complexity O(n(l̂ + 1)2). Given
the exponentr and the orthant in question, one can determine whether the mono-
mial (and its Bernstein coefficients) is increasing or decreasing with respect to each
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coordinate direction, and one then merely needs to evaluatethe monomial at these
two vertices.

Without the single orthant assumption, monotonicity does not necessarily hold,
and the problem of determining the minimum and maximum Bernstein coefficients
is more complicated. For boxes which intersect two or more orthants ofRn, the box
can be bisected, and the Bernstein coefficients of each single-orthant sub-box can
be computed separately.

3.2.3 The Implicit Bernstein Form

Firstly, we can observe that since the Bernstein form is linear, if a polynomialp
consists oft terms, as follows,

p(x) =
t

∑
j=1

ai j x
i j , 0≤ i j ≤ l , x = (x1, . . . ,xn), (15)

then each Bernstein coefficient is equal to the sum of the corresponding Bernstein
coefficients of each term, as follows:

bi =
t

∑
j=1

b( j)
i , 0≤ i ≤ l , (16)

whereb( j)
i are the Bernstein coefficients of thejth term of p. (Hereafter, a super-

script in brackets specifies a particular term of the polynomial. The use of this nota-
tion to indicate a particular coordinate direction, as in the previous subsection, is no
longer required.)

Therefore one may implicitly store the Bernstein coefficients of each term, and
compute the Bernstein coefficients as a sum oft products, only as needed. The im-
plicit Bernstein form thus consists of computing and storing then sets of univariate
Bernstein coefficients (one set for each component univariate monomial) for each
of t terms. Computing this form has time complexity O(nt(l̂ +1)2) and space com-
plexity O(nt(l̂ + 1)), as opposed to O((l̂ + 1)n) for the explicit form. Computing a
ingle Bernstein coefficient from the implicit form requires(n+ 1)t − 1 arithmetic
operations.

3.2.4 Determination of the Bernstein Enclosure for Polynomials

We consider the determination of the minimum Bernstein coefficient; the determina-
tion of the maximum Bernstein coefficient is analogous. For simplicity we assume
that[x] is restricted to a single orthant.

We wish to determine the value of the multiindex of the minimum Bernstein co-
efficient in each direction. In order to reduce the search space (among the(l̂ + 1)n

Bernstein coefficients) we can exploit the monotonicity of the Bernstein coefficients



10 Jürgen Garloff, Evgenija D. Popova, and Andrew P. Smith

of monomials and employ uniqueness, monotonicity, and dominance tests, cf. [37]
for details. As the examples in [37] show, it is often possible in practice to dramati-
cally reduce the number of Bernstein coefficients that have to be computed.

3.3 Software Tools

In our implementation we have combined software for the parametric residual it-
eration method with software developed for the enclosure ofthe range of a mul-
tivariate polynomial using the implicit Bernstein form. Inthe case of a rational,
non-polynomial parameter dependency, the ranges of the numerator and the denom-
inator have to be bounded independently at the expense of some overestimation.
In both packages interval arithmetic is used throughout, such that the resulting en-
closure for the parametric solution set can beguaranteedalso in the presence of
rounding errors. The software tools for the residual iteration are implemented in
a Mathematica[40] environment by the second author (E. D. P); this software is
publically available [25, 26]. The software for the Bernstein form is written by the
last author (A. P. S.) and utilises the C++ interval libraryfilib++ [18, 19]. Since
this is a specialized software exhibiting good performancethere is no reason for its
re-implementation inMathematica. In order to shorten the development time and
to preserve the beneficial properties of both implementation environments, we have
connected both software packages into a new parametric solver via theMathLink
[40] communication protocol, for details see [11]. However, this connection leads
to longer computing times compared to an implementation in asingle environment.
For details of the implementation and the accessibility of the combined software see
[11].

4 Application to Structural Mechanics

A standard method for solving problems in structural mechanics, such as linear
static problems, is the finite element method (FEM). In the case of linearised ge-
ometric displacement equations and linear elastic material behaviour, the method
leads to a system of linear equations which in the presence ofuncertain parameters
becomes a parametric system. Treating the parametric system as an interval system
and using a typical interval method for the enclosure of (4) in general results in
intervals for the quantities sought which are too wide for practical purposes.

In [21, 42] the authors combine an element-by-element (EBE)formulation,
where the elements are kept disassembled, with a penalty method for imposing
the necessary constrains for compatibility and equilibrium, in order to reduce the
overestimation in the solution intervals. This approach should be applied simultane-
ously with FEM and affects the construction of the global stiffness matrix and the
right-hand side vector, making them larger. A non-parametric fixed-point iteration
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is then used to solve the parametric interval linear system.While special construc-
tion methods are applied in [21], the parametric system obtained by standard FEM
applied to a structural steel frame with partially constrained connections is solved
by a sequence of interval-based (but not parametric) methods [3].

In the sequel we illustrate the usage of the new parametric solver based on bound-
ing polynomial ranges by the implicit Bernstein form as described in Subsection 3.2.
The improved efficiency is demonstrated by comparing both the computing time and
the quality of the enclosure of the parametric solution set for the new solver and a
previous solver which is based on the combination of the parametric residual itera-
tion with the method for bounding the range of a rational function presented in [26],
cf. Subsection 3.1. To compare the quality of two enclosures[a] and[b] with [a]⊆ [b]
we employ a measureOω for the overestimation of[a] by [b] which is defined by

Oω ([a], [b]) := 100(1−ω([a])/ω([b])), (17)

whereω denotes the width of an interval.
The following examples were run on a PC with an AMD Athlon-64 3GHz pro-

cessor.

4.1 One-Bay Steel Frame

We consider a simple one-bay structural steel frame, as shown in Figure 1, which
was initially studied by interval methods in [3]. Followingstandard practice, the
authors have assembled a parametric linear system of order eight and involving eight
uncertain parameters. The typical nominal parameter values and the corresponding
worst case uncertainties, as proposed in [3] but converted to SI-units, are shown
in Table 1. The explicit analytic form of the given system involving polynomial
parameter dependencies can be found in [3, 29].

Table 1 Parameters involved in the steel frame example.

parameter nominal value uncertainty
Eb 1.999∗108 kN/m2 ±2.399∗107 kN/m2

Young modulus
Ec 1.999∗108 kN/m2 ±2.399∗107 kN/m2

Ib 2.123∗10−4 m4 ±2.123∗10−5 m4
Second moment

Ic 1.132∗10−4 m4 ±1.132∗10−5 m4

Ab 6.645∗10−3 m2 ±6.645∗10−4 m2
Area

Ac 9.290∗10−3 m2 ±9.290∗10−4 m2

External force H 23.600 kN ±9.801 kN
Joint stiffness α 3.135∗105 kNm/rad ±1.429∗105 kNm/rad

Length Lc 3.658 m, Lb 7.316 m

As in [3, 29], we solved the system first with parameter uncertainties which are
1% of the values presented in the last column of Table 1.
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Fig. 1 One-bay structural steel frame [3].

The previous parametric solver finds an enclosure for the solution set in about
0.34 s, whereas the new solver needs only 0.05 s. The quality of the enclosures
provided by both solvers is comparable. As shown in [26, 29],the solution enclosure
obtained by the parametric solver is better by more than one order of magnitude than
the solution enclosure obtained in [3].

Based on the runtime efficiency of the new parametric solver,we next attempt to
solve the same parametric linear system for the worst case parameter uncertainties in
Table 1 ranging between about 10% and 46%. Firstly, we noticethat the parametric
solution depends linearly on the parameterH, so that we can obtain a better solution
enclosure if we solve two parametric systems with the corresponding end-points for
H. Secondly, enclosures of the hull of the solution set are obtained by subdivision of
the worst case parameter intervals(Eb,Ec, Ib, Ic,Ab,Ac,α)⊤ into (2,2,2,2,1,1,6)⊤

subintervals of equal width, respectively. We use more subdivision with respect to
α sinceα is subject to the greatest uncertainty. The solution enclosure, obtained
within 11 s, is given in Table 2. Moreover, the quality of the solution enclosure[u] of
the respective eight quantities is compared to the combinatorial solution[h̃], i.e. the
convex hull of the solutions to the point linear systems obtained when the parameters
take all possible combinations of the interval end-points.The combinatorial solution
serves as aninnerestimation of the solution enclosure.
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Table 2 One-bay steel frame example with worst-case parameter uncertainties (Table 1). So-
lution enclosure[u] found by dividing the parameter intervals(Eb,Ec, Ib, Ic,Ab,Ac,α)⊤ into
(2,2,2,2,1,1,6)⊤ subintervals of equal width, respectively. All interval end-points are multiplied
by 105. The enclosure[u] is compared to the combinatorial solution[h̃].

105∗ solution enclosure[u] Oω([h̃], [u])
d2x: [138.54954789, 627.59324779] 12.5
d2y: [0.29323100807, 2.1529383383] 8.0
r2z: [-129.02427835, -22.381136355] 23.7
r5z: [-113.21398401, -17.95789860] 25.6
r6z: [-105.9680866, -17.64526946] 25.0
d3x: [135.25570695, 616.85512710] 12.7
d3y: [-3.7624790816, -0.41629803684] 13.2
r3z: [-122.3361772, -21.69878778] 23.5

These results show that by means of a small number of subdivisions the new
parametric solver provides a good solution enclosure very quickly for the difficult
problem of worst-case parameter uncertainties. Note that sharper bounds, close to
the exact hull, can be obtained by proving the monotonicity properties of the para-
metric solution [28].

4.2 Two-Bay Two-Story Frame Model with 13 Parameters

We consider a two-bay two-story steel frame with IPE 400 beams and HE 280 B
columns, as shown in Figure 2, after [29]. The frame is subjected to lateral static
forces and vertical uniform loads. Beam-to-column connections are considered to
be semi-rigid and they are modelled by single rotational spring elements. Applying
conventional methods for the analysis of frame structures,a system of 18 linear
equations is obtained, where the elements of the stiffness matrix and of the right
hand side vector are rational functions of the model parameters. We consider the
parametric system resulting from a finite element model involving the following
13 uncertain parameters:Ac, Ic,Ec, Ab, Ib,Eb, c, w1, . . . ,w4, F1,F2. Their nominal
values, taken according to the European Standard Eurocode3[7], are given in Table
3. The explicit analytic form of the given parametric systemcan be found in [30].

The parametric system is solved for the element material properties (Ac, . . . ,Eb),
which are taken to vary within a tolerance of 1% (that is[x− x/200, x+ x/200],
wherex is the corresponding parameter nominal value from Table 3) while the
spring stiffness and all applied loadings are taken to vary within 10% tolerance
intervals.

The previous parametric solver finds an enclosure for the solution set in about 7.4
s, whereas the new solver needs only about 1.3 s; here it is about six times faster.
The solution enclosure provided by the new solver is also significantly tighter; the
overestimation (17) of the components of the enclosure provided by the previous
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Fig. 2 Two-bay two-story steel frame [29].

Table 3 Parameters involved in the two-bay two-story frame examplewith their nominal values.

parameter Columns (HE 280 B) Beams (IPE 400)
Cross-sectional area Ac = 0.01314 m2 Ab = 0.008446m2

Moment of inertia Ic = 19270∗10−8 m4 Ib = 23130∗10−8 m4

Modulus of elasticity Ec = 2.1∗108kN/m2 Eb = 2.1∗108 kN/m2

Length Lc = 3 m Lb = 6 m
Rotational spring stiffnessc = 108 kN
Uniform vertical load w1 = . . . = w4 = 30 kN/m
Concentrated lateral forcesF1 = F2 = 100 kN

solver relative to the respective components found by the new solver ranges between
53.46 and 92.92.

An algebraic simplification applied to functional expressions in computer algebra
environments may reduce the occurrence of interval variables, which could result in
a sharper range enclosure. Such an algebraic simplificationis expensive and when
applied to complicated rational expressions usually does not result in a sharper range
enclosure. For the sake of comparison, we have run the previous parametric solver
in two ways: applying intermediate simplification during the range computation,
and without any algebraic simplification. The above resultswere obtained when the
range computation does not use any algebraic simplification. When the range com-
putation of the previous solver uses intermediate algebraic simplification, the cost of
this improvement is that the computing time is approximately doubled; the results
are obtained in 14.4 s. This is much slower, but provided a tighter enclosure of the
solution set than the rational solver, based on polynomial ranges, which did not ac-
count for all the parameter dependencies. Here the overestimation of the new solver
relative to the modified previous solver ranges between 18.62 and 37.07. It should
be noted that given the complicated rational expressions such an improvement is not
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at all typical (in the next example the improvement is only marginal at a much larger
computation time possibly due to the more complicated expressions). Details may
be found in [11].

4.3 Two-Bay Two-Story Frame Model with 37 Parameters

As a larger problem of a parametric system involving rational parameter depen-
dencies, we consider the finite element model of the two-bay two-story steel frame
from the previous example, where each structural element has properties varying
independently within 1% tolerance intervals. This does notchange the order of the
system but it now depends on 37 interval parameters. The explicit analytic form of
the given parametric system can be found in [30]. Here the right hand side vector is
given to illustrate the dependencies.
(
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)⊤

.

The previous solver finds an enclosure for the solution set inabout 755 s and
thereby exhibits performance approximately three times slower than the new solver
(about 245 s). Also, the quality of the solution enclosure provided by the new solver
is much better than the solution enclosure provided by the previous solver; here, the
relative overestimation ranges between 28.4 and 95.46.

5 Conclusions

In this chapter, we demonstrated the advanced application of a general-purposepara-
metric method, combined with the Bernstein enclosure of polynomial ranges, to
linear systems obtained by standard FEM analysis of mechanical structures, and il-
lustrated the efficiency of the new parametric solver. Further applications, viz. to
truss structures with uncertain node locations, can be found in [38].
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It is shown that powerful techniques for range enclosure arenecessary to provide
tight bounds on the solution set, in particular when the parameters of the system are
subject to large uncertainties and the dependencies are complicated.

The new self-verified parametric solvers can be incorporated into a general
framework for the computer-assisted proof of global and local monotonicity prop-
erties of the parametric solution. Based on these properties, a guaranteed and
highly accurate enclosure of the interval hull of the solution set can be computed
[12, 28, 39]. The parametric solver for square systems also facilitates the guaran-
teed enclosures of the solution sets to over- and underdetermined parametric linear
systems [27].

Being presently the only general-purpose parametric linear solver, the presented
methodology and software tools are applicable in the context of any problem (stem-
ming, e.g., from fuzzy set theory [35] or the other fields listed in the Introduction)
that requires the solution of linear systems whose input data depend on uncertain
(interval) parameters.
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