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Pivot Tightening for the Interval Cholesky Method
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The performance of the Cholesky decomposition in interval arithmetic is considered. In order to avoid the algorithm breaking
down due to an interval pivot containing zero, a method is presented by which such a pivot can be tightened.
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1 Introduction

Systems of linear interval equations arise when the entriesof the coefficient matrix and the right hand side of a system of
linear equations are varying in given intervals, cf. [7, Sect. 3.4]. Thesolution set of such a system[A]x = [b], where
[A] = ([aij ])

n
i,j=1 = ([aij , aij ])

n
i,j=1 is ann-by-n interval matrix and[b] = ([bi])

n
i=1 = ([bi, bi])

n
i=1, is an interval vector, is

the set

Σ ([A], [b]) := {x ∈ R
n |Ax = b, A ∈ [A], b ∈ [b]} . (1)

We will assume here throughout that allA ∈ [A] are non-singular. A method to enclose the solution set (1) inan interval
vector is interval Gaussian elimination, which is obtainedfrom the usual (termedordinary henceforth) Gaussian elimination by
replacing the real numbers by the related intervals and the real operations by the respective interval operations, e. g., [7, Sect.
4.5]. However, interval Gaussian elimination may fail due to division by an interval pivot containing zero, even when ordinary
Gaussian elimination works for all matricesA ∈ [A]. There are some classes of interval matrices for which interval Gaussian
elimination cannot fail, e. g., theH-matrices. If ordinary Gaussian elimination is applied without pivoting, the pivots can be
represented as the quotient of two successive leading principal minors. This property was used in [5] to avoid the breakdown
of interval Gaussian elimination by tightening the (interval) pivots. This is accomplished by replacing the interval pivots by
the ranges of the respective ordinary pivots over the interval matrix. These ranges can be given explicitly for some classes of
matrices which have identically signed inverses, e. g., theinverse nonnegative matrices, the non-singular totally nonnegative
matrices and the inverseM -matrices. As an additional advantage this tightening may lead to a shrinking of the enclosure of
the solution set. In this paper we are concerned withsymmetric interval matrices, i. e.,[A]T = [A]. If [A] is not symmetric
it is replaced by the largest symmetric interval matrix contained in[A]. Instead of the solution set in (1) we now consider the
symmetric solution set

Σsym ([A], [b]) := {x ∈ R
n | Ax = b, A ∈ [A]s, b ∈ [b]} with [A]s :=

{

A ∈ [A] | A = AT
}

. (2)

A method for the enclosure of the symmetric solution set (2) is the interval Cholesky method (abbreviated ICh henceforth)
which is obtained from the ususal Cholesky decomposition byreplacing the real numbers by the related intervals and the real
operations by the corresponding interval operations [1]. It is feasible if and only if the lower endpoints of the diagonal entries
of the Cholesky factor are all positive. It is known that the ICh may break down even if[A]s contains only positive definite
matrices. In this paper we will present a method by which the breakdown of ICh can be avoided.

2 Interval Cholesky Method

We assume that all matrices contained in[A]s are positive definite, or equivalently [2,8] that the following vertex matrices Azz

of [A], i. e., the real matrices contained in[A] whose entries coincide with an endpoint of the respective component intervals
of [A], are positive definite:

Azz = Ac − diag(z1, . . . , zn) · △A · diag(z1, . . . , zn), whereAc and△A are the midpoint and radius matrix of

[A], respectively,[A] = [Ac −△A, Ac + △A] , andz = (z1, . . . , zn) ∈ Yn := {−1, 1}n.

Then the cardinality of the set of the vertex matrices to be tested for positive definiteness is at most2n−1. Define the triangular
matrix [L] by (since we are interested in the feasibility of the ICh, we only consider the computation of the interval Cholesky
factor)

[ljj ] =

(

[ajj ] −

j−1
∑

k=1

[ljk]2

)

1

2

; [lij ] =

(

[aij ] −

j−1
∑

k=1

[lik][ljk]

)

/ [ljj ], i = j + 1, . . . , n, j = 1, . . . , n.
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Here [a]
1

2 := {a
1

2 | a ∈ [a]} for 0 ≤ a. ICh is feasible if and only if0 < lii, i = 1, . . . , n. In analogy to interval
Gaussian elimination, we call the diagonal entries[lii] (interval)pivots. For the ordinary Cholesky decomposition,ljj can be
represented as the square root of the ratio of the leading principal minors of orderj andj − 1, cf. [4, formula (42) on p.38].
In the next section we will present a method for the construction of positive lower bounds for[ljj ].

3 Pivot Tightening

W. l. o. g. we may considerp(A) := l2nn(A) = detA/detA′, whereA′ is the submatrix ofA obtained by deletion of the
last row and column ofA. Since the eigenvalues ofA andA′ interlace, we obtainλ1(A) ≤ p(A), whereλ1(A) denotes the
smallest eigenvalue ofA. By [9], it is known that

min
A∈[A]s

λ1(A) = min
z∈Yn

λ1(Azz).

We employ the following lower bounds for the smallest eigenvalue of a positive definite symmetric matrixA partitioned in
the form

A =

(

A′ b
bT c

)

.

Let βn−1 be any lower bound forλ1(A
′). Then we have the easily computable lower bound [3]

βn =
1

2

(

c + βn−1 −
√

(c − βn−1)2 + 4bT b

)

≤ λ1(A). Dembo’s bound (3)

This bound may not be positive. If this case occurs we use the following bound [6]

β̃n =
1

2

(

c + βn−1 −
√

(c − βn−1)2 + 4βn−1bT (A′)−1b

)

≤ λ1(A). Ma and Zarowski’s bound (4)

which is always positive. If(A′)−1b is computed as the solutionx of A′x = b, then the computation of̃βn can be arranged
in a recursive way such that, starting withβ1 = a11, the i-th step needsO(i2) arithmetic operations (and one square root),
i = 1, . . . , n. It should be noted that sharper bounds are given in [10] which require slightly more computational effort.

Example: We consider

[A] =

0

@

[4, 5] [−3,−2] 1
[−3,−2] 4 [−3,−2]

1 [−3,−2] [4, 5]

1

A .

[A]s contains only positive definite matrices but the ICh breaks down due tol233 = −0.112 . . . . The four matricesAzz,
z ∈ Y3, together with the associated bounds according to (3) and (4) are as follows

0

@

4 −3 1

−3 4 −3

1 −3 4

1

A

0

@

4 −3 1

−3 4 −2

1 −2 4

1

A

0

@

4 −2 1

−2 4 −3

1 −3 4

1

A

0

@

4 −2 1

−2 4 −2

1 −2 4

1

A

Dembo bound: −1 −0.192 . . . −0.316 . . . 0.550 . . .

Ma and Zarowski bound: 0.177 . . . 0.658 . . . 0.619 . . .

Thusl233 can be improved by0.177 . . . . Since[A] is inverse nonnegative the lower endpoint of the range ofp over[A] is given
by p(A) = 6/7, cf. [5].
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