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Pivot Tightening for the Interval Cholesky Method
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The performance of the Cholesky decomposition in intersigthiaetic is considered. In order to avoid the algorithmaiag
down due to an interval pivot containing zero, a method isgméed by which such a pivot can be tightened.
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1 Introduction

Systems of linear interval equations arise when the entfigdse coefficient matrix and the right hand side of a system of
linear equations are varying in given intervals, cf. [7,15e8.4]. Thesolution set of such a systemA]z = [b], where

[A] = ([aij])} ;=1 = ([aij,@ij])7 ;=1 IS ann-by-n interval matrix andb] = ([b;])7; = ([b;, b)), is an mterval vector, is
the set

S(AL b)) == {zeR"|Az =b, A€ [A], be [b]}. (1)

We will assume here throughout that @ll € [A] are non-singular. A method to enclose the solution set (Bnimterval
vector is interval Gaussian elimination, which is obtaifredh the usual (termeadrdinary henceforth) Gaussian elimination by
replacing the real numbers by the related intervals andglleoperations by the respective interval operations, ¢7 gSect.
4.5]. However, interval Gaussian elimination may fail do@ivision by an interval pivot containing zero, even whedioary
Gaussian elimination works for all matricélsc [A]. There are some classes of interval matrices for whichvat&aussian
elimination cannot fail, e. g., th&/-matrices. If ordinary Gaussian elimination is appliedheiit pivoting, the pivots can be
represented as the quotient of two successive leadingipainoinors. This property was used in [5] to avoid the bremataal

of interval Gaussian elimination by tightening the (int@jpivots. This is accomplished by replacing the intervabs by
the ranges of the respective ordinary pivots over the iatenatrix. These ranges can be given explicitly for somesela®f
matrices which have identically signed inverses, e. g.jrtherse nonnegative matrices, the non-singular totallynegative
matrices and the inversie -matrices. As an additional advantage this tightening nead to a shrinking of the enclosure of
the solution set. In this paper we are concerned wjthmetric interval matrices, i. e[A]” = [A]. If [4] is not symmetric

it is replaced by the largest symmetric interval matrix eamed in[A]. Instead of the solution set in (1) we now consider the
symmetric solution set

Seym (AL B]) = {z €R" | Az =b, A€ [A],, be[b]} with —{Ac[4] | A=4"}). )

A method for the enclosure of the symmetric solution set $2he interval Cholesky method (abbreviated ICh henceforth
which is obtained from the ususal Cholesky decompositiorepjacing the real numbers by the related intervals andghile r
operations by the corresponding interval operations [li$ feasible if and only if the lower endpoints of the diagbewtries

of the Cholesky factor are all positive. It is known that ti@hImay break down even [fi]; contains only positive definite
matrices. In this paper we will present a method by which tle@kdown of ICh can be avoided.

2 Interval Cholesky Method

We assume that all matrices containe@Af, are positive definite, or equivalently [2, 8] that the follogvertex matrices A, .
of [4], i. e., the real matrices contained|i#] whose entries coincide with an endpoint of the respectivepament intervals
of [4], are positive definite:

A,, = A, —diag(z1,...,2,) - AA-diagzy, . . ., z,), WwhereA,. andA A are the midpoint and radius matrix of
[A], respectively[A] = [A. — AA, A, + AA], andz = (21,...,2,) €Y, = {-1,1}".

Then the cardinality of the set of the vertex matrices to btetéfor positive definiteness is at mast L. Define the triangular
matrix [L] by (since we are interested in the feasibility of the ICh, w&/@onsider the computation of the interval Cholesky
factor)

j—1 % Jj—1
[£5] :<%J Z ) (Lij] =<a” Z ) [l i=i+1,...n,i=1,...,n.
k=1 k=1
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Herela]z := {a? | a € [d]} for 0 < a. ICh is feasible if and only il < [,;, i = 1,...,n. In analogy to interval
Gaussian elimination, we call the diagonal entfig$ (interval) pivots. For the ordinary Cholesky decompositidjy, can be
represented as the square root of the ratio of the leadingipél minors of ordej andj — 1, cf. [4, formula (42) on p.38].
In the next section we will present a method for the consiwaaif positive lower bounds fdt ;.

3 Pivot Tightening

W. I. 0. g. we may consides(A) := 12, (A) = detd/detd’, where A’ is the submatrix ofA obtained by deletion of the
last row and column ofl. Since the eigenvalues df and A’ interlace, we obtain\; (A) < p(A), whereX;(A) denotes the
smallest eigenvalue of. By [9], it is known that

min A;(A) = min A (A,,).
A€[As ZEY,

We employ the following lower bounds for the smallest eigdug of a positive definite symmetric matrik partitioned in

the form
A b

Let 5,—1 be any lower bound fok; (A4’). Then we have the easily computable lower bound [3]

Bn = % (c + Bn—1 — \/(c — Bn-1)%2+ 4bTb) < M (4). Dembo’s bound 3)
This bound may not be positive. If this case occurs we usealt@rfing bound [6]
Bn = % (c + Bn_1— \/(c — Bn-1)%2+ 46n1bT(A’)1b> < M (4). Ma and Zarowski's bound (4)

which is always positive. IfA’)~'b is computed as the solutianof A’z = b, then the computation of,, can be arranged

in a recursive way such that, starting with = a1, thei-th step need®(i?) arithmetic operations (and one square root),

i+ =1,...,n. It should be noted that sharper bounds are given in [10]kvrgquire slightly more computational effort.
Example: We consider

[47 5] [_37 _2] 1
[A] = ( [_37_2] 4 [_37_2] )
1 [-3,-2]  [4,5]

[A]s contains only positive definite matrices but the ICh breabwrddue t0123 = —0.112.... The four matrices4., .,
z € Y3, together with the associated bounds according to (3) ararédas follows

4 —3 1 4 —3 1 4 -2 1 4 -2 1

—3 4 —3 —3 4 -2 -2 4 —3 -2 4 -2

1 —3 4 1 -2 4 1 —3 4 1 -2 4
Dembo bound: -1 —0.192. .. —0.316 . . . 0.550 . ..

Ma and Zarowski bound: 0.177 ... 0.658 . .. 0.619 ...

Thusl, can be improved bg.177 . . .. Since[A] is inverse nonnegative the lower endpoint of the rangeafer [A] is given
by p(A) = 6/7, cf. [5].
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