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ABSTRACT. A wide range of scientific and engineering problems can berted by systems of
linear algebraic equations involving uncertain model paters. We consider such systems where the
codficients of the matrix and the right hand side are multivanmtiynomials or rational functions

of parameters varying within given intervals. A generatgmse parametric fixed-point iteration is
combined with éicient tools for range enclosure based on the Bernstein sigranf multivariate
polynomials. We discuss an advanced application of thergeperpose parametric method to linear
systems obtained by standard finite element analysis of amécdl structures and thereby illustrate
the dficiency of this new parametric solver.

KEYWORDS: parametric linear system, interval parameter, polynomaage, Bernstein expan-
sion, mechanical structure

1 INTRODUCTION

Engineering analysis and design problems are often destchy systems of linear algebraic equa-
tions involving uncertain model parameters, which mayeadise to measurement imprecision, round-
off errors, and various other kinds of inexact knowledge. $icant research in this field is directed
towards the use of intervals to represent the uncertaintfjiggnin such systems. When uncertain
parameters are modelled by bounded intervals, the probéenbe formulated as an interval linear
system. Dependencies between such interval parameterbenayear or nonlinear in nature, with
the former, simpler, case having been more extensivelyeduth the latter case there may be highly
nontrivial dependencies between the parameters.

A standard method for solving problems in structural meatsarsuch as linear static problems, is
the finite element method (FEM). The method leads to a systetigebraic equations, which in case
of uncertain (interval) physical parameters becomes altisgstem involving interval parameters,
e.g., [2, 3, 7, 14]. In the following we assume that the FEMragjnations are well tuned with
respect to the discretisation errors. It is beyond the sobfigs work to account for the discretisation
error of the mathematical model in addition to the uncetyaim the parameters, although there are
recent investigations in this direction [9, 20]. In [14], @arametric residual iteration [18] is applied to
bounding the response of structural engineering systevotving rational dependencies between the
model parameters. Corresponding software tools with rgstification, implemented in the Wolfram
Mathematic&® environment, have been developed. This general-purposevah approach imposes
no restrictions on how the parametric system is generatddcan be applied to linear parametric
problems for which special methods have not yet been degigne

The method requires an enclosure of the range of nonline&tiins over the domain of the pa-
rameters. When the parameter dependencies are polyndighdlhounds for the polynomial ranges
can be obtained by the expansion of a multivariate polynbimia Bernstein polynomials [4, 21].
The goal of our work is to combine the generalised paramegsiciual iteration with range enclosure,
based on Bernstein expansion, into a mdfeient parametric linear system solver. For the sake of



rapid development, run-timeteciency, and for exploiting the advantages of modern germrglose
software environments, suchflsathematicaour implementation is based on an advanced connectiv-
ity betweenMathematicaand an external €+ software via theviathLinkcommunication protocol.
The present parametric solver is illustrated by numerighltgns to three problems from structural
mechanics which have been modelled by standard FEM andviwialerval uncertainty in all ma-
terial and load parameters. A discussion on the comparisbmden the present parametric solver,
based on Bernstein polynomial ranges, and the former onevided.

The paper is organised as follows. In Section 2, the paramesidual iteration method for linear
interval systems is introduced, followed by an introductio the Bernstein expansion and the implicit
Bernstein form. In Section 3, the new parametric solverdlaigrated by three examples of one- and
two-bay steel frames. Finally, some conclusions are given.

2 METHODOLOGY

We use the following notatiorR™, R™" denote the set of real vectors withcomponents and the
set of realm x n matrices, respectively. A real compact interval is defire¢hp= [a,3@] :={ac R |
a < ac<a}l. By IR™, IR™" we denote intervain-vectors and intervah x n matrices. Operations on
interval values yield the smallest interval value contagnihe corresponding result when power set
operations are used. We assume that the reader is familiaithd conventional interval arithmetic
[1, 6].

The lteration Method Consider a linear system

A(X)-s = d(x), (1a)

where the cofficients of them x m matrix A(X) and the vectod(x) are functions oh parameters
varying within given intervals

gj(x) = a@j(X,...., %), d(x) = di(xe,....%), Lj=L....m (1b)
X € [X=(xl-...[%])" (1c)

The set of solutions to the above system, calledodrmmetric solution seis
Y =X (AX),d(X),[x]) = {se€eR™|A(X)-s=d(x)for somexe[x]}.

The setX is compact ifA(x) is nonsingular for everx € [X]. For a nonempty bounded s8tC R™,
define its interval hull by1S = n{[s] e IR™ | S C [9]}. Since it is quite expensive to obtainor
0%, we seek an interval vectow] for which it is guaranteed thatf 2 00X 2 X.

In this section we consider a self-verified method for bongdhe solution set of a parametric
linear system. This is a general-purpose method since & doeassume any particular structure
among the parameter dependencies. The method originatesimclusion theory for nonparametric
problems, which is discussed in many works (cf. [18] anditieedture cited therein). In [18, Theorem
4.8] a straightforward generalisation to linear systemth Wnear parameter dependencies is given.
With obvious modifications, the corresponding theoremsatambe applied directly to linear systems
involving nonlinear parameter dependencies, as demadedtma [11, 14]. The following theorem
is a general formulation of the enclosure method for ling@tesns involving arbitrary parametric
dependencies.

Theorem 2.1. Consider a parametric linear system defined by Egs. 1a — IR EeR™™, [y] € IR™,
§ e R™Mbe given and defing] € IR™, [C] € IR™™ by

[2]
[C]

Ofz(x) = R(d(x) = A(X)3) | x € [X]},
O{C(X) =1 —=R-A(X) | x e [X]},



where | denotes the identity matrix. Defing € IR™ by means of the following Gauss-Seidel iteration

il := {2 + [C] - (vl oo [Vical, DL - Tymd) This L <<

If [v] S [yl, then R and every matrix(®) with x € [X] are regular, and for every x [x] the unique
solutions = A 1(x)d(x) of the system defined by Eqgs. 1a—1c satisfies + [V].

The above theorem generalises [18, Theorem 4.8] by stipglat sharp enclosure @(x) :=
| — R- A(X) for x € [X], instead of using the interval extensi@{[x]). A sharp enclosure of the
iteration matrixC(x) is also required by other authors (who do not refer to [18]y,, [3], without
addressing the issue of rounding errors. Examples denatingfithe expanded scope of application
of the generalized inclusion theorem can be found in [11184, It should be noted that the above
theorem provides strong regularity (cf. [10]), which is aaker but sfficient condition for regularity
of the parametric matrix.

When aiming to compute a self-verified enclosure of the smiub a parametric linear system by
the above inclusion method, a fixed-point iteration schesngoven to be very useful. A detailed
presentation of the computational algorithm can be fourid 1

In case of arbitrary nonlinear dependencies between thertanc parameters, computing pnd
[C]in Theorem 2.1 requires a sharp range enclosure of nomlfneations. This is a key problem in
interval analysis and there exists a huge number of methudiseghniques devoted to this problem,
with no one method being universal. In this work we restrigtselves to linear systems where
the elements oA(X) andd(x) are rational functions of the uncertain parameters. s tase the
codficients ofz(x) andC(x) are also rational functions of The quality of the range enclosure of
Z(x) will determine the sharpness of the parametric solutibeselosure. In [11] the above inclusion
theorem is combined with a simple interval arithmetic tegha providing inner and outer bounds
for the range of monotone rational functions. The arithmefigeneralised (proper and improper)
intervals is considered as an intermediate computatiooafor eliminating the dependency problem
in range computation and for obtaining inner estimation®btyvardly rounded interval arithmetic.
Since this methodology is notfiient in the general case of non-monotone rational funstiam
this work we combine the parametric fixed-point iteratiorthwiange enclosing tools based on the
Bernstein expansion of multivariate polynomials.

Bernstein Enclosure of Polynomial Ranges In this section we recall some properties of the Bern-
stein expansion which are fundamental to our approach4¢cf1] and the references therein.

Firstly, some notation is introduced. We define multiindice= (i, ..., i,)" as vectors, where
then components are nonnegative integers. The vector O demaesultindex with all components
equal to 0. Comparisons are used entrywise. Also the artthimgerators on multiindices are defined

componentwise such thed| := (i,014,...,i,0l,)", fore = +, —, x, and/ (with | > 0). For instance,
. n
i/l, 0 <i <1, defines the Greville abscissae. BPoe R" its multipowers ared = [] x;,“ For the
n=1
| | In
n-fold sum we use the notatiof = Zl ... >, . The generalised binomial cfiient is defined by
i=0 i1=0 in=0
n
()= 11.0)
An n-variate polynomiap of degred = (I, ..., 1)),
|
PO = > ax, x=(x....%), )
i=0

can be represented oveq [Eq. 1c) withx = (X;,...,X ), X = (Xi,..., %) as

|
PO = > biB(X),
i=0



whereB; is thei-th Bernstein polynomial of degree |
I\ (X = X)'(X = x)
Bi(X) = () — ]
(X- %)

[
and the so-calleBernstein cogicients b are given by

b = 2%(7—5)1 Zl“(’j‘)gla,( o<i<l

j=0 =]

j

The essential property of the Bernstein expansion isdhge enclosing properfyyamely that the
range ofp over [X] is contained within the interval spanned by the minimum arakimum Bernstein
codficients: min{b;} < p(x) < max{b}, x € [X].

It is also worth noting that the values attained by the pofgiab at the vertices ofy] are identical
to the corresponding vertex Bernstein fimgents, for examplé, = p(x) andb, = p(X). Thesharp-
ness propertygtates that the lower (resp. upper) bound provided by théenmim (resp. maximum)
Bernstein cofficient is sharp, i.e. there is no underestimation (resp. es@enation), if and only if
this codficient occurs at a vertex oX].

The traditional approach (see, for example, [4, 21]) assuim&t all of the Bernstein cfiecients
are computed, and their minimum and maximum is determingcud® of an algorithm (cf. [4, 21])
which is similar to de Casteljau’s algorithm (see, for exéenfil7]), this computation can be made
efficient, with time complexity O{IA””) and space complexity (equal to the number of Bernstein
codficients) O({ + 1)"), wherel = max., l;. This exponential complexity is a drawback of the
traditional approach, rendering it infeasible for polynal® with moderately many (typically, 10 or
more) variables.

In [19] a new method for the representation and computatidheBernstein ca@cients is pre-
sented, which is especially well suited to sparse polyntanidith this method the computational
complexity typically becomes nearly linear with respedh® number of the terms in the polynomial,
instead of exponential with respect to the number of vagigbIThis improvement is obtained from
the results surveyed in the following subsections. Forildetamd examples the reader is referred to
[19].

Bernstein Coefficients of MonomialsLet q(x) = X', X = (Xg,..., X,), forsome O< r < |. Then
the Bernstein cdécients ofq (of degred) over [X] (Eq. 1c) are given by
n
bi = l_l b{™,
m=1
Wherebi(:‘) is theinth Bernstein cofticient (of degred,,) of the univariate monomiad™ over [x_, Xy].
If the box [X] is restricted to a single orthant &" then the Bernstein cdigcients ofqg over [x] are
monotone with respect to each variaklej = 1,...,n.

With this property, for a single-orthant box, the minimundanaximum Bernstein cdiécients
must occur at a vertex of the array of Bernsteinfioents. This also implies that the bounds provided
by these coféicients are sharp; see the aforementioned sharpness grdpeding the minimum and
maximum Bernstein cdicients is therefore straightforward; it is not necessamxalicitly compute
the whole set of Bernstein cfiients. Computing the component univariate Bernsteirficoents
for a multivariate monomial has time complexityr@i(+ 1)?). Given the exponentand the orthant
in question, one can determine whether the monomial (anBeitastein cofficients) is increasing
or decreasing with respect to each coordinate directiot,car@ then merely needs to evaluate the
monomial at these two vertices.

Without the single orthant assumption, monotonicity doasnecessarily hold, and the problem
of determining the minimum and maximum Bernstein figgents is more complicated. For boxes
which intersect two or more orthantsi&f, the box can be bisected, and the Bernsteirfionents of
each single-orthant sub-box can be computed separately.



The Implicit Bernstein Form Firstly, we can observe that since the Bernstein form isalinié a
polynomialp consists ot terms, as follows,

t
P = Y ax, O0<ij<l x=(X.....%).
=1

then each Bernstein cfieient is equal to the sum of the corresponding Bernsteifficants of each
term, as follows:

whereb” are the Bernstein cdiécients of thejth term ofp. (Hereafter, a superscript in brackets spec-
ifies a particular term of the polynomial. The use of this tiotato indicate a particular coordinate
direction, as in the previous subsection, is no longer regluj

Therefore one may implicitly store the Bernstein fméents of each term, and compute the Bern-
stein codficients as a sum dfproducts, only as needed. The implicit Bernstein form thusscsts
of computing and storing the sets of univariate Bernstein dfieients (one set for each component
univariate monomial) for each oterms. Computing this form has time complexityrﬁ?(f+ 1)?) and
space complexity @¢(l + 1)), as opposed to A(¢ 1)") for the explicit form. Computing a ingle
Bernstein cofficient from the implicit form requiresn(+ 1)t — 1 arithmetic operations.

Deter mination of the Bernstein Enclosure for Polynomials We consider the determination of the
minimum Bernstein cd@cient; the determination of the maximum Bernsteinfioent is analogous.
For simplicity we assume thax][is restricted to a single orthant.

We wish to determine the value of the multiindex of the minimBernstein coicient in each
direction. In order to reduce the search space (amond-18"(Bernstein cofficients) we can exploit
the monotonicity of the Bernstein ciheients of monomials and employ uniqueness, monotonicity,
and dominance tests, cf. [19] for details. As the exampl¢t9hshow, it is often possible in practice
to dramatically reduce the number of Bernsteinfiomnts that have to be computed.

3 NUMERICAL EXAMPLES

In this section we illustrate the usage of the new paramstiigers based on bounding polynomial
ranges by Bernstein expansion. The improvéttiency of the new polynomial solvers is demon-
strated by comparing both the computing time and the quafithe solution enclosure for the new
solvers and the former one. The examples were run on a PC \Wib Athlon-64 3GHz processor.

Softwar e Software for the solution of parametric interval lineartsyss, for the C-XSC [16] and
Mathematicg[11] environments has been developed. RecentlyMathematicaparametric linear
solvers were upgraded to handle linear systems involvibgrary rational dependencies [11, 14].
The enclosures af(x) andC(x) from Theorem 2.1 were computed by a technique based on-gener
alised intervals, which provides sharp range enclosuresmémotone rational functions. The goal of
this work is to further upgrade the parametric solvers fatemys involving polynomial aridr arbi-
trary rational dependencies, by integrating more powexful dficient tools for range computation
into the correspondinllathematicgunctions.

Given a polynomiap (Eq. 2) and a box)] (Eq. 1c), we wish to compute a guaranteed tight en-
closure forp([x]). The existing G-+ software routines of the last author, which implement tloeeaf
mentioned implicit Bernstein form, are utilised. Interaathmetic is used extensively throughout, for
which the G-+ interval library filib++ [5] is employed. As an additional benefit, all computational
results can also be guaranteed in the presence of roundong.er

In order to shorten the development time and to preservedhefizial properties of both imple-
mentation environments, the authors have connected trexaemed parametric fixed-point iteration
and the Bernstein enclosure of polynomial ranges into a remarpetric solver via th&lathLink



communication protocoMathLinkallows the externafilib++ function for polynomial range com-
putation to be called from withiMathematicaas required. More details abaodiathLinktechnology
and the connectivity betwedvathematicaand externalfilib++ based interval programs can be
found in [13].

The new solver computes guaranteed outer bounds for thBaoket of a parametric linear sys-
tem, where the matrix arior the right hand side vector involve polynomial dependesdietween
uncertain parameters. The general parametric residuatida, cf. Theorem 2.1, implemented in
this function, uses some algebraic manipulations lsladhLink communication with thefilib++
software for bounding the ranges of multivariate polyndsiiavolved in the computation &x) and
C(x).

The filib++ software for bounding the range of a multivariate polyndroiger a box can also
be used for bounding the range of a function involving asbjtirational dependencies between its
variables, if we represent the rational function as a quoté two multivariate polynomials which
are to be bounded separately. This motivates the develdprhariurther routine applicable to linear
systems involving arbitrary rational parameter depenigsnc

For the sake of comparison, we also test a routine with theesgage as the previous solvers but
applying the former range computation method based on gkl interval arithmetic.

One-Bay Steel Frame Consider a simple one-bay structural steel frame, as showAgure 1,
which was initially studied by interval methods in [2]. F@Ning standard practice, the authors have
assembled a parametric linear system of order eight andvingoeight uncertain parameters. The
typical nominal parameter values and the correspondingtvease uncertainties, as proposed in [2]
but converted to Sl-units, are shown in Table 1. The expéaidlytic form of the given system
involving polynomial parameter dependencies can be fonijd,i14].
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Figure 1. One-bay structural steel frame [2].

Table 1: Parameters involved in the steel frame example.

parameter nominal value uncertainty
E, 1.999x1C° kN/m2 +2.399x 10’ kN/m2
Young modulus =" 3"g90. 1 08 kN/m? +2.3995 107 KN/m2
lp, 2.123%x10“*m* +2.123% 10> m*
Second moment " 1" 35 104 mé +1.132 10°5 m?
Area A, 6.645x% 103 m? +6.645% 1074 m?
A: 9.290%10°m? +9.290x% 104 m?
External force H 23600 kN +9.801 kN

Joint stifness o 3.135% 10° kNmyrad  +1.429x 10° kNmy/rad
Length L. 3.658m, L, 7.316 m

As in [2, 14], we solved the system with parameter unceitsnivhich are 1% of the values
presented in the last column of Table 1.



We run the parametric solver and measure a total time of ®@66r&ls for execution of the main
steps. Running the previous parametric solver, we get armegsurement of 0.34 seconds, showing
that the compiled external code for range computation wasiderably faster than the interpretative
Mathematicacode. For this example, the quality of the solution set eswles, provided by both
solvers, was comparable. As shown in [11, 14], the solutimcicsure obtained by the parametric
solver is by more than one order of magnitude better thandh#isn enclosure obtained in [2].

Based on the runtimefiiciency of the new parametric solver, we next attempt to sthleesame
parametric linear system for the worst case parameter tamctes in Table 1 ranging between about
10% and 46%. Firstly, we notice that the parametric solutlepends linearly on the parameter
H, so that we can obtain a better solution enclosure if we steparametric systems with the
corresponding end-points fdd. Secondly, enclosures of the hull of the solution set arainbt
by subdivision of the worst case parameter intervBls ., Iy, lc, An, Ac, @) T into (2 2,2,2,1,1,6)"
subintervals of equal width, respectively. We use more sigidn with respect ta sincea is subject
to the greatest uncertainty. The solution enclosure, nbthwithin 11 sec., is given in Table 2.
Moreover, the quality of the solution enclosuré ¢f the respective eight quantities is compared to
the combinatorial solutiorfi], i.e. the convex hull of the solutions to the point lineastgms obtained
when the parameters take all possible combinations of tteevial end-points. The combinatorial
solution serves as anner estimation of the solution enclosure. The quality of theisoh enclosure
is measured b@,,, defined byo,,([h], [u]) := 100(1- w([h])/w([u])), wherew denotes the width of
the interval.

Table 2: One-bay steel frame example with worst-case pdaesmecertainties (Table 1). Solution en-
closure [] found by dividing the parameter intervalsy, Eq, Ip, ¢, Ap, Ac, @)™ int0 (2 2,2,2,1,1,6)"
subintervals of equal width, respectively] [s compared to the combinatorial solutidn.[

10°+ solution enclosurey O, ([N]., [u])

d2,;  [138.54954789, 627.59324779] 12.5
d2,;  [0.29323100807, 2.1529383383] 8.0
r2,;  [129.02427835, -22.381136355] 23.7
5, [-113.21398401, -17.95789860] 25.6
r6,,  [-105.9680866, -17.64526946] 25.0
d3,  [135.25570695, 616.85512710] 12.7
d3,: [-3.7624790816, -0.41629803684] 13.2
r3,;  [122.3361772,-21.69878778] 23.5

These results show that by means of a small number of sulmhigishe new parametric solver
provides a good solution enclosure very quickly for théidllt problem of worst-case parameter
uncertainties. Note that sharper bounds, close to the éwxdtcan be obtained by proving the
monotonicity properties of the parametric solution [12].

Two-Bay Two-Story Frame M odel with 13 Parameter s Consider a two-bay two-story steel frame
with IPE 400 beams and HE 280 B columns, as shown in Figurdet, [d#]. The frame is subjected
to lateral static forces and vertical uniform loads. Beanza@lumn connections are considered to
be semi-rigid and they are modelled by single rotationaingpelements. Applying conventional
methods for the analysis of frame structures, a system oi&ai equations is obtained, where the
elements of the dtiness matrix and of the right hand side vector are rationaitfons of the model
parameters. We consider the parametric system resultng & finite element model involving the
following 13 uncertain parameters, l¢, E¢, Ay, I, Ep, C, Wa, ..., Wy, F1, F5. Their nominal values,
taken according to the European Standard Eurocode3, ae igiiable 3. The explicit analytic form
of the given parametric system can be found in [15].
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Figure 2: Two-bay two-story steel frame [14].

The parametric system is solved for the element materigdgties A, .. ., Ep), which are taken
to vary within a tolerance of 1% (that igsf x/200, x+x/200], wherexis the corresponding parameter
nominal value from Table 3) while the springfitiess and all applied loadings are taken to vary within
10% tolerance intervals.

parameter Columns (HE 280 B) Beams (IPE 400)
Cross-sectional area A. = 0.01314 n} A, = 0.008446m
Moment of inertia lc = 19270« 108 m* |, = 23130« 108 m*
Modulus of elasticity E.=21%1kN/m?* E,=2.1%10° KN/m?
Length L.=3m Lp,=6m

Rotational spring sfiness ¢ = 10% kN

Uniform vertical load Wy =...=Ww; =30 kN/m

Concentrated lateral forcesF; = F, = 100 kN

Table 3: Parameters involved in the two-bay two-story fraxemple with their nominal values.

The new parametric solver requires a total of 1.3 secondsxexution of the main steps, compared
to 7.4 seconds for the former one; it is about six times fagtaralgebraic simplification, applied to
functional expressions in computer algebra environmemy, reduce the occurrence of interval vari-
ables which could result in a sharper range enclosure. Sueltgabraic simplification is expensive
and when applied to complicated rational expressions lysdaés not result in a sharper range en-
closure. For the sake of comparison, we have run the fornranpetric solver in two ways: applying
intermediate simplification during the range computatimg without any algebraic simplification.
The above results were obtained when the range computatEs bt use any algebraic simplifica-
tion. When the range computation of the previous solver irgesmediate algebraic simplification,
we obtain the results in 14.4 seconds. This is much slowemptmyvided a tighter enclosure of the
solution set than the rational solver, based on polynonaiadjes, which did not account for all the
parameter dependencies.

Two-Bay Two-Story Frame Model with 37 Parameters As a larger problem of a parametric
system involving rational parameter dependencies, weidenthe finite element model of the two-
bay two-story steel frame from the previous example, whadh estructural element has properties
varying independently within 1% tolerance intervals. Tdogs not change the order of the system but
it now depends on 37 interval parameters. The explicit ditaigrm of the given parametric system
can be found in [15].

First, the polynomial solver is run, and one observes a denable increase in the computing
time (245 seconds) compared to the time needed for the 1&psees example, caused by the larger
number of parameters. The former parametric solver, basedre computation without algebraic
simplification, exhibits approximately three times sloyperformance (755 seconds) than the new



one. The quality of the solution enclosure, provided by tee polynomial solver, is also much
better than the solution enclosure provided by the formkeso

Note that when the previous range computation uses algesiraplification, it is much slower.
However, the quality of the solution enclosure does not oupiby more than a tiny amount, probably
due to the more complicated parameter dependencies. Timerdtrates the merit of the general-
purpose parametric iteration, combined with Bernsteirasuce of polynomial ranges, for solving
parametric systems involving complicated dependencitgdasm many parameters.

The method presented in [8] is highlyfieient for truss structures but it is not applicable to the
complicated dependencies arising in the two-bay two-st@ye models considered above. The
general-purpose interval approach we consider is suifablienear parametric problems involving
arbitrary polynomial dependencies for which special md#hmave not yet been designed.

4 CONCLUSIONS

In this paper, we demonstrated the advanced applicatiorgeharal-purpose parametric method,
combined with the Bernstein enclosure of polynomial rangebnear systems obtained by standard
FEM analysis of mechanical structures, and illustrateceffieiency of the new parametric solver.

It is shown that powerful techniques for range enclosurenacessary to provide tight bounds on
the solution set, in particular when the parameters of tesy are subject to large uncertainties and
the dependencies are complicated.

The new self-verified parametric solvers can be incorpdratto a general framework for the
computer-assisted proof of global and local monotoniaibperties of the parametric solution. Based
on these properties, a guaranteed and highly accuratesemelof the interval hull of the solution set
can be computed [12]. The parametric solvers for squaremsgstacilitate the guaranteed enclosures
of the solution sets to over- and underdetermined paracrigtaar systems.
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