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ABSTRACT. A wide range of scientific and engineering problems can be described by systems of
linear algebraic equations involving uncertain model parameters. We consider such systems where the
coefficients of the matrix and the right hand side are multivariatepolynomials or rational functions
of parameters varying within given intervals. A general-purpose parametric fixed-point iteration is
combined with efficient tools for range enclosure based on the Bernstein expansion of multivariate
polynomials. We discuss an advanced application of the general-purpose parametric method to linear
systems obtained by standard finite element analysis of mechanical structures and thereby illustrate
the efficiency of this new parametric solver.
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1 INTRODUCTION

Engineering analysis and design problems are often described by systems of linear algebraic equa-
tions involving uncertain model parameters, which may arise due to measurement imprecision, round-
off errors, and various other kinds of inexact knowledge. Significant research in this field is directed
towards the use of intervals to represent the uncertain quantities in such systems. When uncertain
parameters are modelled by bounded intervals, the problem can be formulated as an interval linear
system. Dependencies between such interval parameters maybe linear or nonlinear in nature, with
the former, simpler, case having been more extensively studied. In the latter case there may be highly
nontrivial dependencies between the parameters.

A standard method for solving problems in structural mechanics, such as linear static problems, is
the finite element method (FEM). The method leads to a system of algebraic equations, which in case
of uncertain (interval) physical parameters becomes a linear system involving interval parameters,
e.g., [2, 3, 7, 14]. In the following we assume that the FEM approximations are well tuned with
respect to the discretisation errors. It is beyond the scopeof this work to account for the discretisation
error of the mathematical model in addition to the uncertainty in the parameters, although there are
recent investigations in this direction [9, 20]. In [14], a parametric residual iteration [18] is applied to
bounding the response of structural engineering systems involving rational dependencies between the
model parameters. Corresponding software tools with result verification, implemented in the Wolfram
Mathematicar environment, have been developed. This general-purpose interval approach imposes
no restrictions on how the parametric system is generated and can be applied to linear parametric
problems for which special methods have not yet been designed.

The method requires an enclosure of the range of nonlinear functions over the domain of the pa-
rameters. When the parameter dependencies are polynomial,tight bounds for the polynomial ranges
can be obtained by the expansion of a multivariate polynomial into Bernstein polynomials [4, 21].
The goal of our work is to combine the generalised parametricresidual iteration with range enclosure,
based on Bernstein expansion, into a more efficient parametric linear system solver. For the sake of



rapid development, run-time efficiency, and for exploiting the advantages of modern general-purpose
software environments, such asMathematica, our implementation is based on an advanced connectiv-
ity betweenMathematicaand an external C++ software via theMathLinkcommunication protocol.
The present parametric solver is illustrated by numerical solutions to three problems from structural
mechanics which have been modelled by standard FEM and involve interval uncertainty in all ma-
terial and load parameters. A discussion on the comparison between the present parametric solver,
based on Bernstein polynomial ranges, and the former one is provided.

The paper is organised as follows. In Section 2, the parametric residual iteration method for linear
interval systems is introduced, followed by an introduction to the Bernstein expansion and the implicit
Bernstein form. In Section 3, the new parametric solvers areillustrated by three examples of one- and
two-bay steel frames. Finally, some conclusions are given.

2 METHODOLOGY

We use the following notation:Rm,Rm×n denote the set of real vectors withmcomponents and the
set of realm× n matrices, respectively. A real compact interval is defined as [a] = [a, a] := {a ∈ R |
a ≤ a ≤ a}. By IRm, IRm×n we denote intervalm-vectors and intervalm× n matrices. Operations on
interval values yield the smallest interval value containing the corresponding result when power set
operations are used. We assume that the reader is familiar with the conventional interval arithmetic
[1, 6].

The Iteration Method Consider a linear system

A(x) · s = d(x), (1a)

where the coefficients of them× m matrix A(x) and the vectord(x) are functions ofn parameters
varying within given intervals

ai j (x) = ai j (x1, . . . , xn), di(x) = di(x1, . . . , xn), i, j = 1, . . . ,m, (1b)

x ∈ [x] = ([x1], . . . , [xn])
⊤. (1c)

The set of solutions to the above system, called theparametric solution set, is

Σ = Σ (A(x), d(x), [x]) := {s ∈ Rm | A(x) · s= d(x) for somex ∈ [x]} .

The setΣ is compact ifA(x) is nonsingular for everyx ∈ [x]. For a nonempty bounded setS ⊆ Rm,
define its interval hull by�S := ∩{[s] ∈ IRm | S ⊆ [s]}. Since it is quite expensive to obtainΣ or
�Σ, we seek an interval vector [w] for which it is guaranteed that [w] ⊇ �Σ ⊇ Σ.

In this section we consider a self-verified method for bounding the solution set of a parametric
linear system. This is a general-purpose method since it does not assume any particular structure
among the parameter dependencies. The method originates inthe inclusion theory for nonparametric
problems, which is discussed in many works (cf. [18] and the literature cited therein). In [18, Theorem
4.8] a straightforward generalisation to linear systems with linear parameter dependencies is given.
With obvious modifications, the corresponding theorems canalso be applied directly to linear systems
involving nonlinear parameter dependencies, as demonstrated in [11, 14]. The following theorem
is a general formulation of the enclosure method for linear systems involving arbitrary parametric
dependencies.

Theorem 2.1. Consider a parametric linear system defined by Eqs. 1a – 1c. Let R ∈ Rm×m, [y] ∈ IRm,
s̃ ∈ Rm be given and define[z] ∈ IRm, [C] ∈ IRm×m by

[z] := �{z(x) = R(d(x) − A(x)s̃) | x ∈ [x]},

[C] := �{C(x) = I − R · A(x) | x ∈ [x]},



where I denotes the identity matrix. Define[v] ∈ IRm by means of the following Gauss-Seidel iteration

[vi] := {[z] + [C] · ([v1], ..., [vi−1], [yi], . . . , [ym])⊤}i, 1 ≤ i ≤ m.

If [v] $ [y], then R and every matrix A(x) with x ∈ [x] are regular, and for every x∈ [x] the unique
solutionŝ= A−1(x)d(x) of the system defined by Eqs. 1a–1c satisfiesŝ ∈ s̃+ [v].

The above theorem generalises [18, Theorem 4.8] by stipulating a sharp enclosure ofC(x) :=
I − R · A(x) for x ∈ [x], instead of using the interval extensionC([x]). A sharp enclosure of the
iteration matrixC(x) is also required by other authors (who do not refer to [18]),e.g., [3], without
addressing the issue of rounding errors. Examples demonstrating the expanded scope of application
of the generalized inclusion theorem can be found in [11, 14,16]. It should be noted that the above
theorem provides strong regularity (cf. [10]), which is a weaker but sufficient condition for regularity
of the parametric matrix.

When aiming to compute a self-verified enclosure of the solution to a parametric linear system by
the above inclusion method, a fixed-point iteration scheme is proven to be very useful. A detailed
presentation of the computational algorithm can be found in[11].

In case of arbitrary nonlinear dependencies between the uncertain parameters, computing [z] and
[C] in Theorem 2.1 requires a sharp range enclosure of nonlinear functions. This is a key problem in
interval analysis and there exists a huge number of methods and techniques devoted to this problem,
with no one method being universal. In this work we restrict ourselves to linear systems where
the elements ofA(x) andd(x) are rational functions of the uncertain parameters. In this case the
coefficients ofz(x) andC(x) are also rational functions ofx. The quality of the range enclosure of
z(x) will determine the sharpness of the parametric solution set enclosure. In [11] the above inclusion
theorem is combined with a simple interval arithmetic technique providing inner and outer bounds
for the range of monotone rational functions. The arithmetic of generalised (proper and improper)
intervals is considered as an intermediate computational tool for eliminating the dependency problem
in range computation and for obtaining inner estimations byoutwardly rounded interval arithmetic.
Since this methodology is not efficient in the general case of non-monotone rational functions, in
this work we combine the parametric fixed-point iteration with range enclosing tools based on the
Bernstein expansion of multivariate polynomials.

Bernstein Enclosure of Polynomial Ranges In this section we recall some properties of the Bern-
stein expansion which are fundamental to our approach, cf. [4, 21] and the references therein.

Firstly, some notation is introduced. We define multiindices i = (i1, . . . , in)T as vectors, where
then components are nonnegative integers. The vector 0 denotes the multiindex with all components
equal to 0. Comparisons are used entrywise. Also the arithmetic operators on multiindices are defined
componentwise such thati⊙ l := (i1⊙ l1, . . . , in⊙ ln)T , for ⊙ = +,−,×, and/ (with l > 0). For instance,

i/l, 0 ≤ i ≤ l, defines the Greville abscissae. Forx ∈ Rn its multipowers arexi :=
n∏
µ=1

x
iµ
µ . For the

n-fold sum we use the notation
l∑

i=0
:=

l1∑
i1=0
. . .

ln∑
in=0
. The generalised binomial coefficient is defined by

(
l
i

)
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n∏
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(
lµ
iµ

)
.

An n-variate polynomialp of degreel = (l1, . . . , ln),

p(x) =
l∑

i=0

ai x
i , x = (x1, . . . , xn), (2)

can be represented over [x] (Eq. 1c) withx = (x1, . . . , xn), x = (x1, . . . , xn) as

p(x) =
l∑

i=0

biBi(x),



whereBi is thei-th Bernstein polynomial of degree l

Bi(x) =

(
l
i

)
(x− x)i(x− x)l−i

(x− x)l

and the so-calledBernstein coefficients bi are given by

bi =

i∑

j=0

(
i
j

)
(

l
j

)(x− x) j
l∑

κ= j

(
κ

j

)
xκ− jaκ, 0 ≤ i ≤ l.

The essential property of the Bernstein expansion is therange enclosing property, namely that the
range ofp over [x] is contained within the interval spanned by the minimum andmaximum Bernstein
coefficients: mini{bi} ≤ p(x) ≤ maxi{bi}, x ∈ [x].

It is also worth noting that the values attained by the polynomial at the vertices of [x] are identical
to the corresponding vertex Bernstein coefficients, for exampleb0 = p(x) andbl = p(x). Thesharp-
ness propertystates that the lower (resp. upper) bound provided by the minimum (resp. maximum)
Bernstein coefficient is sharp, i.e. there is no underestimation (resp. overestimation), if and only if
this coefficient occurs at a vertex of [x].

The traditional approach (see, for example, [4, 21]) assumes that all of the Bernstein coefficients
are computed, and their minimum and maximum is determined. By use of an algorithm (cf. [4, 21])
which is similar to de Casteljau’s algorithm (see, for example, [17]), this computation can be made
efficient, with time complexity O(nl̂n+1) and space complexity (equal to the number of Bernstein
coefficients) O((̂l + 1)n), where l̂ = maxn

i=1 l i. This exponential complexity is a drawback of the
traditional approach, rendering it infeasible for polynomials with moderately many (typically, 10 or
more) variables.

In [19] a new method for the representation and computation of the Bernstein coefficients is pre-
sented, which is especially well suited to sparse polynomials. With this method the computational
complexity typically becomes nearly linear with respect tothe number of the terms in the polynomial,
instead of exponential with respect to the number of variables. This improvement is obtained from
the results surveyed in the following subsections. For details and examples the reader is referred to
[19].

Bernstein Coefficients of Monomials Let q(x) = xr , x = (x1, . . . , xn), for some 0≤ r ≤ l. Then
the Bernstein coefficients ofq (of degreel) over [x] (Eq. 1c) are given by

bi =

n∏

m=1

b(m)
im
,

whereb(m)
im

is theimth Bernstein coefficient (of degreelm) of the univariate monomialxrm over [xm, xm].
If the box [x] is restricted to a single orthant ofRn then the Bernstein coefficients ofq over [x] are
monotone with respect to each variablexj, j = 1, . . . , n.

With this property, for a single-orthant box, the minimum and maximum Bernstein coefficients
must occur at a vertex of the array of Bernstein coefficients. This also implies that the bounds provided
by these coefficients are sharp; see the aforementioned sharpness property. Finding the minimum and
maximum Bernstein coefficients is therefore straightforward; it is not necessary toexplicitly compute
the whole set of Bernstein coefficients. Computing the component univariate Bernstein coefficients
for a multivariate monomial has time complexity O(n(l̂ + 1)2). Given the exponentr and the orthant
in question, one can determine whether the monomial (and itsBernstein coefficients) is increasing
or decreasing with respect to each coordinate direction, and one then merely needs to evaluate the
monomial at these two vertices.

Without the single orthant assumption, monotonicity does not necessarily hold, and the problem
of determining the minimum and maximum Bernstein coefficients is more complicated. For boxes
which intersect two or more orthants ofRn, the box can be bisected, and the Bernstein coefficients of
each single-orthant sub-box can be computed separately.



The Implicit Bernstein Form Firstly, we can observe that since the Bernstein form is linear, if a
polynomialp consists oft terms, as follows,

p(x) =
t∑

j=1

ai j x
i j , 0 ≤ i j ≤ l, x = (x1, . . . , xn),

then each Bernstein coefficient is equal to the sum of the corresponding Bernstein coefficients of each
term, as follows:

bi =

t∑

j=1

b( j)
i , 0 ≤ i ≤ l,

whereb( j)
i are the Bernstein coefficients of thejth term ofp. (Hereafter, a superscript in brackets spec-

ifies a particular term of the polynomial. The use of this notation to indicate a particular coordinate
direction, as in the previous subsection, is no longer required.)

Therefore one may implicitly store the Bernstein coefficients of each term, and compute the Bern-
stein coefficients as a sum oft products, only as needed. The implicit Bernstein form thus consists
of computing and storing then sets of univariate Bernstein coefficients (one set for each component
univariate monomial) for each oft terms. Computing this form has time complexity O(nt(l̂ + 1)2) and
space complexity O(nt(l̂ + 1)), as opposed to O((l̂ + 1)n) for the explicit form. Computing a ingle
Bernstein coefficient from the implicit form requires (n+ 1)t − 1 arithmetic operations.

Determination of the Bernstein Enclosure for Polynomials We consider the determination of the
minimum Bernstein coefficient; the determination of the maximum Bernstein coefficient is analogous.
For simplicity we assume that [x] is restricted to a single orthant.

We wish to determine the value of the multiindex of the minimum Bernstein coefficient in each
direction. In order to reduce the search space (among the (l̂+1)n Bernstein coefficients) we can exploit
the monotonicity of the Bernstein coefficients of monomials and employ uniqueness, monotonicity,
and dominance tests, cf. [19] for details. As the examples in[19] show, it is often possible in practice
to dramatically reduce the number of Bernstein coefficients that have to be computed.

3 NUMERICAL EXAMPLES

In this section we illustrate the usage of the new parametricsolvers based on bounding polynomial
ranges by Bernstein expansion. The improved efficiency of the new polynomial solvers is demon-
strated by comparing both the computing time and the qualityof the solution enclosure for the new
solvers and the former one. The examples were run on a PC with AMD Athlon-64 3GHz processor.

Software Software for the solution of parametric interval linear systems, for the C-XSC [16] and
Mathematica[11] environments has been developed. Recently, theMathematicaparametric linear
solvers were upgraded to handle linear systems involving arbitrary rational dependencies [11, 14].
The enclosures ofz(x) andC(x) from Theorem 2.1 were computed by a technique based on gener-
alised intervals, which provides sharp range enclosures for monotone rational functions. The goal of
this work is to further upgrade the parametric solvers for systems involving polynomial and/or arbi-
trary rational dependencies, by integrating more powerfuland efficient tools for range computation
into the correspondingMathematicafunctions.

Given a polynomialp (Eq. 2) and a box [x] (Eq. 1c), we wish to compute a guaranteed tight en-
closure forp([x]). The existing C++ software routines of the last author, which implement the afore-
mentioned implicit Bernstein form, are utilised. Intervalarithmetic is used extensively throughout, for
which the C++ interval libraryfilib++ [5] is employed. As an additional benefit, all computational
results can also be guaranteed in the presence of rounding errors.

In order to shorten the development time and to preserve the beneficial properties of both imple-
mentation environments, the authors have connected the generalized parametric fixed-point iteration
and the Bernstein enclosure of polynomial ranges into a new parametric solver via theMathLink



communication protocol.MathLinkallows the externalfilib++ function for polynomial range com-
putation to be called from withinMathematicaas required. More details aboutMathLinktechnology
and the connectivity betweenMathematicaand externalfilib++ based interval programs can be
found in [13].

The new solver computes guaranteed outer bounds for the solution set of a parametric linear sys-
tem, where the matrix and/or the right hand side vector involve polynomial dependencies between
uncertain parameters. The general parametric residual iteration, cf. Theorem 2.1, implemented in
this function, uses some algebraic manipulations andMathLink communication with thefilib++
software for bounding the ranges of multivariate polynomials involved in the computation ofz(x) and
C(x).

Thefilib++ software for bounding the range of a multivariate polynomial over a box can also
be used for bounding the range of a function involving arbitrary rational dependencies between its
variables, if we represent the rational function as a quotient of two multivariate polynomials which
are to be bounded separately. This motivates the development of a further routine applicable to linear
systems involving arbitrary rational parameter dependencies.

For the sake of comparison, we also test a routine with the same usage as the previous solvers but
applying the former range computation method based on generalised interval arithmetic.

One-Bay Steel Frame Consider a simple one-bay structural steel frame, as shown in Figure 1,
which was initially studied by interval methods in [2]. Following standard practice, the authors have
assembled a parametric linear system of order eight and involving eight uncertain parameters. The
typical nominal parameter values and the corresponding worst case uncertainties, as proposed in [2]
but converted to SI-units, are shown in Table 1. The explicitanalytic form of the given system
involving polynomial parameter dependencies can be found in [2, 14].

Figure 1: One-bay structural steel frame [2].

Table 1: Parameters involved in the steel frame example.

parameter nominal value uncertainty
Eb 1.999∗ 108 kN/m2 ±2.399∗ 107 kN/m2

Young modulus
Ec 1.999∗ 108 kN/m2 ±2.399∗ 107 kN/m2

Ib 2.123∗ 10−4 m4 ±2.123∗ 10−5 m4
Second moment

Ic 1.132∗ 10−4 m4 ±1.132∗ 10−5 m4

Ab 6.645∗ 10−3 m2 ±6.645∗ 10−4 m2
Area

Ac 9.290∗ 10−3 m2 ±9.290∗ 10−4 m2

External force H 23.600 kN ±9.801 kN
Joint stiffness α 3.135∗ 105 kNm/rad ±1.429∗ 105 kNm/rad

Length Lc 3.658 m, Lb 7.316 m

As in [2, 14], we solved the system with parameter uncertainties which are 1% of the values
presented in the last column of Table 1.



We run the parametric solver and measure a total time of 0.05 seconds for execution of the main
steps. Running the previous parametric solver, we get a timemeasurement of 0.34 seconds, showing
that the compiled external code for range computation was considerably faster than the interpretative
Mathematicacode. For this example, the quality of the solution set enclosures, provided by both
solvers, was comparable. As shown in [11, 14], the solution enclosure obtained by the parametric
solver is by more than one order of magnitude better than the solution enclosure obtained in [2].

Based on the runtime efficiency of the new parametric solver, we next attempt to solvethe same
parametric linear system for the worst case parameter uncertainties in Table 1 ranging between about
10% and 46%. Firstly, we notice that the parametric solutiondepends linearly on the parameter
H, so that we can obtain a better solution enclosure if we solvetwo parametric systems with the
corresponding end-points forH. Secondly, enclosures of the hull of the solution set are obtained
by subdivision of the worst case parameter intervals (Eb,Ec, Ib, Ic,Ab,Ac, α)⊤ into (2, 2, 2, 2, 1, 1, 6)⊤

subintervals of equal width, respectively. We use more subdivision with respect toα sinceα is subject
to the greatest uncertainty. The solution enclosure, obtained within 11 sec., is given in Table 2.
Moreover, the quality of the solution enclosure [u] of the respective eight quantities is compared to
the combinatorial solution [h̃], i.e. the convex hull of the solutions to the point linear systems obtained
when the parameters take all possible combinations of the interval end-points. The combinatorial
solution serves as aninnerestimation of the solution enclosure. The quality of the solution enclosure
is measured byOω, defined byOω([h̃], [u]) := 100(1− ω([h̃])/ω([u])), whereω denotes the width of
the interval.

Table 2: One-bay steel frame example with worst-case parameter uncertainties (Table 1). Solution en-
closure [u] found by dividing the parameter intervals (Eb,Ec, Ib, Ic,Ab,Ac, α)⊤ into (2, 2, 2, 2, 1, 1, 6)⊤

subintervals of equal width, respectively. [u] is compared to the combinatorial solution [h̃].

105∗ solution enclosure [u] Oω([h̃], [u])
d2x: [138.54954789, 627.59324779] 12.5
d2y: [0.29323100807, 2.1529383383] 8.0
r2z: [-129.02427835, -22.381136355] 23.7
r5z: [-113.21398401, -17.95789860] 25.6
r6z: [-105.9680866, -17.64526946] 25.0
d3x: [135.25570695, 616.85512710] 12.7
d3y: [-3.7624790816, -0.41629803684] 13.2
r3z: [-122.3361772, -21.69878778] 23.5

These results show that by means of a small number of subdivisions the new parametric solver
provides a good solution enclosure very quickly for the difficult problem of worst-case parameter
uncertainties. Note that sharper bounds, close to the exacthull, can be obtained by proving the
monotonicity properties of the parametric solution [12].

Two-Bay Two-Story Frame Model with 13 Parameters Consider a two-bay two-story steel frame
with IPE 400 beams and HE 280 B columns, as shown in Figure 2, after [14]. The frame is subjected
to lateral static forces and vertical uniform loads. Beam-to-column connections are considered to
be semi-rigid and they are modelled by single rotational spring elements. Applying conventional
methods for the analysis of frame structures, a system of 18 linear equations is obtained, where the
elements of the stiffness matrix and of the right hand side vector are rational functions of the model
parameters. We consider the parametric system resulting from a finite element model involving the
following 13 uncertain parameters:Ac, Ic,Ec, Ab, Ib,Eb, c, w1, . . . ,w4, F1, F2. Their nominal values,
taken according to the European Standard Eurocode3, are given in Table 3. The explicit analytic form
of the given parametric system can be found in [15].



Figure 2: Two-bay two-story steel frame [14].

The parametric system is solved for the element material properties (Ac, . . . ,Eb), which are taken
to vary within a tolerance of 1% (that is [x−x/200, x+x/200], wherex is the corresponding parameter
nominal value from Table 3) while the spring stiffness and all applied loadings are taken to vary within
10% tolerance intervals.

parameter Columns (HE 280 B) Beams (IPE 400)

Cross-sectional area Ac = 0.01314 m2 Ab = 0.008446m2

Moment of inertia Ic = 19270∗ 10−8 m4 Ib = 23130∗ 10−8 m4

Modulus of elasticity Ec = 2.1 ∗ 108kN/m2 Eb = 2.1 ∗ 108 kN/m2

Length Lc = 3 m Lb = 6 m
Rotational spring stiffness c = 108 kN
Uniform vertical load w1 = . . . = w4 = 30 kN/m
Concentrated lateral forcesF1 = F2 = 100 kN

Table 3: Parameters involved in the two-bay two-story frameexample with their nominal values.

The new parametric solver requires a total of 1.3 seconds forexecution of the main steps, compared
to 7.4 seconds for the former one; it is about six times faster. An algebraic simplification, applied to
functional expressions in computer algebra environments,may reduce the occurrence of interval vari-
ables which could result in a sharper range enclosure. Such an algebraic simplification is expensive
and when applied to complicated rational expressions usually does not result in a sharper range en-
closure. For the sake of comparison, we have run the former parametric solver in two ways: applying
intermediate simplification during the range computation,and without any algebraic simplification.
The above results were obtained when the range computation does not use any algebraic simplifica-
tion. When the range computation of the previous solver usesintermediate algebraic simplification,
we obtain the results in 14.4 seconds. This is much slower, but provided a tighter enclosure of the
solution set than the rational solver, based on polynomial ranges, which did not account for all the
parameter dependencies.

Two-Bay Two-Story Frame Model with 37 Parameters As a larger problem of a parametric
system involving rational parameter dependencies, we consider the finite element model of the two-
bay two-story steel frame from the previous example, where each structural element has properties
varying independently within 1% tolerance intervals. Thisdoes not change the order of the system but
it now depends on 37 interval parameters. The explicit analytic form of the given parametric system
can be found in [15].

First, the polynomial solver is run, and one observes a considerable increase in the computing
time (245 seconds) compared to the time needed for the 13 parameters example, caused by the larger
number of parameters. The former parametric solver, based on range computation without algebraic
simplification, exhibits approximately three times slowerperformance (755 seconds) than the new



one. The quality of the solution enclosure, provided by the new polynomial solver, is also much
better than the solution enclosure provided by the former solver.

Note that when the previous range computation uses algebraic simplification, it is much slower.
However, the quality of the solution enclosure does not improve by more than a tiny amount, probably
due to the more complicated parameter dependencies. This demonstrates the merit of the general-
purpose parametric iteration, combined with Bernstein enclosure of polynomial ranges, for solving
parametric systems involving complicated dependencies between many parameters.

The method presented in [8] is highly efficient for truss structures but it is not applicable to the
complicated dependencies arising in the two-bay two-storyframe models considered above. The
general-purpose interval approach we consider is suitablefor linear parametric problems involving
arbitrary polynomial dependencies for which special methods have not yet been designed.

4 CONCLUSIONS

In this paper, we demonstrated the advanced application of ageneral-purpose parametric method,
combined with the Bernstein enclosure of polynomial ranges, to linear systems obtained by standard
FEM analysis of mechanical structures, and illustrated theefficiency of the new parametric solver.

It is shown that powerful techniques for range enclosure arenecessary to provide tight bounds on
the solution set, in particular when the parameters of the system are subject to large uncertainties and
the dependencies are complicated.

The new self-verified parametric solvers can be incorporated into a general framework for the
computer-assisted proof of global and local monotonicity properties of the parametric solution. Based
on these properties, a guaranteed and highly accurate enclosure of the interval hull of the solution set
can be computed [12]. The parametric solvers for square systems facilitate the guaranteed enclosures
of the solution sets to over- and underdetermined parametric linear systems.
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