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Abstract. A method is investigated by which tight bounds on the range of a
multivariate rational function over a box can be computed. The approach relies
on the expansion of the numerator and denominator polynomials in Bernstein
polynomials. Convergence of the bounds to the range with respect to degree
elevation of the Bernstein expansion, to the width of the box and to subdivision
are proven and the inclusion isotonicity of the related enclosure function is
shown.
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1 Introduction

The expansion of a given (multivariate) polynomial p into Bernstein polynomials
provides bounds on the range of p over a box. This is now a well-established
tool as documented in [6]. In [8] the approach is extended to rational functions,
however, without any proof of the convergence of the bounds to the range. In
this paper we aim at filling this gap. Furthermore, we show that the related
rational Bernstein form is inclusion isotone, a property which is of fundamental
importance in interval computations, see, e.g., [9, Section 1.4]. The organization
of our paper is as follows. In Sections 2 and 3 we recall the polynomial and the
rational Bernstein forms. In Section 4 we present our main results.

2 The Polynomial Bernstein Form

In this section we briefly recall the most important properties of the Bernstein
expantion, which will be used in the following sections. Let I(R) be the set of
the compact, non-empty real intervals. We denote the distance q between two
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intervals A = [a, a], B = [b, b] by

q([a, a], [b, b]) := max{|a− b|, |a− b|}.

Without loss of generality we may consider the unit box I := [0, 1]n since
any compact non-empty box in Rn can be mapped thereupon by an affine trans-
formation.

Comparisons and arithmetic operations on multiindices i = (i1, . . . , in)T

are defined componentwise. For x ∈ Rn its monomials are xi := xi11 . . . x
in
n .

Using the compact notation
∑k
i=0 :=

∑k1
i1=0 · · ·

∑kn
in=0,

(
k
i

)
:=
∏n
µ=1

(
kµ
iµ

)
, an

n-variate polynomial p, p(x) =
∑l
i=0 aix

i, can be represented as

p(x) =

k∑
i=0

b
(k)
i (p) B

(k)
i (x), x ∈ I, (1)

where

Bki (x) =

(
k

i

)
xi(1− x)k−i (2)

is the ith Bernstein polynomial of degree k ≥ l, and the so-called Bernstein

coefficients b
(k)
i (p) are given by

b
(k)
i (p) =

i∑
j=0

(
i
j

)(
k
j

)aj , 0 ≤ i ≤ k, where aj := 0 for l ≤ j, j 6= l. (3)

In particular, we have the endpoint interpolation property

b
(k)
i (p) = p(

i

k
), for all i, 0 ≤ i ≤ k, (4a)

with iµ ∈ {0, kµ}. (4b)

A fundamental property for our approach is the convex hull property, which
states that the graph of p over I is contained within the convex hull of the
control points derived from the Bernstein coefficients, i.e.,{(

x

p(x)

)
: x ∈ I

}
⊆ conv

{( i
k

b
(k)
i (p)

)
: 0 ≤ i ≤ k

}
, (5)

where conv denotes the convex hull. This implies the interval enclosing property
[1]

min
0≤i≤k

b
(k)
i (p) ≤ p(x) ≤ max

0≤i≤k
b
(k)
i (p), for all x ∈ I. (6)

Equality holds on the left or right hand side of (6), if the minimum or maximum,
respectively, is attained at an index i satisfying (4b). This condition is called
the vertex condition. For an efficient computation of the Bernstein coefficients,
see [4].

A disadvantage of the direct use of (6) is that the number of the Bernstein
coefficients to be computed explicity grows exponentially with the number of
variables n. Therefore, it is advantageous to use a method [11] by which the
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number of coefficients which are needed for the enclosure only grows approxi-
mately linearly with the number of the terms of the polynomial.

In many cases it is desired to calculate the Bernstein expansion of p over a
general n-dimensional box X in the I(R)n,

X = [x1, x1]× · · · × [xn, xn]

with
xµ < xµ, µ = 1, . . . , n.

The width of X is denoted by w(X),

w(X) := x− x.

It is possible to firstly apply the affine transformation which maps X on the
unit box I and to apply (3) using the coefficients of the transformed polynomial.
However, in Section 4 it will be useful to consider the direct computation. Here,
the ith Bernstein polynomial of degree k ≥ l is given by

B
(k)
i (x) =

(
k

i

)
(x− x)i(x− x)k−iw(X)−k, 0 ≤ i ≤ k. (7)

The Bernstein coefficients b
(k)
i of p of degree k over X are given by

b
(k)
i (p) =

i∑
j=0

(
i
j

)(
k
j

) cj , 0 ≤ i ≤ k, (8)

where cj = w(X)j
k∑
τ=j

(
τ

j

)
aτx

τ−j (9)

with the convention aj := 0 for l ≤ j, l 6= j.

The interval
B(k)(p,X) := [ min

0≤i≤k
b
(k)
i , max

0≤i≤k
b
(k)
i ]

encloses the range of p over X and is called the polynomial Bernstein form of
p.

If the degree of the Bernstein expansion is elevated, the Bernstein coefficients
of order k+ 1 can easily be computed as convex combinations of the coefficients
of order k, e.g., [2, formula (13)], [4, formula (3.11)]. It follows that

B(k+1)(p,X) ⊆ B(k)(p,X). (10)

The following theorem, see [10, formula (16)] for the univariate case and [4,
Theorem 3] for its multivariate extension, will be used to derive our main re-
sults.

Theorem 1. For l ≤ k, the following bound holds for the overestimation
of the range p(X) of p over X by the Bernstein form

q(p(X), B(k)(p,X)) ≤
l∑
i=0

n∑
µ=1

[max(0, iµ − 1)]2

kµ
|ci|, (11)
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where the coefficients ci are given by (9).

Remark 1. If 2 ≤ kµ the bound on the right hand side of (11) can be im-
proved slightly, see [10, formula (17)].

3 The Rational Bernstein Form

Let p and q be polynomials in variables x1, . . . , xn with Bernstein coefficients

b
(k)
i (p) and b

(k)
i (q), 0 ≤ i ≤ k, over a box X, respectively. We consider the

rational function f := p/q. We may assume that both p and q have the same
degree l since otherwise we can elevate the degree of the Bernstein expansion of
either polynomial by component where necessary to ensure that their Bernstein
coefficients are of the same order k ≥ l. We call

b
(k)
i (f) :=

b
(k)
i (p)

b
(k)
i (q)

, 0 ≤ i ≤ k,

the rational Bernstein coefficients of f .

Theorem 2. [8, Theorem 3.1] Assume that all Bernstein coefficients b
(k)
i (q)

have the same sign and are non-zero (this implies that q(x) 6= 0, for all x ∈ X).
Then the following enclosure for the range of f over X holds

m(k) := min
0≤i≤k

b
(k)
i (f) ≤ f(x) ≤ max

0≤i≤k
b
(k)
i (f) =: m(k), for all x ∈ X. (12)

The interval spanned by the left and right hand sides of (12) constitutes the
rational Bernstein form B(f,X),

B(k)(f,X) := [m(k),m(k)].

Remark 2. The convex hull property (5) does not in general carry over to ratio-
nal functions and control points formed from the rational Bernstein coefficients
even in the univariate case (n = 1). For a counterexample see [8].

Remark 3. Theorem 2 carries over to the Bernstein polynomials over the stan-
dard simplex in Rn [4].

4 Main Results

Let throughout f = p/q be a rational function, where p and q are polynomials
of degree l and let the range of f over X be f(X) = [f, f ]. Without loss of
generality we assume that

0 < b
(l)
i (q), for all i, 0 ≤ i ≤ l, (13)

and prove the statements only for the upper bounds since the proofs for the
lower bounds are entirely analogous. The polynomial r,

r := p−m(k)q, (14)
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will serve as a vehicle to convey the results from the polynomial to the rational
case. Note that the Bernstein coefficients of a polynomial are linear, hence

b
(k)
i (r) = b

(k)
i (p)−m(k)b

(k)
i (q). (15)

First we show that the vertex condition remains in force.

Proposition 3. It holds that m(k) = f (m(k) = f) if and only if m(k) (m(k)) =

b
(k)
i (f) with i satisfying (4b).

Proof. By (4a), b
(k)
i (f) with i satisfying (4b) is a value of f at a vertex of

X. If follows that m(k) is sharp if it is attained at such a Bernstein coefficient.
Conversely, assume that m(k) = f,

m(k) = b
(k)
i0

(f), for some i0, 0 ≤ i0 ≤ k, (16)

and f = f(x̂) for some x̂ ∈ X. Then we can conclude that

r(x̂)

q(x̂)
= f(x̂)−m(k) = 0,

hence r(x̂) = 0. Since r is nonpositive on X it attains its maximum at x̂. On
the other hand, we have by (15)

b
(k)
i (r) ≤ 0, for all i, 0 ≤ i ≤ k, (17)

and by (16) b
(k)
i0

(r) = 0. So we can conclude that

max
x∈X

r(x) = b
(k)
i0

(r). (18)

By the polynomial vertex condition if follows that the index i0 satisfies (4b).
�

4.1 Linear Convergence with Respect to Degree Elevation

We start with the observation that the monotonicity property (10) carries over
to the rational case.

Proposition 4. For l ≤ k it holds that B(k+1)(f,X) ⊆ B(k)(f,X).

Proof. By application of (10) to polynomial r (14) and noting (15) we obtain
for all j, 0 ≤ j ≤ k + 1,

b
(k+1)
j (p)−m(k)b

(k+1)
j (q) ≤ max

0≤i≤k+1
{b(k+1)
i (p)−m(k)b

(k+1)
i (q)}

≤ max
0≤i≤k

{b(k)i (p)−m(k)b
(k)
i (q)} ≤ 0,

hence b
(k+1)
j (f) ≤ m(k). �

Theorem 5. For l ≤ k it holds that

q(f(X), B(k)(f,X)) ≤ β

k
, (19)
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where β is a constant not depending on k.

Proof. Without loss of generality we consider only the case 0 ≤ m(k). Since
by (10) for l ≤ k

m(k) ≤ m(l) ≤ max b
(l)
i (p)

min b
(l)
i (q)

=: β′ (20)

we can conclude from Theorem 1 that

−r(x) ≤ m(k)q(x)− p(x) + ( max
0≤i≤k

b
(k)
i (p)−m(k) min

0≤i≤k
b
(k)
i (q))

≤ β′(q(x)− min
0≤i≤k

b
(k)
i (q)) + ( max

0≤i≤k
b
(k)
i (p)− p(x)) (21)

≤ β′′

k
,

where β′′ is a constant not depending on k. Division by q results in

m(k) − f(x) ≤ β′′

q(x)

1

k
≤ β′′

min b
(l)
i (q)

1

k
(22)

which completes the proof. �

4.2 Quadratic Convergence with Respect to the Width of
an Interval

Inspection of (21) shows that we can extract maxnµ=1(xµ − xµ) from the con-
stant β in (19), cf. (9), (11). Therefore, we obtain the following extension of
[12, Corollary 3.4.16].

Theorem 6. Let A ∈ I(R)n be fixed. Then for all X ∈ I(R)n, X ⊆ A,
and l ≤ k it holds that

q(f(X), B(k)(f,X)) ≤ γ ||w(X)||2∞, (23)

where γ is a constant not depending on X.

4.3 Quadratic Convergence with Respect to Subdivision

Since the convergence with respect to degree elevation is only linear we will
choose k = l in the sequel and reserve in this subsection the upper index of
the Bernstein coefficients for the subdivision level. For simplicity we consider
the unit box I. Repeated bisection of I(0,1) := I in all n coordinate directions
results at subdivision level 1 ≤ h in subboxes I(h,ν) of edge length 2−h, ν =

1, . . . , 2nh. Denote the Bernstein coefficients of f over I(h,ν) by b
(h,ν)
i (f). For

their computation see [4], [13]. put

B(h)(f) := [ min
0≤i≤l,

1≤ν≤2nh

b
(h,ν)
i (f), max

0≤i≤l,
1≤ν≤2nh

b
(h,ν)
i (f)].
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We obtain the following extension of [3, formula (23)].

Theorem 7. For each 1 ≤ h it holds

q(f(X), B(h)(f)) ≤ δ(2−h)2, (24)

where δ is a constant not depending on h.

Proof. Assume that

max
0≤i≤l,

1≤ν≤2nh

b
(h,ν)
i = max

0≤i≤l
b
(h,ν0)
i , for some ν0, 0 ≤ ν0 ≤ 2nh.

Then it follows by Theorem 6

max
0≤i≤l,

1≤ν≤2nh

b
(h,ν)
i −max

x∈I
f(x) ≤ max

0≤i≤l
b
(h,ν0)
i − max

x∈I(h,ν0)
f(x)

≤ δ||w(I(h,ν0))||2∞ = δ (2−h)2. �

Remark 4. Note that by (9), (11) the constants β, γ and δ in (19), (23) and (24)
can be given explicity.

4.4 Inclusion Isotonicity

We continue with choosing k = l and suppress therefore the upper index for
the Bernstein coefficients. An interval function F : I(R)n −→ I(R) is called
inclusion isotone, if, for all X,Y ∈ I(R)n, X ⊆ Y implies F (X) ⊆ F (Y ).

In [7] it was shown by a lengthy proof that the polynomial Bernstein form
is inclusion isotone. In [5] a brief proof of this property and an extension to the
multivariate case are presented. We show that the inclusion isotonicity carries
over to rational functions.

Theorem 8. The rational Bernstein form is inclusion isotone.

Proof. We consider without loss of generality the unit box I and denote the
Bernstein coefficients of the rational function f over I by bi(f), 0 ≤ i ≤ l.
It suffices to show that the inclusion isotonicity holds if we shrink only one
edge of I and this in turn separately at its left and right endpoint. Without
loss of generality we consider only the first case and the first component inter-
val of I and denote by b∗i (f), 0 ≤ i ≤ l, the Bernstein coefficients of f over
[ε, 1]× [0, 1]n−1, 0 < ε < 1. Put

m∗ := max
0≤i≤l

b∗i (f).

We proceed by contradiction and assume that

m∗ = b∗i0(f), for some i0, 0 ≤ i0 ≤ l, (25)
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and
m := max

0≤i≤l
bi(f) < m∗. (26)

Since the Bernstein form of the polynomial p−m∗q is inclusion isotone we
obtain from (26) that

b∗i0(p)−m∗b∗i0(q) ≤ max
0≤i≤l

{b∗i (p)−m∗b∗i (q)}

≤ max
0≤i≤l

{bi(p)−m∗bi(q)}

< max
0≤i≤l

{bi(p)−m bi(q)} ≤ 0

from which we get a contradiction to (25). �
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