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1 Introduction

Systems of linear interval equations arise when the entries of the coefficient
matrix and the right hand side of systems of linear equations vary between
given bounds, cf. [1, Sect. 3.4]. The solution set of such a system

[A]x = [b], (1)

where [A] = [A, A] is a given n-by-n matrix interval and [b] = [b, b] is a given
vector interval with respect to the usual entry-wise partial order, is the set

Σ ([A], [b]) := {x ∈ Rn | Ax = b, A ∈ [A], b ∈ [b]} . (2)

We will assume throughout that all A ∈ [A] are non-singular. Then by
continuity, the set (2) is compact and connected. It can be described explicitly
only in very simple cases. Therefore one attempts to find a vector interval
which encloses the set (2) as tightly as possible.

The best known method by which such an enclosure can be found is inter-
val Gaussian elimination [1, Section 4.5], [2, Chap. 15], which is obtained from
the usual (termed ordinary henceforth) Gaussian elimination by replacing the
real numbers by the related intervals and the real operations by the respective
interval operations; we assume that the reader is familiar with interval arith-
metic, e.g. [1, Chap. 1], [2, Chaps. 1–4]. However, interval Gaussian elimination
may fail due to division by an interval pivot containing zero, even if ordinary
Gaussian elimination succeeds for all matrices A ∈ [A]. There are some classes
of interval matrices for which interval Gaussian elimination cannot fail, e.g.,
the H-matrices, see [1, Theorem 4.5.7], [2, Chap. 17]. If ordinary Gaussian
elimination is applied without pivoting, the pivots can be represented as the
ratio of two successive leading principal minors. For some classes of matrices
with an identical sign pattern of their inverses the ranges of the ordinary pivots
over the matrix interval can be given explicitly and these ranges do not contain
0, see [3]. These classes include a subclass of the inverse nonnegative matrices,
the nonsingular totally nonnegative matrices, and the inverse M -matrices. By
replacing an interval pivot containing 0 by the range of the respective ordinary
pivot the breakdown of the interval Gaussian elimination can be avoided. This
tightening of the interval pivot has the additional advantage that the resulting
enclosure of the solution set (2) is not larger than the one obtained by the
usual interval Gaussian elimination, and may be smaller. Moreover, the range
of the pivots can be obtained by running a few instances of ordinary Gaussian
elimination procedures in parallel.

In this paper we consider the case of symmetric matrices and consequently
restrict the discussion to the set

[A]sym :=
{

A ∈ [A] | AT = A
}

. (3)

and to the symmetric solution set

Σsym ([A], [b]) := {x ∈ Rn | Ax = b, A ∈ [A]sym, b ∈ [b]} . (4)
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A method to compute an enclosure of the symmetric solution set is the
interval variant of the ordinary Cholesky decomposition [4,5]. As for interval
Gaussian elimination, the interval Cholesky method may fail due to an interval
containing 0 for which the square root has to be taken to obtain the next
interval pivot, even if all matrices A ∈ [A] are positive definite and therefore
possess a Cholesky decomposition. Presently, we are not able to give the range
of a pivot, so we use a positive lower bound for it in order to tighten the
respective interval pivot. Of special interest are symmetric Toeplitz matrices
for which we present additional techniques for tightening.

The organisation of the paper is as follows: In the next section we introduce
our notation. We present pivot tightening for the interval Cholesky method and
the interval variants of two algorithms for solving systems of linear interval
equations with a Toeplitz structure in Sections 3 and 4, respectively, and
conclude with some remarks in Section 5.

2 Notation

Denote by IR the set of the compact and nonempty real intervals. We equip Rn

and Rn×n, the sets of real n-vectors and of real n-by-n matrices, respectively,
with the usual entry-wise order ≤. Vector and matrix intervals with respect to
this partial order can be regarded as IRn, the set of vectors with n components
taken from IR, and IRn×n, the set of n-by-n matrices over IR, respectively.
Consequently we write

[b] = [b, b] = ([bi])
n

i=1 =
(

[bi, bi]
)n

i=1

and

[A] = [A, A] = ([aij ])
n

i,j=1 =
(

[aij , aij ]
)n

i,j=1
.

As usual, we identify a degenerate interval (vector, matrix) with the (only)
real number (vector, matrix) it contains. In order to distinguish an interval
quantity from a real quantity we call the latter a point quantity.

For [A] ∈ IRn×n we define its midpoint matrix by Ac := 1
2 (A + A)

and its radius matrix by △A := 1
2 (A − A). Then [A] can be represented

as [Ac − △A, Ac + △A]. A matrix A = (aij) is a vertex matrix of [A] if
aij ∈ {aij , aij}, i, j = 1, . . . , n. Of special interest are the vertex matrices
which can be represented in the form

Ayz := Ac − diag(y1, . . . , yn) · △A · diag(z1, . . . , zn),

where y, z ∈ Yn := {−1, 1}n. The cardinality of the set of these matrices is
at most 22n−1; in the case that we allow only y = z we have at most 2n−1

matrices, see [6].
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3 Interval Cholesky Method

3.1 Positive definite interval matrices

Here we are concerned with symmetric interval matrices, i.e., [A]T = [A]. We
call [A] positive definite if all matrices in [A]sym are positive definite. The
following theorem shows that this property can be inferred from at most 2n−1

(symmetric) vertex matrices.

Theorem 1 ([6,7]) Let [A] = [A]T ∈ IRn×n. The interval matrix [A] is
positive definite if and only if the matrices Azz are positive definite for all
z ∈ Yn.

We consider now the symmetric solution set (4). A method for its enclosure
is the interval Cholesky method, which is obtained from the ordinary Cholesky
algorithm by replacing the real numbers by the related intervals and the real
operations by the corresponding interval operations [4,5]. The square root of

an interval a = [a, a] is defined by [a]
1

2 := {a
1

2 | a ∈ [a]}, provided that 0 ≤ a.

3.2 The algorithm [4]

Let [A] ∈ IRn×n with [A] = [A]T and [b] ∈ IRn. Define the lower triangular
matrix [L] ∈ IRn×n by
for j = 1, . . . , n:

[ljj ] :=

(

[ajj ] −

j−1
∑

k=1

[ljk]2

)

1

2

,

[lij ] :=

(

[aij ] −

j−1
∑

k=1

[lik] · [ljk]

)

/[ljj ], i = j + 1, . . . , n;

compute vectors [y], [xC ] ∈ IRn by

[yi] :=



[bi] −

i−1
∑

j=1

[lij ] · [yj]



 /[lii], i = 1, . . . , n;

(forward substitution)

[xC
i ] :=



[yi] −

n
∑

j=i+1

[lji] · [x
C
j ]



 /[lii], i = n, n − 1, . . . , 1.

(backward substitution)

The algorithm is feasible if and only if 0 < l2jj , j = 1, . . . , n. In this case the
above algorithm yields the enclosure

Σsym ([A], [b]) ⊆ [xC ].
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It is known that the interval Cholesky method may break down even if [A] is
positive definite [4]1. In the next subsection we present a method by which the
breakdown of the algorithm can be avoided. In analogy to interval Gaussian
elimination, we call the diagonal entries [lii] interval pivots. For the ordinary
Cholesky decomposition, lii can be represented as the square root of the ratio
of two successive leading principal minors, cf. [8, formula (42) on p. 38], i.e.,

ljj =

(

detA[{1, 2, . . . , j}]

detA[{1, 2, . . . , j − 1}]

)
1

2

, j = 1, . . . , n.

From this representation and Fisher’s inequality [9, p. 478] follows the bound

ljj ≤ a
1

2

jj , j = 1, . . . , n,

which may be employed to tighten the interval pivot.
Since any principal submatrix of a positive definite matrix is again positive

definite, we may restrict the discussion to

p(A) := l2nn(A) = detA/detA′,

where A′ is the submatrix of A obtained by deletion of its last row and column.

Conjecture 1 Let [A] = [A]T ∈ IRn×n be positive definite. Then the minimum
value of p over [A]sym is attained at a matrix Azz , z ∈ Yn.

Remark: From [3, Proposition 3.1] it follows that the minimum value is
attained at a matrix

A = (aij)
n
i,j=1 ∈ [A] with ajj = ajj , j = 1, . . . , n, (5)

and that it is attained at a symmetric vertex matrix if all matrices from [A]
have identical sign patterns of their inverses. Evidence of the conjecture is
provided by Theorem 1 and formula (6) below. By [10, Theorem 1.2], a lower
bound for the minimum value is provided by the minimum value of p over all
matrices Ayz, y, z ∈ Yn (note that p(A) is the reciprocal value of the entry in
the bottom right position of A−1).

So long as this conjecture is not settled, we will use positive lower bounds
for the interval pivots, which will be presented in the next subsection.

3.3 Interval pivot tightening

Since the eigenvalues of A and A′ interlace, e.g., [9, p. 189], we obtain

λ1(A) ≤ p(A),

where λ1(A) denotes the smallest eigenvalue of A. By [11], it is known that

min
A∈[A]sym

λ1(A) = min
z∈Yn

λ1(Azz). (6)

1 An example will be given in Subsection 3.3 (Example 1).
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By solving two eigenvalue problems (instead of 2n−1) we obtain a lower bound
for the minimum eigenvalue in (6)

λ1(Ac) − ρ(△A) ≤ min
A∈[A]sym

λ1(A) (7)

[12], where ρ(△A) denotes the spectral radius of △A. It was pointed out in
[13] that the minimum eigenvalue of [A] is attained for matrices satisfying (5)
such that on the left-hand side of (7) the diagonal of Ac can be restricted to
the diagonal of A and only zeros are on the diagonal of △A. However, even
this improved bound may be nonpositive, in which case it is useless for pivot
tightening.

In [14] we employ the following lower bounds for the smallest eigenvalue of
a positive definite symmetric matrix A, which do not require the computation
of any eigenvalue. We use the following partition of a positive definite matrix
A

A =

(

A′ d
dT c

)

.

Let βn−1 be any lower bound for λ1(A
′). Then we have the lower bound [15]

of complexity O(n)

βn =
1

2

(

c + βn−1 −
√

(c − βn−1)2 + 4dT d

)

≤ λ1(A). (8)

This bound may not be positive. If this case occurs we use the following bound
[16]

β̃n =
1

2

(

c + βn−1 −
√

(c − βn−1)2 + 4βn−1dT (A′)−1d

)

≤ λ1(A). (9)

which is always positive. Here, (A′)−1d should be computed as the solution x
of A′x = d. Then the computation of β̃n can be arranged recursively in such
a way that, starting with β1 = a11, the j-th step needs 3j2 + O(j) arithmetic
operations (and one square root), j = 2, . . . , n. This can be seen as follows:
If we have computed the Cholesky decomposition Li−1L

T
i−1 = Ai−1 of the

leading principal submatrix of order i − 1 of A then one square root and
j2 + O(j) arithmetic operations are required to compute the Cholesky factor
of Ai. Forward and backward substitution, cf. Subsection 3.2, each need j2

operations to solve the respective linear system.

It should be noted that sharper positive bounds are given in [17], which
require the additional computation of (A′)−2 (and (A′)−3).

If in the jth step the bound (9) is applied to the 2j−1 leading principal
submatrices of order j of the vertex matrices Azz , j = 2, . . . , n, the computa-
tion requires approximately 2n square roots and 3n22n + O(n2n) arithmetic
operations. This can be seen as follows: In the jth step, 2j−1 matrices are
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Table 1 Matrices Azz , z ∈ Y3, together with associated bounds

matrix

(

4 3 1
3 4 3
1 3 4

) (

4 3 1
3 4 2
1 2 4

) (

4 2 1
2 4 3
1 3 4

) (

4 2 1
2 4 2
1 2 4

)

bound (8) -1 -0.192 -0.316 0.550
bound (9) 0.177 0.658 0.619

involved. Therefore, 3j22j−1 + O(j2j−1) arithmetic operations are required.
Now use the identity, see [18, p. 199, Example 4],

n
∑

j=1

jxj−1 =
1 − (n + 1)xn + nxn+1

(x − 1)2
, x 6= 1. (10)

Differentiating on both sides, putting x = 2, and multiplying both sides by 2
yields

n
∑

j=1

j22j−1 = n22n + O(n2n). (11)

The lower bounds (7) and (8) are much easier to compute than (6) and (9) but
only the latter are always positive. Obviously, the computation of (9) requires
less effort than (6). Also, it is easier to compute (9) in a guaranteed way, i.e.,
such that all rounding errors are covered.

Example 1 We consider the following matrix interval. Let

[A] :=





[4, 6] [2, 3] 1
[2, 3] 4 [2, 3]

1 [2, 3] [4, 5]



 .

By Theorem 1, it is easily checked that [A] is positive definite. The interval
Cholesky method breaks down due to l233 = −79/252.

The following results are rounded down to three decimal places. The mini-
mal eigenvalue according to (6) is 0.228. Formula (7) with diagonal minimiza-
tion gives the lower bound 0.222. The four matrices Azz , z ∈ Y3, together with
the associated bounds according to (8) and (9) are given in Table 1. Thus, if
the bounds (8) and (9) are used, l233 can be improved to 0.177.

Since [A] contains only nonsingular totally nonnegative matrices, the min-
imum of p over [A] is 6/7, see [3, Example 4.4].

3.4 Positive definite Toeplitz matrices

In this subsection we consider symmetric Toeplitz matrices

T (a1, . . . , an) =













a1 a2 · · · an

a2 a1
. . .

...
...

. . .
. . . a2

an · · · a2 a1













. (12)
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If such a matrix is positive definite then the pivots of the Cholesky decompo-
sition are monotonically decreasing [19]

lnn ≤ . . . ≤ l22 ≤ l11 ≤ a
1

2

1 . (13)

Now let [A] be a symmetric Toeplitz interval matrix [A] = T ([a1], . . . , [an]).
Denote by [A]T,sym the set of all symmetric Toeplitz matrices contained in [A].
We want to enclose the symmetric Toeplitz solution set

ΣT,sym([A], [b]) := {x ∈ Rn | Ax = b, A ∈ [A]T,sym, b ∈ [b]} .

Assume now that [A]T,sym contains only positive definite matrices. Then (13)
can be employed to tighten the interval pivots: Suppose that we have already
computed [ljj ] and [lj+1,j+1].

(i) If lj+1,j+1 > ljj then put lj+1,j+1 := ljj ; (14)

(ii) If lj+1,j+1 > ljj then put ljj := lj+1,j+1. (15)

In case (ii) the entries in the column below [ljj ] should be recomputed; this
may tighten [lj+1,j+1], too.

Of special interest are entry-wise nonnegative symmetric Toeplitz matrices
with monotone and convex decay of their off-diagonal entries. In [20] it was
shown that for these matrices nonnegativity and monotonicity are maintained
throughout the Cholesky decomposition.

Theorem 2 ([20]) Let T be given as in (12). Assume for simplicity that
a1 = 1. Suppose that the sequence a2, . . . , an satisfies the relations

(i) 1 ≥ a2 ≥ a3 ≥ · · · ≥ an ≥ 0,

(ii) 1 − a2 ≥ a2 − a3 ≥ · · · ≥ an−1 − an ≥ 0.

Then the Cholesky factor L, T = LLT is entry-wise nonnegative and satisfies

lij ≥ li+1,j , i = 1, . . . , n − 1, j = 1, . . . , i; (16)

ljj lij ≥ ai−j+1 − ai−j+2 + ai · (aj−1 − aj), j = 2, . . . , n, i = j, . . . , n. (17)

In particular, setting i = j in (17) we obtain a lower bound on the pivots

l2jj ≥ 1 − a2 + aj · (aj−1 − aj), j = 2, . . . , n. (18)

In the following example we apply (14), (15) as well as obvious extensions
of formulae (16) and (18) to symmetric Toeplitz interval matrices. It should
be noted that in contrast to the lower bounds presented in Subsection 3.3 the
tightening approach tailored to these special Toeplitz matrices costs nearly
nothing. Once the respective interval entries of the matrix [L] are computed,
formulae (14) – (16) do not require any arithmetic operations and each appli-
cation of (18) costs 4 arithmetic operations.
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Example 2 We consider

[A] = T (1, [.5625, .625], [.25, .3125], [.0625, .125], [0, .0625]).

Each symmetric Toeplitz matrix contained in [A] satisfies the monotonicity and
convexity assumptions (i), (ii) of Theorem 2 and is therefore positive definite
by [20]. The following results are obtained by running the interval Cholesky
method implemented in INTLAB [21] with different tightening techniques.

We obtain the following interval pivots, which can be improved according
to (14) and (15) (rounded outwards to four decimal places)

[l22] = [.7806, .8268],

[l33] = [.7192, .8604], and by (14) l33 := .8268,

[l44] = [.5842, .9048], and by (14) l44 := .8268,

[l55]
2 becomes [−.1254, .9167]; therefore we apply (18) to obtain

[l55]
2 = [.3750, .9167], [l55] = [.6123, .9575], and by (14) l55 := .8268,

and by (15), [l44] = [.6123, .8268].

Since we have improved l44 we recompute [l54] and improve l54 from .9602 to
.9162. On the other hand, formula (16) can be used to improve it to .8268.
Now we recompute [l55]

2 and obtain [.1129, .9167] which does not represent
any improvement. By (18), [l44] can be tightened to [.6187, .8268].

4 Interval Bareiss and Trench Algorithms

The algorithms by Bareiss [22] and Trench [23] are well known direct al-
gorithms of complexity O(n2) for solving (not necessarily symmetric) point
Toeplitz systems. Both have symmetric variants [22,24]. In [25] we present in-
terval variants of both algorithms and investigate their feasibility. Both point
algorithms require division by certain quantities which can be represented as
the ratio of two successive leading principal minors [22, Cor. 1], [23, p. 276].
Therefore, all results for the diagonal pivots of the (point) Cholesky method
carry over to the interval variants of the symmetric Bareiss and Trench al-
gorithms. In particular, we can employ the useful tightening tools (14) and
(15).

Symmetric strictly diagonally dominant (point) matrices with positive di-
agonal entries are instances of positive definite matrices, e.g., [9, Cor. 7.2.3].
In [25] we show that the interval variants of the Bareiss and the Trench algo-
rithms are feasible for strictly diagonally dominant interval Toeplitz matrices.
Recently, both interval algorithms were applied in [26] to a large number of
systems of linear interval equations up to order n = 100 with randomly gen-
erated symmetric strictly diagonally dominant interval Toeplitz matrices with
positive intervals on the diagonal and compared with respect to the quality
of the enclosure and computing time. The outcome confirmed the results of
the preliminary computations reported in [25]. For n = 5 it turned out that
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in most cases (for n = 50 in all cases) the Bareiss2 algorithm yields the tight-
est enclosure of the symmetric Toeplitz solution set. On the other hand, the
Bareiss algorithm very often needs more computing time (over four times for
n = 5, about nine times for n = 50, and about 18 times more for n = 100)
and requires about twice the memory space. The interval Cholesky method,
although computing an enclosure for the possibly larger symmetric solution
set (4), behaves for larger n like the Bareiss algorithm with respect to tightness
of the enclosure and computing time.

5 Conclusions

We have shown how for the interval Cholesky method the breakdown due
to an interval containing zero for which the square root has to be taken can
always be avoided. This can be accomplished by a tightening of the pivot. In
the case of the interval Cholesky method applied to interval Toeplitz matrices,
further entries in the resulting triangular form can be tightened. As a positive
side effect, this tightening may lead to a smaller enclosure of the symmetric
solution set.

If [A] is a Toeplitz interval matrix, then the matrices Azz which play a
prominent role in the approaches of Subsection 3.3 are in general not Toeplitz.
In a future paper we will adapt these approaches to the Toeplitz structure and
apply them to the interval variants of the Bareiss and Trench algorithms.
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